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Abstract

Unconcatenated ring polymers in concentrated solutions and melt are remarkably

well described as double-folded conformations on randomly branched primitive trees.

This picture though contrasts recent evidence for extensive intermingling between close-

by rings in the form of long-lived topological constraints or threadings. Here, we employ

the concept of ring minimal surface to quantify the extent of threadings in polymer

solutions of the double-folded rings vs. rings in equilibrated Molecular Dynamics com-

puter simulations. Our results show that, the double-folded ring polymers are signifi-

cantly less threading compared to their counterparts at equilibrium. Second, threadings

form through a slow process whose characteristic time-scale is in the order of that for

rings random diffusion in solution. These findings are robust, being based on universal

(model-independent) observables as the average fraction of threaded length or the total

penetrations between close-by rings and the corresponding distribution functions.
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Concentrated solutions and melts of unconcatenated and unknotted ring polymers have

stimulated intensive theoretical1–20 and experimental21–27 work in latest years.

Under high concentrations rings challenge most of the peculiarities characterizing the

more familiar case of solutions of linear chains. First, spatial constraints arising from global

topological invariance and the consequential departure4 from the Flory-like mechanism28–30

for compensation of excluded volume effects imply that the average ring size or gyration

radius, Rg, scales in the limit of large polymer mass or contour length, Lc, like11,12 Rg ∼ L
1/3
c

while for linear chains28–30 Rg ∼ L
1/2
c . Second, absence of free ends implies that rings do

not relax via common reptation which is, instead, the dominating mechanism for linear

chains.28–30 Consequently, stress relaxation in ring solutions decays as a power-law21 with

no sign of the rubber-like plateau of linear melts.29,30

Substantial theoretical progress was made back in the ’80s, when Khokhlov and Nechaev1

and Rubinstein31 mapped the problem of rings in entangled solutions to the one of a single

ring in an array of fixed obstacles to which it is not topologically linked. In the latter

conditions, rings should adopt double-folded conformations on randomly branching primitive

trees.1,31 Recently,11 explicit numerical mapping of ring polymers in solution to randomly

branched structures has demonstrated that relevant properties as the polymer gyration radius

or contact frequencies can be accurately reproduced. Further theoretical and numerical

investigations12,15,18,32 also support the “rings/branched polymers” analogy.

This successful picture is challenged in recent works33 showing that mutually exposed

surfaces between neighbor rings form long-lived topological constraints, commonly known

as threadings.17,20,34,35 Absent in systems of linear chains, threadings are responsible for the

observed glassy behaviour of ring solutions under pinning perturbations.17,20,36 Conversely,

being relaxed only up to the entanglement scale (Section IA in SI), ring polymers folding

into branched structures display little interpenetration with close-by neighbors.

To shed light on this apparent conflict, in this Letter we quantify the extent of threadings

between distinct pairs of unconcatenated rings in solution and melt by employing the concept
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Figure 1: Threading statistics in terms of relative contour length fraction Q. (A) Top:
Minimal surfaces of a pair of close-by rings modeled as double-folded polymers on interacting
branched primitive trees (IBP-model). Bottom: Schematic representation of one ring (black
and grey) penetrating the minimal surface of another ring (orange) of total contour length
Lc. Lti is the contour length of subchain i penetrating the second ring. In this example, four
surface penetrations (np = 4) split the penetrating ring into the segment pairs (Lt1 , Lt3) and
(Lt2 , Lt4) which are on opposite sides of the surface: this defines the separation length, Lsep,
and its complementary, Lc − Lsep. Adapted with permission.33 (B) Mean relative contour
length fraction, Q̄, of one ring threading another ring as a function of ring mass, Z. The
dashed line is the best fit to the data for MD-equilibrated rings, Q̄ ≈ 0.26Z−0.31. (C)
Probability distribution functions, p(Q) (log-log scale). Results for MD-equilibrated rings
from polymer models EQ MD 1 and EQ MD 2. The dashed grey line p(Q) ∼ Q−1.35 is the
best fit to the distributions tail. (D) Comparison between p(Q)’s for the IBP-model and
MD-equilibrated rings. In panels (C) and (D), the bin size is = Qmax/20 with Qmax the
largest value of Q in the given data set.
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of ring minimal surface (Fig. 1(A), top), which was recently10,33 applied to detect threadings

in melts of rings. Specifically, a ring is defined as “threaded” by another ring if its minimal

surface is crossed by the other ring (Fig. 1(A), bottom). Here we investigate only two-

ring threadings, therefore self-threadings are ignored. Numerical construction of minimal

surfaces has been performed in turn for: (1) double-folded ring polymers on interacting

randomly branched primitive trees11 (IBP-model) (for details, see Sec. IA in Supporting

Information (SI)) and (2) rings in solutions equilibrated through large-scale, brute force

Molecular Dynamics (MD) computer simulations. As for the latter, two microscopic, distinct

polymer models have been chosen (Sec. IB in SI): (a) The classical Kremer-Grest (KG)

polymer model (hereafter, EQ MD 1) from Ref.,7 at melt conditions; (b) The generalized

KG polymer model (hereafter, EQ MD 2) from Refs.11,37 with larger stiffness at semi-dilute

conditions. The initial ring conformations adopted in this second case come from the IBP-

model, thus we will use the full MD trajectories to characterize the time progression of the

threading statistics. To analyze results from the two different polymer models on equal

footing, observables will be given as functions of the total number of entanglements Z ≡

Lc/Le,38,39 where Lc is the ring contour length and Le is the entanglement length.29 The

largest rings which can be equilibrated in reasonable computational time are for Z ≈ 100

for both set-up’s (see Table S1 in SI for details on the systems and corresponding statistics

used). To speed-up the equilibration of the longest rings of EQ MD 1, we used a novel

anisotropic doubling scheme (see Sec. IB in SI).

Threadings statistics – Minimal surfaces spanned on the ring polymers are obtained by

a slightly modified version of the minimization algorithm from33 (see Sec. IC in SI). The

algorithm is based on successive iterations of triangulations evolving under surface tension

by moving the free vertices. Typically, each ring penetrates the minimal surfaces of more of

its neighbors and this number grows with Z (see Sec. IE in SI for details). Then, following33
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we introduce the separation length:

Lsep = min

( ∑
i=even

Lti ,
∑
i=odd

Lti

)
, (1)

where Lti is the (threading) length between the i-th and the i + 1-th penetrations of the

surface (Fig. 1(A), bottom). Lsep characterizes how much material of the penetrating ring is

on one side of the penetrated ring (the contour length on the other side being = Lc−Lsep, of

course). Accordingly, the quantity Q ≡ Lsep

Lc−Lsep
accounts for the relative extent of contour

length on one side with respect to the other, Q = 1 meaning the penetrating ring is half

split by the penetrated surface.

The mean value Q̄ = Q̄(Z), obtained by averaging Q over O(103) up to O(104) in-

terpenetrating rings pairs (see Table S1 in SI), is plotted in Fig. 1(B). Remarkably, data

for MD-equilibrated rings collapse on the same (universal) curve characterized by simple

power-law decay Q̄ = (0.26 ± 0.09)Z−0.31±0.09 (dashed line). As the two polymer mod-

els EQ MD 1 and 2 have different monomer densities and entanglement lengths (Sec. IB

in SI) this is a non-trivial result, which pinpoints Q̄ as a suitable “order parameter” for

characterizing the total extent of threading between close-by rings. In fact, double-folded

rings display smaller values for Q̄ suggesting a lesser extent of threadings between close-

by rings. Fig. 1(C) shows the complete distribution functions, p(Q), for MD-equilibrated

rings at different Z’s. Mirroring corresponding averages in Fig. 1(B), p(Q)’s from the two

different polymer models agree well and the observed power-law behavior p(Q) ∼ Q−1.35

for 0.1 . Q . 1 agrees with the reported33 decay for distribution functions, p(Lsep), of

separation length. In turn, expecting that the minimal size of penetrating length is O(Le),

the average value Q̄ ≈
∫ 1

1/Z
Q−0.35 dQ/

∫ 1

1/Z
Q−1.35 dQ ≈ 0.54Z−0.35 is consistent with the

power-law behavior reported in Fig. 1(B). Small, systematic differences towards Q → 1

between p(Q)’s for rings with Z = 114 and Z = 115 should be attributed to incomplete

equilibration of the corresponding data sets (see discussion in Sec. IB in SI). As explained
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in the following, such deviations from the equilibrium distribution emerge also for smaller

Z’s whenever polymer chains are not fully equilibrated. In sharp contrast with the results

for equilibrated rings, p(Q) distributions for rings constructed according to the IBP-model

decay very differently, Fig. 1(D). This is particularly evident for very large rings, whose

p(Q)’s feature an exponential cut-off towards Q→ 1. As the fine structure of the IBP-rings

is, by construction, relaxed only up to spatial scales of the order of Z ≈ 1 (Sec. IA in SI),

we suspect threadings between large rings have not yet relaxed. Consistent with that, very

short IBP-rings (Z = 1.5) are instead fully relaxed, as the corresponding p(Q) exhibits the

same universal equilibrium form from Fig. 1(C).

Figure 2: Threading statistics in terms of number of penetrations. (A) Probability distri-
bution functions, p(np), of the number of penetrations, np, for the different polymer models
and ring masses Z (linear-log scale). (B) Corresponding mean number of penetrations, n̄p,
as a function of the ring mass, Z (log-log scale).

We complete the discussion by focusing on how many times (np) any ring penetrates the

minimal surface of any other single ring. In order to dismiss any fine scale detail related to

the employed polymer model, a given threading segment contributes to np only if its contour

length exceeds the entanglement length Le.38 We notice though, that with this constraint np

is not necessarily an even number as in the original work.33 Fig. 2(A) shows that distribution

functions p(np)’s display exponential tails for both, MD-equilibrated rings (in agreement

with33) and IBP-model rings. Instead, corresponding mean values n̄p ≡
∫
np p(np) dnp as

functions of ring mass Z behave differently for MD-equilibrated vs. IBP-rings (Fig. 2(B)). As
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for Q̄(Z), n̄p(Z) from different MD simulations nicely collapse on a single curve. However,

at odds with Q̄(Z) (Fig. 1(B)), n̄p(Z) is laying at the threshold of a (slow) crossover and,

consequently, our attempt to fit the data for Z ≥ 29 to a single power-law behavior gave

poor results. Obviously, the lower values for n̄p(Z) from non-equilibrated rings reflect, as for

Q̄(Z), how these chains systematically “underthread” their spatially-close neighbors. Due to

the exponential character of the p(np) distributions and the fact that each ring threads its

neighbors (see Sec. IE in SI), the mean value n̄p is a good indicator of the typical number

of penetrations made by a single ring.

Threadings dynamics – We are now going to discuss how almost-unthreaded rings con-

structed according to the IBP-model progressively thread each other. These rings reproduce

several properties of equilibrated ring conformations like the gyration radius and contact

probabilities.11 On the other hand (Figs. 1 and 2), they fail in reproducing threading statis-

tics. Therefore, we track how threading statistics is changing as ring conformations are

relaxing over time. In the following, time is always expressed in units of the entanglement

time τe,29 corresponding to the characteristic time-scale above which entanglements start

slowing down chain dynamics.

Fig. 3(A) shows the evolution of the distribution function p(Q, t) for Z = 115 (similar

plots are obtained for Z = 5, 15 and 38, not shown) at different times. For short times,

the distribution p(Q, t) is a power-law for Q → 0 and has an exponential cutoff at larger

Q → 1, as in Fig. 1(D). As time increases, the exponential cutoff is progressively shifting

to larger Q values as longer threadings occur. Then, we consider how the mean value,

Q̄(t) ≡
∫
Qp(Q, t) dQ, changes with time (Fig. 3(B)). Interestingly, Q̄(t) grows at early

times according to the simple power-law:

Q̄(t) ∼ (t/τe)
αQ . (2)

For Z = 5, 15, 38 this regime is followed by a plateau implying that equilibrium has been
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Figure 3: Time evolution of threading statistics. (A) Time-dependent distribution functions,
p(Q, t), of the relative contour length fraction, Q, of one ring threading another ring (log-
log scale). Results for solutions of rings with Z = 115 prepared according to the IBP-
model. Similar curves are found also for other Z’s (not shown). Black circles represent the
equilibrium distribution p(Q) calculated for rings with Z = 29 (Fig. 1(C)). (B) Corresponding
mean values, Q̄(t) (symbols), as functions of time (log-log scale) and power-law fits to the
data (Eq. (2), blue lines) in the initial stage of the equilibration. Solid horizontal lines
for Z = 5, 15, 38 denote corresponding equilibrium values Q̄(Z). For Z = 115, the solid
line is for the value measured at the end of the trajectory and the dashed line is for the
extrapolated equilibrium value. (C) Time-dependent distribution functions, p(np, t), of the
number of penetrations, np (linear-log scale). Similar curves are found also for other Z’s (not
shown). (D) Corresponding mean number of penetrations, n̄p(t) (symbols), as functions of
time (log-log scale) and power-law fits to the data (Eq. (3), blue lines) in the initial stage of
the equilibration. Horizontal lines are for asymptotic values n̄p(Z).
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reached. Best fits of Eq. (2) to the data before the plateau (blue lines in Fig. 3(B)) give

effective exponents αQ ≈ 0.3 (for specific values, see Table S2 in SI). The heights of the

different plateaus correspond (solid horizontal lines) to the equilibrium values for Q̄(Z)

(symbols “�” in Fig. 1(B)). For Z = 115 instead, due to the incomplete equilibration,

threadings are still evolving. In this case, the height of the corresponding plateau (dashed

horizontal line) is extrapolated from the reported (Fig. 1(B)) power-law behavior Q̄(Z) ≈

0.26Z−0.31. The intercept between the fitted power-law and the plateau defines the threading

relaxation time, τ th
rel,Q(Z) (for specific values, see Table S2 in SI). Interestingly, τ th

rel,Q(Z) is

of the same order of the relaxation times, τdiff
rel (Z), associated to ring thermal diffusion

(Table S2 in SI) and defined (see Sec. IB in SI) at the intercept between the time mean-

square displacement of the ring center of mass, 〈g3(t)〉 ≡ 〈(~rcm(t) − ~rcm(0))2〉 and the time

dependent mean-square gyration radius, 〈R2
g(t)〉. On the other hand, τdiff

rel is expected8

to be significantly larger than the time-scale associated to internal ring motion,8 τ int
rel ≡∫∞

0
〈~c(t)·~c(0)〉
〈c(0)2〉 dt, where ~c(t) = ~d1(t)× ~d2(t) and ~d1(t) and ~d2(t) are any arbitrarily chosen pair

of spanning ring diameters whose tails are separated by the contour length Z/4. Accurate

numerical evaluation of τ int
rel (see Sec. IB in SI) confirms that τ int

rel < τdiff
rel at any given Z

(Table S2 in SI). Threadings constitute then the dominant degrees of freedom governing

rings relaxation.

We complete our analysis by considering the time evolution of the distribution function

of the number of penetrations, p(np, t), as the rings progressively thread (Fig. 3(C)) as

well as the corresponding average value, n̄p(t) ≡
∫
np p(np, t) dnp (Fig. 3(D)). Data appear

slightly noisier than the ones for Q̄(t) (Fig. 3(B)), yet n̄p(t) is also clearly exhibiting an initial

power-law regime:

n̄p(t) ∼ (t/τe)
αnp , (3)

followed by given plateaus for Z = 5, 15, 38 whose heights (solid horizontal lines) correspond

to the equilibrium values n̄p(Z) (symbols “�” in Fig. 2(B)). In those cases, the effective ex-

ponents αnp are close to ≈ 0.06 while the crossover times τ th
rel,np

(Z) match well corresponding
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τ th
rel,Q(Z)’s (Table S2 in SI). As for Z = 115, arguably because of incomplete equilibration,

the initial crossover to equilibrium resembles less a single power-law compared to the other

cases with smaller Z. Since the evaluation of the asymptotic behavior at large t is also

problematic (see discussion on threading statistics), corresponding αnp and τ th
rel,np

can not be

reliably estimated.

Conclusions – Theoretical considerations1,3,31 corroborated by recent numerical work11

led to the conclusion that topologically constrained ring polymers like rings in a gel36 or

rings in concentrated solutions and melt7,8,11,12 should resemble double-folded conformations

with randomly branched structures.

In this Letter, we have shown that this picture is not complete as it tends to underesti-

mate the correct extent of threadings17,20,34,35 between close-by rings at equilibrium. Fol-

lowing,10,33 our analysis relies upon the concept of ring minimal surface and our results are

independent from model details: in particular we report that both, the relative contour length

penetrating the minimal surface of a given ring (Q and its distribution p(Q), Fig. 1) and

the absolute number of penetrations (np and its distribution p(np), Fig. 2) display universal

features. At the same time, we have demonstrated that threading relaxation to equilibrium

(functions Q̄(t) and n̄p(t), Fig. 3) is power-law, and that the associated time-scales match

ring diffusion in melt while remaining significantly larger than the time-scales associated to

ring internal relaxation. Based on that, we predict that threadings dominate ring relaxation

in entangled solutions. At the same time, two of our results also hint on the reason why

double-folded models work well:11 (1) the observed relation Q̄(Z)−1 = (Z−Zsep)/Zsep ∼ Z0.31

implying that the separation length Zsep ≡ Lsep/Le increases only sublinearly in the ring

mass Z and (2) the small (Fig. 2(B)) mean number of threadings. The static properties

could then be well governed by the larger unthreaded contour length Lc−Lsep, in agreement

with the tree picture. Yet, the smaller Lsep could affect the dynamics.

We speculate that the exponent αQ ≈ 0.3 governing threading relaxation could be (re-

lated to) the exponent 1/3 of the late-stage phase-ordering kinetics with a conserved order
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parameter.40–42 If the number of branches of the ring conformation is conserved during the

relaxation from the IBP state, the curvilinear diffusion of the branches could be viewed as

switching the branches from a non-threading to a threading state. To find out if the corre-

spondence does exist, we would need to connect our threading analysis with an algorithm to

detect branches such as the one in Ref.18

A limitation of the present analysis is that while concentrating primarily on pairwise

threadings, it neglects higher-order ones whose contribution to ring dynamics in melts ap-

pears to be not negligible35 . In future, a potential non-invasive method to detect the complex

threadings could help to clarify their microscopic origin and effect.

At the light of these results, the question related to how to construct “by first principles”

equilibrated solutions of ring polymers not based on double-folded conformations11 is still

open: whether the answer will require to rethink double-folded conformations or a completely

different approach, in both cases it remains a promising research line for the future.
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