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1. Introduction

The notion of knot is part of everyone’s cultural background 
as it is rather ubiquitous in everyday experience. From tying 
shoelaces to unraveling earphone cords, we often have to deal 
with tightening strings by means of specific, ‘artificial’ knots, 
or removing spontaneous unwanted ones. Entanglements, 

self-entanglements, and braids are to be found in all areas 
of human activity: knots keep bags closed, hold fence poles 
together, secure sails to boats and tie-up boats to piers; knots 
make up the weaves of fabric as well as of geometric patterns 
that decorate sacred temples and public buildings. Whatever 
the type and the scope, tangles are strongly tied to culture, 
science, technology, and art.

A large part of the fascination that knots exert on us 
comes from the observation of the order that underlies them. 
Particularly striking is the fact that the type of a knot is largely 
independent of its precise form and shape—a consequence of 
the topological nature of knots. This distinct feature, namely 
the possibility to deform a closed and tangled piece of rope 
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without ever changing its knotted state, is qualitatively differ-
ent from other geometrical or physical ones, such as structure 
and interactions, and is intrinsically resilient and permanent, 
provided that the rope is not cut.

This property can be quantified, for example, in terms 
of the smallest number of crossings that a knotted loop has 
once flattened onto a surface. This observation makes it pos-
sible to classify and organise knots in a hierarchy. Starting 
with the most trivial knot of all—a circular loop without any 
crossing—one can construct lists and tables of more and more 
complex entanglements, each defined by a set of properties 
and relations with respect to the others (e.g. the number of 
passages of a cord strand through another it takes to transform 
a knot of a given type into a different one). Along decades, 
knot theory has become a rich and ubiquitous field of research 
and, still nowadays, the analysis of knots and their role in 
nature remains a challenge for the scientific community [1–4].

The qualitative and quantitative properties of knots have 
inspired many in the search for their natural occurrences. 
One of the most imaginative attempts of rationalising natural 
phenomena in terms of knots has been pursued by Thomson 
and Tait, who tried to explain the discrete light absorption 
and emission spectra of atoms describing the latter as closed 
strings, and their excitation levels as different knotted states. 
It is only in relatively recent times, however, that it has been 
demonstrated how frequent and widespread knots are in liv-
ing matter. Life on Earth, in fact, relies on molecules such as 
RNA, DNA, and proteins, which are natural heteropolymers, 
i.e. linear chains composed by fundamental units (nitrogen-
containing bases or amino acids) whose sequence determines 
their biochemical function as well as their three-dimensional 
arrangement in space. Given that the most fundamental build-
ing blocks of life at the molecular level are, in essence, strings, 
it should come with little surprise that knots play a crucial role 
there as well.

Exact mathematical results show that a polymer at ther-
mal equilibrium is to be found knotted with a probability that 
approaches unity exponentially fast as its length increases. 
The incredibly long DNA filaments that constitute the genetic 
payload of viruses or the chromosomes of cells are thus prone 
to self-entangle, with important consequences on their bio-
logical function. A knot on the DNA of a virus, for example, 
could clog the fiber during its injection into a target cell, thus 
compromising the infection process. Correspondingly, tight 
tangles within chromatin could be responsible for malfunc-
tions in the condensation into chromosomes and, eventually, 
cell replication. Several different strategies have developed 
that allow cells to overcome the potential problems created 
by entanglements in DNA fibers. For example, the particular 
spool-like arrangement of DNA in viruses represents a pas-
sive method (i.e. one not determined by ad hoc molecular 
machinery) to avoid the problems that a tight entanglement 
might determine in the ejection of the genome [5]; knots, in 
fact, are indeed present, yet they are delocalised and distrib-
uted throughout long stretches of the filament. Active systems 
which resolve entanglements are present, too: a prominent 
example is given by topoisomerases [6], specific enzymes 

which resolve torsional strains and entangled strands par-
ticularly during DNA replication. The reader interested in 
studying this fascinating topic is referred to the articles and 
reviews available in the literature.

In the realm of biological polymers, another class of mol-
ecules where knots can be found are proteins. At present, 
protein knots represent a small yet non negligible fraction 
of the structures stored in the PDB, as much as  ∼1% [7–11]. 
These self-entangled molecules represents a twofold puzzle. 
It is reasonable to assume that the folding process that leads a 
polypeptide chain into a knotted conformation entails specific 
features necessary to cope with the extra-degree of complex-
ity represented by the tangle; nonetheless, these features can-
not be expected to lie in the knotted proteins’ physics, as these 
molecules are composed by the same amino acids that make 
up the remaining 99%. The first big question is thus: how do 
these proteins fold? 

The existence of these proteins clearly demonstrates that 
the sequence → structure paradigm is powerful enough as to 
dictate also complex topologies, however the small relative 
abundance of topologically nontrivial proteins suggests that 
natural selections tends to disfavour them. The second big 
question hence reads: why are there knotted proteins? The 
folding process of a knotted protein is necessarily more com-
plex and error-prone than that of a topologically trivial mole-
cule with comparable length. If a small yet substantial amount 
of proteins has overcome all sieves and hard walls imposed by 
natural selection, what looks at the first glance as a clear-cut 
handicap must either entail an advantage, or at least be much 
less limiting than what one would intuitively assume.

During the past 25 years, both problems have been tackled 
by many authors from the experimental as well as theoretical 
(i.e. numerical) point of view. In this review, we concentrate 
on the computational tools—standard as well as tailored tech-
niques—that have been developed and employed to unravel 
the tangled problem of knots in proteins. The aim of this 
review is to present the reader with a comprehensive, albeit 
likely not complete, account of the available computational 
methods developed to study knotted proteins; to provide the 
basic knowledge necessary to make one’s way through their 
implementation and usage; and to supply a sufficiently broad 
and accessible collection of resources where this and further 
knowledge can be retrieved.

The article is structured as follows. In section 2 we provide 
an overview of the current knowledge of topologically com-
plex proteins, with a particular focus on the crucial questions 
raised by the existence of these peculiar native structures. In 
section 3 we dive into the computational methodologies, intro-
ducing the mathematical tools used to identify and classify 
protein entanglements, the algorithms employed to implement 
and apply these tools, and the existing databases gathering 
different classes of entangled structures. Next, in section 4, 
we discuss the computational approaches aimed at simulat-
ing protein dynamics, focusing on the system-specific models 
developed for the study of self-entangled proteins. Finally, in 
section 5, standing on the high mountain of this knowledge, 
we look in the direction of the developments to come.
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2. Self-entanglements in proteins

Proteins are heteropolymers, that is, linear, unbranched chains 
whose basic units belong to a repertoire of 20 different build-
ing blocks, the amino acids [12]. The most remarkable prop-
erty of these chains is that the majority of them (with the 
important exception of intrinsically disordered proteins) fold 
in a well-defined three-dimensional structure. Unfortunately, 
this structure is available to us for a fairly limited fraction of 
all existing proteins, due to the complexity and limitations of 
the experimental procedures employed to determine the three-
dimensional arrangement of the molecule’s atoms. Hence, it 
is often the case that the sequence, and possibly the biological 
function, of a protein are much better known than its shape.

Once protein chains are arranged in their biologically 
active native conformation, one can easily marvel before the 
immense variety of shapes they assume, functions they per-
form, dimensions they attain; the common nickname depicting 
proteins as the ‘workhorses’ of life, albeit not wrong, cannot 
account for the broad spectrum of roles they play on the bio-
logical stage. And yet, before curtains lift and the play starts, 
a possibly even more fascinating process must take place, that 
is folding. Newly synthesised proteins leave the ribosome as 
floating cords fluctuating in the cytoplasm, then collapse onto 
themselves to attain the crystal-like arrangement that enables 
their biological function. Skating on a thin cliff between sto-
chasticity and determinism, these polymeric molecules turn 
into solid particles with features of elasticity, flexibility and 
plasticity which vary depending on the part they play. Their 
collapse can occur autonomously, by the sole means of the 
interactions within the protein and between the protein and the 
surrounding solvent, or they can be aided in doing so by other 
proteins, the chaperones, which confine the polypeptide and 
shield it from external disturbances; they attain their native 
conformation through a process resembling self-assembly, 
abruptly crashing onto themselves in a two-state trans ition 
or starting the folding simultaneously on several distinct 
points of the chain, growing the final structure as a crystal 
forms from several merging domains. Whatever the beaten 
path, whatever the complexity of the process, we observe in 
awe a filamentous fleck of matter dance its way from being a 
piece of rope whipped by the turbulent waters in which it is 
immersed to become the robust construction of an efficient 
chemical machine.

And yet, we do not face substantial difficulties in accept-
ing that this process can take place. In spite of its complexity, 
protein folding is comprehensible phenomenon whose fine, 
case-specific details might be hard to decipher but whose gen-
eral features are understandable and largely understood. It is 
common thought that the major barrier one has to overcome to 
reproduce in silico the folding process of a protein is a com-
putational, not conceptual one. If sufficient computer power is 
provided, protein folding can be fairly easily simulated.

A much tougher pill to swallow is the idea that a protein 
can knot. This largely depends on the anthropocentric perspec-
tive we have on knots—at least those knots we tie ourselves. 
Many threads in nature knot by themselves—hair, umbilical 
cords, DNA, earphones. These entanglements, however, are 

stochastic and irreproducible: their occurrence depends on 
chance and, if the ‘experiment’ is performed multiple times, 
they do not manifest repeatedly in the same manner—posi-
tion, knot complexity, shape, arrangement. It is possible to 
measure or compute a probability distribution for a given type 
of knot to occur on a polymer, but a specific realisation of that 
knot will not appear systematically [13].

Proteins behave differently. Their function can be carried 
out only if a well-defined three-dimensional arrangement is 
attained (with the remarkable exception of intrinsically dis-
ordered proteins [14–18]). The necessity of collapsing into 
such a precise structure is incompatible with the possibility 
of randomly knotting: if different copies of the same protein 
tied different knots before folding, they would hardly reach 
the same native conformation. Only one precise kind of knot, 
always tied in the same manner, would be compatible with a 
functional protein structure.

One of the closest examples of such a knot is provided by 
shoelaces: same position, same topology, same arrangement—
and clearly always the same function, that is, keep shoes tight. 
This analogy pairs the one between a knotted DNA filament 
and the tangled wire of your earphones. A major difference 
exists between the two cases though, that is intentionality. It 
is often the case that one would like to avoid the latter tangle, 
which happens nonetheless and always in different ways; on 
the contrary, the art and craft of tying your shoes is something 
that requires effort, practice, and a sharp determination to be 
carried out: very seldom do shoelaces happen to be tied in the 
precise way you want them to (even though they quite often 
tend to untie whether you want it or not; the cause of this has 
been identified in a combination of the impact of the shoe on 
the floor, which loosens the knot, and the whipping portion 
of the free ends [19]). It appears thus understandable why the 
idea of a self-knotting protein, capable of doing so in a predi-
cable, deterministic, reproducible manner, has been looked at 
as biologically impossible until very recently.

Indeed, evidence has for a long time pointed in the direc-
tion of a complete absence of knots from the realm of protein 
structures. Until 1994, the totality of resolved structures fea-
tured no complex topology, at least as far as the protein back-
bone alone was considered. Different, slightly more complex 
forms of entanglement had been looked at with a keener eye, 
namely the knotted loops that the backbone forms if disul-
phide bridges are present. Indeed, Crippen [20] speculated as 
early as in 1974 about the properties of knots in such loops, 
the probability of their occurrence, and the consequences 
that these have on the molecule’s folding and denaturation. 
However, the current picture of protein folding, depicting the 
chain progressively collapsing as a polymer in a bad solvent, 
ruled out the possibility of a complex pathway as the one 
required to tie a knot, and so did structure prediction software 
which deemed knotted structures to be ‘impossible’, thus dis-
carding these results [21–23]. A knotted backbone was taken 
as a signature of a folding process gone bad, or of a mistake in 
the structure determination via crystallography.

In 1994, Mansfield [24] raised the question of the existence 
of protein knots with some data at hand. In fact, he identi-
fied a protein, carbonic anhydrase (CAB), which might have 
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contained a knot if the C-terminal domain could have been 
considered to penetrate, albeit by a few residues, a distal 
loop. This particular case did not represent strong evidence 
in favour of the existence of knotted proteins, as the defini-
tion of such knot was too loose, strictly dependent on possible 
inaccuracies in the structural determination of the terminal 
residues, and on the perspective (the particular projection 
employed to look at the backbone path). Furthermore, the 
observation of a knot in CAB had been done already in 1977 
by Richardson [25], apparently without echoes. However, the 
work by Mansfield sparked renovated interest on the topic, 
and in 1997 he further elaborated on that [26] discussing CAB 
and S-adenosylmethionine synthetase (MAT).

The main difficulty in the identification of knotted back-
bones in protein structures is technical: visual inspection is 
difficult, time-consuming, and error-prone. Algorithmic pro-
cedures thus have to be put in place in order to process the 
vast number of available structures (see section 3 for further 
details). The first, effective approach in this sense was devel-
oped by Taylor in [27]: the method relies on the systematic 
simplification of the protein chain -initially constituted by the 
Cα trace- through the iterative removal of a point and the direct 
connection of the neighbouring ones, all done while keeping 
the terminal points fixed. If a straight line is obtained between 
the termini without operating a chain crossing, the protein 
is unknotted; alternatively, a knot is found whose structural 
complexity is sufficiently low to allow for a visual inspection 
and identification. In this work, Taylor speculated about the 
folding process of one of the identified knotted proteins, PDB 
code 1yveI, whose entangled core was suggestive of an inter-
nal duplication of a sequence stretch into two identical alpha-
helices loops which compenetrate.

From this pioneering investigation several powerful 
algorithms have been developed to automatically identify 
and characterise knotted structures, which have opened the 
Pandora box of self-entangled proteins. Indeed, a proper knot 
can be defined only on a closed loop, while open chains such 
as proteins are by construction unknotted; however, appro-
priate strategies combining chain closure methods and knot 
identification schemes have enabled researchers to spot a wide 
spectrum of self-entanglement in proteins, ranging from self-
evident conformations with buried knots and exposed termini 
to evanescent links between portions of otherwise unknotted 
chains. Since 2000, a steadily growing number of instances 
have been found [7, 10, 28–31] which contain knots of com-
plexity ranging from the simplest trefoil knot to the most 
complex known to date, a Stevedore knot with six crossings 
[32]. About 1% of the available PDB entries feature a knotted 
topology [10].

The relative abundance of different knots is inversely pro-
portional to the complexity, and the knotted portions of these 
proteins is much larger than the minimal length the corre-
sponding entanglement can have: this property can be reasona-
bly attributed to the difficulty of squeezing several amino acids 
one against the other, not to mention the large forces that would 
be required to attain such a densely packed conformation dur-
ing the folding process. Notably, all known protein knots are 
of the same twist type [10], that is, knots obtained twisting a 

U-turn shaped strand and closing the chain passing a terminus 
through the loop; in contrast, only the simplest protein knots 
belong to the other main class of knots, the torus knots, which 
are defined embedded in a two-dimensional toroidal surface. 
Indeed, the vast majority of protein knots are of the trefoil type, 
that is, the sole knot which falls in both twist and torus classes. 
None of the protein knots with more than three crossings can 
be classified as a torus knot. This absence might be due to the 
relative simplicity of knotting a twist knot, which is obtained 
threading a terminus through a loop only once, in contrast to 
torus knots which require two or more passages.

In addition to protein knots, one should also account for 
other kinds of entanglements. Examples of these alterna-
tive topological states are slipknots, conformations where 
the backbone makes a U-turn re-entering an already pierced 
loop, thereby ‘undoing’ the knot, or complex lassos, in which 
a cysteine bond closes a backbone loop which is pierced by 
the rest of the chain. A detailed overview of the non-trivial 
topologies found in protein structures is provided in sec-
tion 3.4; here, we just underline that, taking into account all 
these structures, the amount of self-entangled proteins sums 
up to 6% of the PDB [11].

The observations hitherto reported raise a number of ques-
tions, which, up to date, have been only partially answered. 
These questions pertain the where, the why, and the by what 
means, that is: are knots ‘watermarked’ in the protein’s 
sequence in some special, otherwise uncommon manner? 
What is the functional advantage of a self-entangled topol-
ogy? And how is this complex conformation attained during 
the folding process? 

The first source of perplexity is the difference, or the lack 
thereof, between the sequences of knotted and unknotted pro-
teins. How is the topology encoded in the sequence? Are there 
special and/or specific ‘words’ or ‘phrases’ that determine the 
qualitative difference between a protein with simple, topologi-
cally trivial fold and one with a knot or a lasso? In the latter 
case, the presence of cysteine residues clearly correlates with 
the peculiar self-entangled state of the molecule; however, one 
might identify similar properties also in absence of such an 
evident marker: an example is provided by those proteins hav-
ing sub-chain loops which entangle one with another, as high-
lighted by Baiesi et al [33, 34]. Here, loops are not physically 
closed by disulphide bonds, however a geometrical criterion 
of proximity is sufficient to spot a quasi-continuum of entan-
glement degrees.

Evidence collected so far does not point towards uncom-
mon, specific, or otherwise extraordinary elements that take 
part in making the native conformation of a protein knotted. 
Indeed, sequence analyses have been carried out, which have 
not been capable of identifying unusual traits in the primary 
sequence of self-entangled proteins. In some cases, short 
stretches of the sequence of a protein have been pinpointed 
as particularly relevant for the formation of the entanglement 
[30, 35]; however, the sequences of these knot-promoting 
loops did not show any statistically relevant deviation from 
the average features.

It is thus reasonable to expect proteins to be perfectly 
capable of encoding a complex topology in their sequence. If 
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knotted proteins are ‘nothing special’, though, why are they 
so rare? And—are they rare for real? A landmark work by Lua 
and Grosberg [36] indeed showed that knotted proteins are 
substantially less frequent than one would expect in a collec-
tion of collapsed polymers with comparable lengths and struc-
tural statistics. This discrepancy is suggestive of evolutionary 
mechanisms acting either at the level of sequence mutation, 
thereby preventing or largely reducing the occurrence of 
knotted mutants, or at the level of selection, sieving out self-
entangled conformations as adverse. This last aspect further 
bifurcates the possibilities, in that the detrimental impact of a 
knot in a protein’s backbone might manifest itself as a barrier 
to efficient and proper folding, or as a distorted, functionally 
ineffective conformation—or both.

Given this state of things, one is led to wonder what makes 
existing protein knots so special. In fact, not only there are 
knotted proteins, whose folding process and biological activity 
does not seem (too) hampered by the complex topology, rather 
these instances seem to be scrupulously conserved throughout 
evolution. Potestio et al [35], for example, employed phylo-
genetic analysis methods to show that in the family tree of 
N-succinyl-L-ornithine transcarbamylase (SOTCase) all 
instances belonging to a given branch are knotted; this was 
the case, for some of them, in spite of a smaller sequence 
identity with other knotted proteins than with unknotted mem-
bers of the family on other, unknotted ramifications. In gen-
eral, conservation of topological motifs in proteins has been 
observed across a wide range of organisms, with a typically 
low sequence similarity [11, 30].

If a knotted protein survives the sieve of natural selec-
tion, then, it seems to conserve its distinctive topological trait 
throughout its offspring. This might be due to the small phase 
space offered by structural and functional constraints to untie 
the knot by means of a relatively small mutation. However, the 
survival of these few instances and their obstinate persever-
ance in the kingdom of Life hints at a correlation between the 
self-entanglement and a substantial functional advantage [30]. 
What is, then, the positive impact of a knotted backbone on 
the biological activity a protein has to carry out? 

To attempt an answer to this question one can first look at 
the protein families where topologically nontrivial structures 
are more frequent. The majority of these proteins are enzymes 
which catalyse chemical reactions [37]; for example, trefoil 
knots are found in carbonic anhydrases, S-adenosylmethionine 
synthetases, methyltransferases, and N-succinylornithine tran-
scarbamylases, as well as in metal-binding protein essential 
Rds3p and among sodium/calcium exchanger membrane pro-
teins. The figure-of-eight protein knot is present in ketol-acid 
reductoisomerases and in the chromophore-binding domain of 
a red/far-red photoreceptor phytochrome from bacterium D. 
radiodurans. Ubiquitin carboxyl-terminal hydrolases (UCHs) 
features a five-crossing Gordian knot, while the Stevedore 
knot, the most complex topology discovered in proteins so far, 
is tied on DehI, a α-haloacid dehalogenase.

Why these proteins require a knotted backbone for their 
catalytic activity is still object of active research. Among the 
most popular hypotheses one counts the enhanced structural/
mechanical stability and resistance to denaturation that the 

entanglement endows the molecule with. In some specific 
cases [37], the particular arrangement of the polypeptide 
chain determined by the knot has been deemed responsible for 
the precise structure of the molecule’s active site as well as its 
chemical targets and activity. Nonetheless, smoking-gun-clear 
evidence of the necessity of a tangled backbone to achieve 
these conformations, instead of a different but unknotted one, 
is still largely missing [10, 37].

Finally, we question ourselves about the mechanisms put 
in place by nature to fold these peculiar proteins. As earlier 
pointed out, the most remarkable difference between the 
knots found in viral DNA strands and the ones in proteins is 
reprodu-cibility: always the same knot, always in the same 
place. By analogy with human-sized cords, this is the differ-
ence between a messy tangle of earphones wire and the pre-
cise, elegant knot on a tie or a pair of handmade shoes—the 
pivotal role missing in the first case being played by a skilled, 
well-intentioned human.

As iconography and clichés depict ties to be knotted on 
clumsy gentlemen’s necks by the hands of their patient and 
supportive partners, knotted proteins can have their own ver-
sion of a helpful companion, too, namely chaperones. In many 
cases, in fact, self-entangled proteins fold with the assistance 
of molecular machineries such as GroEL/GroES [9], which 
protect the freshly synthesised chain from the environment 
and facilitates the process of folding. If, on the one hand, the 
presence of chaperones represents a considerable aid to the 
folding process, on the other hand it should be noted that, in 
many cases, knotted proteins do not require them to sponta-
neously attain the self-entangled conformation. Albeit ineffi-
ciently, though, knotted proteins are sufficiently emancipated.

Unfolding and refolding experiments have largely sup-
ported this observation [8, 38–47], thereby highlighting the 
fact that not only can a knotted topology be fully embedded in 
an otherwise unspecific amino acid sequence, rather it can also 
be attained by the sole means that this sequence commonly 
relies on—intra-protein and protein-solvent interactions. It is 
reasonable to expect that the deeper/more complex the knot, 
the harder it will be for the chain to fold it by itself; in fact, the 
gain in efficiency provided by the presence of chaperones can 
be 20-fold [9]. Nonetheless, relatively small knotted proteins 
can snap into a tied native structure without helping hands. 
Recent work [48–51] has highlighted the potential impact and 
importance of the protein synthesis itself on knotting. In fact, 
simulations [48–50] have shown that the chain folding and the 
knot formation can contextually occur with the polymerisa-
tion the chain in the ribosome, a process dubbed cotransla-
tional folding [52]. The chain, in fact, transolcates through a 
pore, so that the newly synthesised stretch of the sequence 
has a lower conformational entropy than it would have if the 
remainder of the protein were present. This, as well as other 
factors, can favour the self-entanglement of the protein.

Differences with respect to the folding pathways followed 
by unknotted proteins, however, are present. In general, fold-
ing can proceed through various routes, characterised by 
several milestones and intermediate states among which the 
molecule can interconvert before landing onto the native, 
biologically functional conformation. The existence of a 
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‘topological bottleneck’, on the contrary, forces self-entangled 
proteins to avoid all those intermediate steps which are incom-
patible with the topology of the native state and might prevent 
the achievement of the latter [44]. Backtracking is required 
in these cases, that is, a partial unfolding necessary to solve 
the undesired tangle and attempt anew to obtain the desired 
one. The formation of the native topology is thus identified in 
the most relevant rate-limiting step in the folding process of 
self-entangled proteins. This fact has been most clearly high-
lighted by the experiments carried out in the Jackson group by 
means of de novo folding [8].

When available, chaperones help knotted proteins to fold 
correctly, reaching the aforementioned 20× factor in speedup. 
Other self-entangled polypeptides, however, do not take advan-
tage of this kind of aid, and have by default to manage knotting 
by themselves. This is especially the case of small knotted pro-
teins, whose folding pathways have been thoroughly studied. 
Backtracking is avoided in these mainly through a fairly polar-
ised free energy landscape, which resembles a funnel-shaped 
highway rather than a mountain pass [44, 53–55]. Many  
relevant cases have shown folding mechanisms involving 
the formation of loops through which a terminus penetrates, 
thereby establishing the native topology and the native struc-
ture almost in a single step. The piercing terminus can happen 
to be ‘straight’ or bent in a hairpin-like conformation; in this 
second case, the knotting event takes place first through the 
formation of a slipknot [7, 30, 37, 56–61], which subsequently 
opens up into a regular knot. Larger proteins, as anticipated, 
can feature more complex folding pathways, involving inter-
mediate steps [42, 46, 47, 62, 63] and inspiring novel schemes 
for the description of the knotting process [64].

The experimental characterisation of knotted proteins 
and other types of self-entangled polypeptides has achieved 
remarkable successes. These have required a broad spectrum 
of techniques, such as mechanical stretching of proteins by 
means of optical tweezers and AFM, in vitro translation-
transcription, recombinant and cell-free protein expression, 
SAXS, fluorescence etc. Several different tools had to be put 
in place to synthesise wild type and mutant knotted proteins, 
create new ones, determine and characterise their structure, 
investigate their response to mechanical stresses, and above 
everything pinpoint their topological state. Important pieces 
of knowledge have been obtained by these means.

However, it appears evident that the experimental tools 
alone are not sufficient. This is more and more true in every 
facet of science, and the investigation of self-entangled pro-
teins makes no exception. The insight contributed by in silico 
studies—be that through accurate and realistic all-atom models 
or simplified, effective coarse-grained representations—is of 
paramount importance to comprehend the fundamental prop-
erties and mechanisms that underlie the formation of protein 
knots. The flexibility given by this instrument in constructing 
ad hoc models endowed with specific features and studying 
their properties is an invaluable help in understanding how 
does a protein tie a knot, what biological role such an entangle-
ment might play, and which inescapable features its sequence 
must have in order to entail the capability of doing all this.

The objective of the following chapters is to present the 
reader a list of the most popular, effective, and efficient tech-
niques that have been employed in this endeavour so far. The 
theoretical basis underlying all computational methods and 
models is illustrated with the aim of being clear and informa-
tive rather than detailed and comprehensive, in order to provide 
an agile resource to refer to when in search of the appropriate 
tool to tackle a given problem involving self-entangled pro-
teins. The vastness of this yet rather young field of research, 
combined with the rapidity with which it evolves, makes it 
difficult to imagine that this resource will stand the proof of 
time, the latest edge-cutting development surely being only a 
few months away from the time of this writing. However, the 
construction lies and relies on a solid bedrock, and it is the 
intent and hope of the writers to present the readers with a 
sufficiently good guide of the old town so as to allow them to 
confidently explore the modern neighbourhoods of the city—
and why not, motivate them to build a new block.

3. Classification of protein entanglements

Knots in proteins represent an example of physical knots, 
topological entanglements of linear objects, characterized by 
physical properties such as thickness, friction, or flexibility. 
These properties distinguish such objects from the immaterial 
curves considered by the formal knot theory. Nonetheless, the 
study of physical knots mutuates several concepts from knot 
theory, crucial to define and classify the topological states of 
proteins [65–67]. In the present section we report these theor-
etical concepts, costituting the necessary background for the 
study of entanglements in proteins.

According to theory, knots can be rigorously defined only 
as a property of closed curves [1–4]. However, as mentioned 
before, objects such as proteins, whose geometry can be rep-
resented by an open curve, are found in stable, deeply entan-
gled states. The entangled configurations of open curves can 
be traced back to a well-defined knot if a closure operation is 
performed, namely if its two ends are artificially connected by 
extending the curve. The definition of the closure represents 
therefore a crucial step in the detection and classification of 
knotted polymers and proteins.

Recently, Turaev has proposed the mathematical defini-
tion of knotoids [68], which generalizes the concept of knots 
including open curves entanglements. As such, these topo-
logical objects are well-suited to characterize the topology of 
proteins, without requiring the definition of a closure [69–71]. 
A further approach to the classification of topology in open 
curves is adopted in [72], where protein structures are ana-
lized as virtual knots. Both these classification methods build 
on a statistical treatment of all possible planar projections of 
three-dimensional curves. While knotoids do not require clo-
sure by definition, in virtual knots a so-called virtual closure 
is performed on each planar projections, keeping trace of the 
possible topological ambiguities introduced while closing the 
curve. Despite the existence of these novel, more general con-
cepts, ordinary knot theory is used in most of the literature 
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about entangled proteins, therefore we shall rather focus on 
the knot-classification than on knotoids or virtual knots.

We first consider immaterial closed curves, introducing 
the knot theory insights required to classify their topological 
state, in section 3.1. Then, in section 3.2, the main numer-
ical methods used to identify knots are reviewed. After that, 
in section 3.3, closure techniques are summarized. The defi-
nition and detection of entangled states other than knots is 
addressed in section  3.4, while the existing databases that 
gather all known self-entangled proteins are discussed in 
section 3.5.

3.1. Knots in closed curves

3.1.1. Knot definition. As mentioned before, knot theory 
defines the topological state of closed curves. By common 
experience we know that, while a knot on an open string can 
be undone by proper manipulation, this is impossible if the 
ends of the string are attached to form a loop (see figures 1(a) 
and (b)). Any possible deformation in space of this closed loop 
preserves its topological state. This suggests that the knotted 
state of a closed curve can be operationally defined by means 
of spatial deformations.

Let us mathematically represent the knotted closed string 
of figure 1(b) as a closed curve embedded in the three-dimen-
sional euclidean space X ⊂ R3, as shown in figure  1(c). In 
mathematics, all the possible continuous deformations of X in 
space are called homotopies (see e.g. [2] for further details). 
To define the topological state of X we need to restrict the 
class of transformations to those homotopies that prevent the 
curve from passing through itself, named isotopies. This is 
still not sufficient, since X has no thickness, any entanglement 

hosted by the curve can be continuously reduced to a single 
point, transforming the curve into an un-knotted loop, also 
called trivial knot. This leads to the definition of an ambient 
isotopy (AI), which deforms X through the continuous trans-
formation of its embedding space, in this case R3. The action 
of an AI on X does not change its topological state, thus the 
AIs are the mathematical analogous of the string manipulation 
mentioned before.

The topological state of a curve is defined through AIs as 
an equivalence class, named knot type. Two curves that can be 
transformed into each other by AIs belong to the same knot 
type, namely they are topologically equivalent. This defini-
tion is related to the concept of knot complement, namely 
K = S − N(X), where S is a compact region embedding the 
curve and N(X) is a tubular region that indicates the neighbor-
ing space of X. Indeed, K defines the knot type, as equivalent 
knots have homeomorphic complements [73]. For example, 
all the curves that can be transformed into a circle belong to 
the trivial knot type, and are said to be unknotted. There exist 
infinitely many possible knot types, the known ones being 
classified in catalogs [74, 75].

From this general definition of knots, we shall restrict to 
those knot types that can describe a physical objects, which 
are named tame knots. Tame knots, as demonstrated in [2], 
can always be represented by closed, non-intersecting and 
finite polygonal curves, called polygonal knots. An example of 
a knot type excluded from this definition is the so-called wild 
knot, shown in figure 2, which features an infinitely recursive 
character and cannot represent a physical knot.

Moreover, since most of the techniques reviewed in the 
following have been conceived for the topological analysis 
of polymers, it will be sometimes useful to directly refer to 

Figure 1. Pictorial representation of a knotted open string (a), of a knotted closed string (b), and of a knotted closed curve (in red) in the 
three dimensional space. To render the three-dimensionality of the curve it is embedded on the surface of a torus (gray dotted mesh).

Figure 2. A wild knot, featuring a pattern tangle (indicated by the dashed boxes) that is repeated and rescaled infinite times, towards the 
limit where the tangle reduces to a point. The repeated tangle is trivial, but the whole curve is not (see e.g. [2, 76]). To represent the three 
dimensional character of the curve we have used the knot diagram notation, explained in section 3.1.2.
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a bead-chain structure rather than to an abstract polygonal 
curve.

3.1.2. Knot diagrams. In the process of topological classifica-
tion, a schematic visualization of knots, capable to underline 
differences between knot types, provides a significant help. A 
natural, compact way to visualize a curve embedded in R3 is 
to project it on a plane. The mapping of a three dimensional 
curve on a plane naturally generates singular points, in which 
more than one point of the curve is mapped. The relevant pro-
jection for knot identification is the so-called regular projec-
tion, in which the singularities are ordinary double points, also 
called crossing points (CP). In CPs two strands of the curve 
overlap with different tangents, as shown in figure 3. It can be 
demonstrated that physical knots can always be represented 
through a regular projection [2]. To preserve the topological 
information in the two-dimensional projection it is also neces-
sary to assign the information of relative depth of the crossing 
branches in each double point. This is normally done as shown 
in figure 3, by interrupting the branch that underpasses the CP. 
The resulting representation is named knot diagram.

Knot diagrams can be extremely complex, in particular 
if they represent a collapsed globular structure, such as that 
of proteins. However, a complex knot diagram can be trans-
formed to reach a simpler representation, without changing 
its topological state. Intuitively, the transformations that allow 
one to reduce the complexity of a knot diagram are planar pro-
jections of AIs. These consist in all planar deformations of the 
diagram that do not affect the CPs, plus the three Reidemeister 
moves (RM) [77]. The latter ones act on the number of CPs of 
a diagram without affecting its topology (a pictorial represen-
tation of RMs is reported in figure 4). These transformations 
generate the class D(X) of topologically equivalent diagrams 
of X. One can thus use Reidemeister moves to reduce the num-
ber n of double points in a diagram down to the minimum 
number ñ = minD(X) n, named crossing number, obtaining 
the so-called minimal diagram. We underline that the minimal 
diagram is generally the simplest representation of a knot, but 
sometimes it hides specific knot properties (for further insights 
on this we refer to specific knot theory books, such as [2, 65]).

3.1.3. Knot classification. The crossing number ñ of a knot 
diagram is a topological invariant, namely a property that 
depends only on the topological state of the curve and not on 

a specific three-dimensional realization or planar projection. 
More precisely, ñ is a weak invariant, as different knots can 
have the same crossing number. The known knots are classi-
fied using the notation ñi, in which i indexes different knots 
with the same crossing number. The trivial knot is classified as 
01, while the simplest known knot, namely the trefoil knot, is 
referred to as 31. According to these conventions known knots 
are classified in tables such as the one reported in figure 5(a), 
including all knot types found in protein structures. A single 
curve can also form composite knots, that contain more than 
one knot connected as in figure  5(b). The components of a 
composite knot are called factor knots, while prime knots 
cannot be decomposed in two or more non-trivial factors (the 
trivial knot is always a factor of another knot). Knot tables, as 
that reported in figure 5(a) usually include only prime knots.

A further topological specification is the chirality, or hand-
edness, of a knot. A knot is chiral if there is no AI that can map 
it to its mirror image. The two mirror images of a chiral knot 
are named enantiomers. The simplest example of chiral knot 
is the 31, while the 41 is an example of a-chiral knot.

3.2. Identification of knots

The identification of a knot in a closed chain consists in deter-
mining the equivalence of its diagram, or of its factors dia-
grams, to a minimal tabulated diagram. For simple knots, and 
projections, this can be achieved by algorithms implementing 
geometrical deformations and RMs. However, as the com-
plexity of the knot diagrams under consideration increases, 
this strategy becomes impractical and more efficient tech-
niques are necessary.

3.2.1. Topological invariants. For decades mathematicians 
have searched for topological invariants which can distinguish 
between different knots, and at the same time be efficiently 

Figure 3. Representation of a two-dimensional, regular projection 
of a 62 knot (left side) via knot diagram (right side).

Figure 4. The three Reidemeister moves.
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computed also for very complex embeddings of curves. As 
mentioned before, the crossing number, on which the knot 
classification is built, is the simplest topological invariant. 
However its calculation requires by definition the determina-
tion of the minimal knot diagram, and it is therefore a complex 
operation. Nowadays many invariants have been discovered, 
ranging from Gauss winding number [78], to the knot group 
[79, 80].

The most widely used invariants for identifying knots in 
polymers are the polynomial invariants, that are constructed 
defining combinatorial rules that apply to any knot diagram, 
not requiring the construction of the minimal diagram. These 

invariants include the Alexander polynomial [78], Jones 
polynomial [81], and HOMFLY polynomial [82] (from the 
names of its co-discoverers Hoste, Ocneanu, Millett, Freyd, 
Lickorish and Yetter). A detailed review of these invariants is 
beyond the purposes of present work, the interested reader can 
refer to [2, 80]. As an example on how these polynomials are 
constructed, we report the procedure for the calculation of the 
Alexander polynomial ∆(t) [66, 83]:

 (i)  First, an arbitrary orientation is assigned to the dia-
gram. This orientation defines the sign of the crossings 
according to the convention represented in figure 6(b).

Figure 5. (a) Minimal diagrams of the non-trivial knot types found in protein structures. (b) Example diagram of a composite knot, formed 
by connecting a 31 with a 41 diagram.

Figure 6. Alexander polynomial calculation for a 41 knot: first (a) an orientation is assigned to the diagram, and the CP and arcs are 
numbered (with red and blue labels, respectively). By using the convention for the sign of the CP (b), the matrix M is constructed 
(c). An arbitrary minor Mi,j  is chosen (d), the determinant of which gives the Alexander polynomial (e).
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 (ii)  Following the orientation, a progressive number 
x = 1 . . . n is assigned to the crossing points of the dia-
gram, starting from an arbitrary point.

 (iii)  Also the n arcs, the diagram branches separated by 
underpasses, are numbered progressively following the 
orientation.

 (iv)  An n × n matrix M is defined. Each row is associated to a 
crossing point, while each column is associated to an arc. 
The nonzero elements of the xth row correspond to the 
three arcs that meet in the xth crossing point. Let us define 
that in x the ith arc overpasses the two consecutive j  and k 
arcs. The xth row elements are then defined according to 
the following rules:

  •  if the crossing is positive: M(x, i) = 1 − t , 
M(x, j) = −1 and M(x, k) = t,

  •  if the crossing is negative: M(x, i) = 1 − t , M(x, j) = t  
and M(x, k) = −1,

  •  if i  =  k, or i  =  j , M(x, j) = 1 and M(x, k) = −1.

 (v)  An arbitrary minor of M is selected to obtain a 
(n − 1)× (n − 1) matrix, the so-called Alexander matrix.

 (vi)  The determinant of the Alexander matrix is computed to 
obtain the Alexander polynomial ∆̃(t).

The ∆̃(t) obtained in this way is not a topological invariant, 
but all the ∆̃(t)’s corresponding to the same knot (computed 
from different diagrams) differ by a factor ±tm, with m ∈ Z. 
Therefore one can obtain the so-called irreducible Alexander 
polynomial ∆(t) = ±tm∆̃(t), where the sign and m ∈ Z are 
chosen so that the lowest order term of ∆(t) is a positive con-
stant. The irreducible Alexander polynomial is an actual topo-
logical invariant. In the following, as it is customary in the 
literature, we will drop the ‘irreducible’ and simply indicate it 
as Alexander polynomial. In figure 6 an example of the algo-
rithm application is displayed.

It is clear from this example that the calculation of poly-
nomial invariants depends on the number n of crossing points 
associated to the particular projection considered, thus mak-
ing it desirable to simplify the knot diagram before the calcul-
ation, in order to operate on a smaller—if not the smallest 
possible—number of crossings. It can be shown that Jones 
polynomial calculation time scales as 2n, while Alexander 
polynomial calculation time scales as (n  −  1)3 [84]. For its 
scaling properties, and for its relatively simple implementa-
tion, the Alexander polynomial is largely used in the literature 
of protein topology (see e.g. [24, 85–87]). However, since 
Alexander polynomial cannot distinguish between two enanti-
omers, a more general invariant, such as the HOMFLY poly-
nomial, has to be computed when the chirality information is 
required [87]. We also stress that polynomial invariants can-
not always distinguish among different knots, for example the 
Kinoshita–Terasaka knot, with crossing number ñ = 11, has 
∆(t) = 1, the same as the trivial knot [2] (while HOMFLY 
polynomial can differentiate among the two). However, of 
all knots with ñ < 11 only six cannot be differentiated by the 
Alexander polynomial. Thus ∆(t) represents a valuable tool 

to discriminate between relatively simple knots, which are 
more likely to occur in nature.

3.2.2. Curve smoothing. In polymer and bio-polymer phys-
ics, knot theory is usually applied to analyze globular configu-
rations, as for example in the study of proteins. In such cases 
the polymer is represented by a dense polygonal curve, whose 
projections may have a large number of CPs n, even if the 
topology of the curve is trivial. This makes the calcul ation of 
the Alexander polynomial, or of other polynomial invariants, 
extremely demanding. To overcome this limitation the ana-
lyzed curve should be modified to reduce n, without changing 
its topology. In other words one has to implement an algo-
rithm that mimics AIs.

An effective algorithm that performs this curve smoothing, 
or rectification, was proposed Koniaris and Muthukumar in 
[84]. In this method the polygonal curve is modified by pro-
gressively analyzing the triplets of consecutive vertexes. If no 
curve segment crosses the triangle formed by the considered 
triplet, then its central vertex is removed, otherwise the algo-
rithm moves to the next triplet. The computation time of this 
procedure scales as M log(M), where M is the initial number of 
vertexes of the polygonal. This calculation allows to minimize 
the crossings n in any possible projection of the curve, signifi-
cantly accelerating the computation of polynomial invariants. 
Algorithms based on the same principle of curve smoothing 
have lately been proposed in [27, 88]. In many cases curve 
rectification allows also the visual detection of knots, so it can 
be considered itself as a knot finding technique [27]. Currently, 
curve smoothing algorithms are included in all the common 
procedures for finding knots in proteins [85, 87, 89, 90].

3.2.3. Knot localization. A crucial property of physical knots 
is their size, namely the length of the shortest curve portion 
hosting the entanglement. In knotted polymers the size of the 
knots can deeply modify the equilibrium and dynamics prop-
erties of the polymeric chain (see e.g. [91, 92]). The qualifica-
tion of knot size and localization on the backbone (or depth) 
requires the topological analysis of all possible portions of 
the considered chain, or arcs, that is all the combinations of 
consecutive vertices of the polygonal curve [27, 30, 56, 93]. 
Once an arc is selected, a closure operation is performed, and 
then its topology is assessed. The results of such an operation 
can be collected by means of knot matrices, or fingerprints 
[56, 94, 95], which allow to effectively visualize the size and 
location of knots [96]. As shown in figure 7, each entry of the 
knot matrix indicates (via color or shading) the topology of 
an arc, whose end vertices are indicated by the row and col-
umn indexes. The smallest portion of the chain that embeds 
a specific topology is the so-called knot core, while the two 
chain segments excluded by the knot core are called knot tails. 
Recently, an alternative approach was proposed to display the 
topology of a knotted closed chain and all its subchains [97], 
named disk matrix. Based on a longitude-latitude map, the 
disk matrices are meant to reproduce the periodicity of cir-
cularized chain, but can provide also useful insights on the 
topology of open chains such as proteins.
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3.3. Closure methods

As mentioned multiple times, only closed curves have a well-
defined topological state. A closure operation is thus neces-
sary to apply knot theory to polypeptide chains and polymers 
in general. With the word closure we mean an artificial exten-
sion of the open polygonal curve representing the polymer 
chain under study, so that its ends are connected to form a 
closed curve. Since there are infinite ways of performing this 
operation, closure can be a source of ambiguities in defin-
ing the topological state of a curve. For example, the closing 
extension can interfere with the part of the curve representing 
the actual polymer chain. In general one wants to avoid this 
interference, aiming at a closure arc that joins the two polymer 
ends without intersecting any of the existing features. In the 
following we review the main closure techniques that have 
been proposed and applied in the literature of polymer knots.

  Direct bridging: The polygonal is closed by connecting 
its ends with a straight line (as shown in figure 8(a)). It 
has the easiest implementation but, in particular when 
globular polymers or proteins are considered, the clo-
sure segment is likely to interfere with the actual chain 
topology [36, 98].

  External closure: Each end of the curve is prolonged 
outwards and connected at large distance, by a polygonal 
or a circular arc (as shown in figure 8(b)). The idea of 
a closure far outside from the volume occupied by the 
open polygonal is introduced in [26], while the virtual 
closing loop has been formalised in different ways. Each 
end can be prolonged along the direction of its vector 
distance from the centre of mass of the polygonal rcom, 

to reach the surface of a sphere of radius R, much larger 
than the size of the curve. The two resulting ends are 
then joined by a polygonal or circular arc of radius R 
[28, 36, 91]. Another possibility is to attach a large planar 
loop, forming an almost complete circle of radius R, to 
the two ends [99]. In [56] the outward extension of the 
ends is performed by small incremental steps, choosing 
at each step the direction that maximizes the distance 
between the new virtual end point and the vertexes of 
the polygonal. In all these approaches the virtual exten-
sion of the curve can interfere with its topological state, 
in particular when the ends are enclosed in the volume 
occupied by the polygonal. However, external closure is 
particularly convenient in the framework of protein knots, 
as the termini are typically located on the surface of the 
polymer globule. This trend is taken into account in [35], 
where a selective external closure is performed on those 
proteins that have both termini exposed on the surface of 
their native structure. When this condition is satisfied for 
both protein ends, then external closure can be performed 
without ambiguities.

  Stochastic closure: This approach is based on a ‘statis-
tical definition of knottedness’, by which an ensemble of 
closures is defined, and then the most statistically relevant 
state is adopted as the curve topology. Two variants of this 
scheme have been defined. In [100] a set of N points {ri} is 
generated, uniformly distributed on a sphere that encloses 
the whole curve. Typically the radius of this sphere is few 
times larger than the smallest sphere enclosing the polyg-
onal. N different closures of the curve are then defined by 
connecting each ri to both ends. This results in a spectrum 

Figure 7. Knot matrix representation of carnitine transporter chain A (PDB id: 2wswA), as displayed by KnotProt server (https://knotprot.
cent.uw.edu.pl/, see section 3.5 for more details). 2wswA features a slipknotted topology, that contain a 31 (the area shaded with green 
shades) and a 41 (orange shades) knot. The intensity of the color indicates the probability of obtaining a knot with stochastic closure of 
the relative sub-chain (see the legends on the right). Along the diagonal of the matrix the components of the 41 slipknotted topology are 
indicated, the knot core and tail, and two other components characterizing slipknots, the slipknot loop, that winds back undoing the knotted 
configuration, and the slipknot tail, formed by those residues that follow the loop, completing the unknotted topology.
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of topologies, in which the most populated state is chosen 
as the assigned topology. In those cases in which no clear 
dominant state emerges, no knot type is assigned. The 
randomized direction of the chain extensions implies that 
interference with the polymer globule can occur in a rel-
evant number of cases. This is a drawback with respect to 
those methods that choose this direction in order to avoid 
interference (as e.g. the minimally interefering closure, 
presented in the following). However, if enough statistics 
is collected, the spectrum of topology should solve most 
of the ambiguities.

  In the second variant, proposed by Mansfield [24], the 
procedure is the same, with the difference that N pairs 
of ri’s are generated on the enclosing sphere. Each point 
of the pair is connected by a straight segment to one of 
the two curve ends, and then they are joined with an 
arc on the enclosing sphere [36]. Both these strategies 
can provide detailed topological information, but they 
also demand more computational time with respect to 
the other, ‘deterministic’ schemes. The two variants of 
external closure  are represented in figure 8(c).

  Minimally interfering closure: In this scheme the closure 
is performed trying to minimize the distance travelled 
by the closing segment across the volume occupied by 
the polygonal [93], as this constitutes the main source of 
arbitrariness on the topological state. To this purpose, the 
convex hull enclosing the polygonal is first computed. 
The closure is then chosen depending on the values of 
dout, the sum of the distances between the termini and 
the closest face of the convex hull, and din, the distance 
between the termini. If din � dout  the closure is per-
formed via direct bridging, if instead din > dout  each end 
is prolonged outwards, perpendicularly to the closest 
face of the convex hull, and then the resulting extensions 
are connected at large distance by a circular arc (as dis-
played in figure 8(d)). The resulting technique avoids the 
drawbacks of the first two schemes, avoiding the large 
computational requirement of stochastic closure.

These are the most common closure strategies proposed to 
determine the topological state of an open polygonal, mainly 
used for defining the topology of knotted proteins [24, 36] 
and for determining the size of knots in polymers [91, 93, 99, 
101]. Reviews and comparisons of different closure methods 
are available in the literature (see e.g. [36, 102]). In summary 
one can conclude that in most of the cases external closure 
is enough to define the protein topology, but stochastic clo-
sure methods are more precise and reliable, and they should 
be used to solve the most ambiguous cases. We also underline 
that the reliability of a closure process can depend on its com-
bination with curve smoothening algorithms.

3.4. Further topological states

As mentioned in section 2, native conformations of proteins 
can feature other kinds of entangled states that, while not 
satisfying the criteria defined in the previous pages, can be 

definitely included in the family of topologically complex 
structures.

We have already introduced slipknots, topological states in 
which a sub-section of the curve is found to be knotted, while 
the full-length curve is not. These motifs are commonly asso-
ciated to protein knots and have been considered in different 
surveys and reviews on protein topology [29, 30, 56, 104]. A 
slipknot state can be detected by means of the knot matrix, 
which provides information about the topology of all possible 
protein sub-chains (see e.g. figure  7). Slipknots play also a 
relevant role in the study of knotted protein folding, as a slip-
knotted structure could represent a populated intermediate in 
the formation of the native topology [57, 105].

Up to now we have considered the topological state fea-
tured by a polygonal curve representing the protein backbone. 
In many native structures, however, residues can also form 
non-sequential covalent (or ion-based) bonds, typically disul-
phide bridges. Since these bonds provide a physical closure to 
a subsection of the peptidic chain, they can determine unam-
biguously defined knots, sometimes referred to as covalent 
knots [106, 107] or deterministic knots, if also non-covalent 
bonds are accounted for [90]. Already hypothesized in the 
’70s [20], these knots appear somehow less problematic than 
backbone knots, since their formation does not imply an intri-
cate folding pathway.

The formation of disulphide bridges, connecting cysteine 
residues along the backbone, is central also to the formation of 
other topological motifs. A known example is that of Cysteine 
knots [104, 108], in which a covalent loop formed by two 
disulphide bridges is pierced by a third bridge (see figure 9). 
It must be stressed that cysteine knots, despite the closure pro-
vided by the disulphide bonds, do not represent actual knots, 
in a topological sense, as they can be untangled by continuous 
deformation of the chain [90]. Nonetheless, they are biologi-
cally interesting motifs as they provide exceptional stability to 
the protein structure [59, 108].

Another class of entangled proteins defined by the for-
mation of cysteine bridges, is that of complex lassos [109], 
already introduced in section 2. As mentioned, in these struc-
tures a disulphide bridge seals a covalent loop, the surface of 
which is pierced one or more times by the protein backbone. 
This motif was first observed in mini-proteins named lasso-
peptides [110], and in Leptin [111], before it was found to be 
relatively common among PDB structures, appearing in about 
18% of the proteins with a cysteine bridge [112]. These topo-
logical motifs are suspected to play a role in the signalling 
activity [113, 114] and, through control of the bridge forma-
tion, they can represent a useful testing ground for investigat-
ing topologically complex folding [115]. As complex lassos 
differ from standard knots, one cannot rely on knot theory to 
detect them and other strategies are required. In [109] a tech-
nique named minimal surface analysis is proposed to unam-
biguously identify lasso structures. It consists in determining 
the surface of minimal area spanned by the covalent loop, and 
then locating the intersections of the backbone with this sur-
face. By means of this technique, different lasso types could 
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Figure 8. Representation of the closure schemes presented in the text: (a) direct bridging, (b) external closure, (c) stochastic closure, with 
a single or two external points, (d) minimal interfering closure, where the case din > dout  is shown on the left, and the case din < dout  is 
shown on the right.

Figure 9. Self-entangled protein states other than knotted proteins. Each state is indicated by a representative structure (top) and diagram 
(bottom). (a) Slipknot (PDB: 2QQDc), (b) deterministic knot, (PDB: 5ZYAd) (c) cysteine knot (PDB: 2ml7), (d) complex-lasso (PDB: 
1jli), (e) protein link (PDB: 2lfk), (f) linked protein dimer (PDB: 1arr). Structures are depicted with VMD [103], using a ribbon-like 
representation for the backbone and atomistic detail for crucial bonds such as disulphides or ionic bridges. These bonds are also highlighted 
in the diagram representation.
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be classified, depending on the number and direction of the 
piercings.

The minimal surface analysis has been employed to 
identify yet another class of protein entanglements: protein 
links [116]. Links are topological objects that generalize the 
concept of knots, considering the possible entanglements 
between more than one closed curve (see for example [2]). 
Links can indeed be embedded along a single protein chain, 
presenting two or more interlinked loops closed via disul-
phide or ionic bonds. Moreover, it is possible to observe 
links at the quaternary structural level, that is involving 
protein compounds. In this case the relevant loops can be 
again sealed by disulphides, but also obtained circularizing 
the protein chains by joining the N- and C-terminals via 
the closure techniques described in 3.3. Finally, links can 
be present at the ‘macromolecular’ level, that is in multi-
component structures that form intertwined complexes, 
such as viral capsidis [117] or protein catenanes [118]. As 
mentioned earlier, the identification of protein links can 
exploit minimal surface analysis, but also topological invari-
ants, such as the HOMFLY polynomial, can be used [119]. 
Another descriptor that can be employed to assess the link-
ing between polypeptides is the Gauss linking number [120]. 
This quantity is defined as a double line integral along two 
closed curves, that results in an integer number, indicating 
the linking state of the two curves. The Gauss linking num-
ber has been employed in [33] to identify linked proteins 
in domain-swapped dimers and, very recently, to assess the 
presence of evolutionary patterns in self-entangled proteins 
[51] and to correlate folding rates to the global topology of 
proteins [121]. An alternative, practical method to identify 
linking among protein pairs is that of using an MD model of 
the polypeptide chains and simulate the mechanical stretch-
ing of the proteins, as shown in [122].

3.5. Databases of self-entangled proteins

Since the discovery of the first knotted protein in 1994, the 
accuracy of structural biology has substantially improved and, 
together with it, the potentialities of bio-informatics tools for 
the detection of protein entanglements. As a consequence, sur-
veys over the multitude of structures deposited in the RCSB 
Protein Data Bank were performed (see e.g. [27, 30, 32, 36, 
56], just to name a few), to attain a comprehensive classifica-
tion of protein topologies. Nowadays, large variety of self-
entanglements have been found, spacing from simple knots to 
links, passing by complex lassos, and the remarkable amount 
of information about protein topology has been collected in a 
set of databases, each dedicated to a specific class of entangle-
ments. These databases, together with the software for the 
analysis of user-provided structures, are typically hosted on 
online servers, which make the topological data available to 
the public.

The first public database on knotted proteins, the KNOTS 
server (http://knots.mit.edu), was released in [85]. It consisted 
in a tool for the topological analysis of protein structures, cou-
pling external closure, KMT reduction and Alexander poly-
nomial calculation, to provide the type and size of eventual 

knots. The server maintained also an up-to-date collection 
of known protein knots. Slightly later Lai et al released the 
pKNOT server, with similar purposes of KNOTS, employ-
ing the curve smoothing algorithm of Taylor [27] as a central 
method for both simplifying structures and detecting entan-
glements. pKNOT was later upgraded to a second version [86] 
including also the possibility of providing input sequences for 
analysis, by means of a structure prediction algorithm [123].

KNOTS and pKNOT are currently not updated any more, 
and the reference database for the protein knot community is 
represented by KnotProt [87]. KnotProt is a comprehensive 
collection of knotted and slipknotted proteins, resulting from 
the analysis of all the structures gathered in the PDB. On a 
weekly basis, the newly deposited structures are automati-
cally analyzed, and eventually included in the database. For 
what concerns the methodology, KnotProt performs a sto-
chastic closure of the protein chain, and of all its subchains, 
analyzing the resulting closed curves by means of Alexander 
and HOMFLY polynomials (the latter to identify the chiral-
ity information). The KMT algorithm is employed to simplify 
the polygonals and reduce the cost of computing the invari-
ants. The topological information is stored in the form of 
knot matrices (see figure 7), that indicate the size and depth 
of knots/slipknots along the chain, but also the probabilistic 
character of topological states, obtained via the stochastic clo-
sure method. The database provides also an extensive set of 
biological information about the protein, including sequence 
and structure similarities with other KnotProt or PDB entries.

KnotProt has been recently upgraded to the 2.0 version 
[90], available online at https://knotprot.cent.uw.edu.pl/. This 
new version includes further analysis to provide a more com-
plete assessment of the chain topology. Besides knots and 
slipknots, the database includes two other entanglement types: 
cysteine knots, and deterministic knots. The latter include 
those knots uniquely defined by a chemical closure, that is 
the formation of a closed loop via non-sequential bonds, 
either covalent (disulfides, post-translational amide bonds, or 
aromatic residue concatenation) or ionic bridges. The name 
‘deterministic’ is chosen in opposition to the ‘probabilistic’ 
character of standard knots, defined via stochastic closure of 
the chain terminals. Moreover, KnotProt 2.0 implements the 
notion of ‘knotoid’, mentioned at the beginning of this sec-
tion. This concept associates a topological state to an open 
curve, by means of its projection on a surface. As such, dif-
ferent knotoid types can be associated to a protein, depending 
on the direction of this projection. KnotProt employs the tools 
implemented in [71] to formulate a ‘probabilistic’ classifica-
tion of knotoid types in a protein chain, accumulating a set 
of random projections, similarly to the procedure adopted for 
the stochastic closure. As in the case of the older databases, 
KnotProt is also designed for the analysis of user-provided 
structures.

Apart from knots, databases of other protein entanglements 
are also available to the community. For example, the data on 
Inibitor Cysteine Knots, a numerous family of miniproteins 
featuring the cysteine knot motif, is gathered in the KNOTTIN 
database [124] (www.dsimb.inserm.fr/KNOTTIN/), even 
though these structures are also included in KnotProt2.0.
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The LassoProt database (http://lassoprot.cent.uw.edu.pl/) 
[112] collects all the complex-lasso structure detected to date. 
Analogously to KnotProt, LassoProt is built on the PDB, and it 
is automatically updated with the newly deposited structures. 
The minimal surface analysis technique proposed in [109] 
is the reference method for the detection of complex lassos. 
LassoProt includes the possibility of selecting closing bridges 
other than disulphides, using e.g. Amide, Ester and Thioester 
bonds. The database provides a great deal of information for 
each structure, including the geometry of the minimal surface 
spanned by the loops, and biological/structural information 
collected from the PDB.

Finally, structures featuring a linked topology are collected 
by LinkProt (http://linkprot.cent.uw.edu.pl), a database that 
gathers the linking state of structures formed by up to four 
chains. As mentioned earlier, links are topological objects 
formed by more than one closed curve, which can be con-
stituted either by peptidic loops circularized through a non-
sequential bond (as e.g. cysteine or amide bridges), or by 
separate peptidic chains with terminals joint via closure meth-
ods. In analogy with the terminology introduced for KnotProt, 
the first are named ‘deterministic’ links and the second 
‘probabilistic’ links. After the closed curves are identified, 
the minimal surface analysis is performed, combined with the 
calculation of the HOMFLY polynomial. This provides all the 
topological information about the linking state, such as chi-
rality and orientation. Besides deterministic and probabilistic 
links, Linkprot includes also a separate section with known 
macromolecular linked structures, such as capsidis and cat-
enanes. As for KnotProt and LassoProt, also this database is 
built on the PDB, being automatically updated to feature new 
deposited structures. Moreover, LinkProt provides useful bio-
logical information on the analyzed entry, such as structural or 
sequential similarity families.

As a last remark on databases, we underline that KnotProt, 
LassoProt and LinkProt are all maintained by the University 
of Warsaw and are compatible among each other, allowing 
the easy combination and comparison of topological motifs 
in protein structures.

4. Simulation of entangled protein dynamics

In the present section we review the computational approaches 
devised and employed to investigate self-entangled protein 
dynamics. As for many other realms in biophysics, molecular 
simulations represent a tool of crucial importance to reach a 
better understanding of the biological phenomena that involve 
proteins. The sub-molecular resolution and the fine parameter 
control available with computational models offer a chance to 
observe aspects of the protein dynamics that are inaccessible 
to the available experimental techniques, such as the precise 
folding pathway, or the dynamics of stretching of a polypep-
tide. In this light, it is easy to comprehend the crucial role that 
molecular simulations play in the study of topologically com-
plex proteins, being able e.g. to unveil how a simple sequence 
of amino-acid can encode the ability to reproducibly and 

efficiently form complex self-entanglements, or to provide 
a detailed framework for the interpretation of spectr oscopy 
experiments.

Numerical simulations associate a theoretical model to 
the real, biological system under consideration, including 
a representation of the protein chain and its environment, 
and a description of the relevant physical laws governing 
this system. Such models can range from detailed atomistic 
descriptions to minimalistic simple models, depending on the 
accuracy required and the available computational resources.

The accurate numerical study of a process such as knot-
ted protein folding, implies a thorough sampling of the con-
formational space accessible to the protein model, a task that 
can easily fall beyond the possibilities of the computational 
resources available nowadays. For this reason a large number 
of simplified models have been proposed in the literature, try-
ing to isolate the crucial factors of the complex system under 
study, trading off the accuracy of the description with feasible 
calculations and a more straightforward interpretation of the 
results.

In the next pages we shall provide a comprehensive sum-
mary of the computational models and techniques employed 
for the simulation of self-entangled proteins, trying to under-
line the impact of the key assumptions and referring to the 
main results obtained by means of different approaches. We 
will start by discussing Coarse-grained lattice representations 
of the protein, and then move to continuous space models, 
that still rely on a coarse resolution of the polypeptide. After 
this part, which is by far the most rich in content, we will dis-
cuss those approaches that employ a fully atomistic resolution 
in describing the system. Finally, we will present techniques 
that aim at describing some crucial factors interacting with 
the folding and functioning of self-entangled proteins, such as 
interfaces, chaperonins, or other proteins.

4.1. Coarse-grained models on lattice

The discretisation of space is a crucial step in the definition 
of countless theoretical models, in all branches of natural sci-
ences. Polymer physics does not represent an exception in this 
sense. In lattice models a flexible polymer chain is described 
as a succession of nearest neigbouring vertexes of a lattice, 
as displayed in figure 10. Each of these vertexes represents a 
monomer or, since we are interested in proteins, an amino acid 
residue. This coarse-grained (CG), monomer-to-site represen-
tation is referred to as simple lattice model. This approximated 
description substantially reduces the conformational space 
accessible to the polymer, being naturally prone to numerical 
simulations.

Lattice polymer simulations consist in a Monte Carlo (MC) 
sampling in the space of possible conformation of the poly-
mer. The generated set of configurations is supposed to be rep-
resentative of a statistical (e.g. equilibrium) ensemble, from 
which expectation values are extracted. Despite the substanti al 
simplifications, lattice models have been demonstrated to 
reproduce essential universal properties of polymeric sys-
tems. For these reasons, since the first, seminal simulations 
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(see e.g. [125]), lattice models have been extensively used in 
all branches of polymer physics.

The algorithms used for sampling the chain configurations 
depend on the physical properties associated to the polymer 
description, like e.g. the persistence length, or the solubility 
of the monomers. The simplest possibility is that of generat-
ing random walks on the lattice sites, made by N  −  1 unitary 
segments, where N is the number of monomers composing 
the chain. No restriction is imposed on the occupation of the 
lattice sites, so that any generated path is accepted, and the 
method efficiently samples independent conformations. This 
way, the description only retains the chain connectivity of the 
polymer, resulting in non-realistic observables [126]. A first 
step towards a more realistic model is that of considering the 
excluded volume of each monomer, generating the so-called 
self-avoiding walks (SAWs) on a lattice [127], in which only 
a single monomer is allowed on a lattice site. This reduces the 
acceptance rate of the generated paths, and the sampling effi-
ciency strongly decreases with the chain length. This behav-
iour, named attrition, represents a major obstacle in lattice 
polymer simulations, in particular if one is interested in com-
pact configurations, as in the protein folding problem [128].

Different lattice configurations can be generated indepen-
dently from each other, but also as a succession, operating a 
set of minimal changes (MC moves) to an existing conforma-
tion. This sequential generation is particularly efficient and it 
allows also to estimate ‘dynamic’ properties of the polymer, 
such as relaxation times and correlation functions. Different 
sets of MC moves have been proposed in the literature  
[126, 129–131], with extensive discussions about their effi-
ciency and ergodicity, that is their ability to visit all the allowed 
configuration space, or about their capability to preserve the 
topology of a lattice polymer. In the specific case of knotted 
protein folding one has to rely on a set of appropriate MC 
moves that can mimic the process without violating the topo-
logical barriers, as e.g. in the algorithm presented in [129].

If only the steric effect of occupied lattice points is 
accounted for, the newly generated configuration is accepted 

with a binary probability, 0 or 1, depending on whether it 
violates or not the excluded volume condition. However, the 
polymer model can be enriched, for instance by introducing 
an interaction energy among the monomers. In this case the 
acceptance probability depends on the configuration energy, 
as e.g. in the widespread Metropolis algorithm [132].

The modelling of monomer interactions is a crucial step to 
develop a suitable description for the study of protein folding. 
A first, simple possibility is that of adding an attractive interac-
tion among the monomers that are not sequentially connected 
[133, 134], but occupy neigbouring sites (contact potential), 
thus favoring the collapse of the chain into a compact configu-
ration. While this simple model can already provide insights 
on the statistical behaviour of homopolymers [131], it is not 
suitable for heteropolymers such as proteins, the behaviour of 
which is driven by the specific interactions occurring among 
the different amino acids, and between the latter ones and the 
solvent molecules. The purpose of capturing these specific 
correlations has lead to the formulation of several lattice mod-
els of heteropolymer interactions [135–138], which stimu-
lated important advancements in the field of protein folding 
(see e.g. [139] and reference therein).

In the following we mainly focus on two lattice descrip-
tions, which have been employed for the study of entangled 
proteins, namely the HP model [137] and the Gō model 
[135]. The HP model aims at reproducing the hydrophobic 
behaviour of specific protein residues, which is considered to 
play a prominent role in the process of protein folding [139]. 
Indeed, when a polypeptide is immersed in water it tends to 
minimize the exposure of its hydrophobic residues to the sol-
vent, reaching a globular compact conformation, similarly to 
 homo-poly mers in poor solvent. This tendency represents an 
important driving force in the realization of the native state.

In order to mimic this behaviour the HP model represents 
the lattice polymer as a sequence of two types of amino acids, 
hydrophobic (H) and polar (P). The non-connected neigbour-
ing H residues interact with an attractive contact potential, 
while the P residues are inert. The energy of an N residues HP 
polymer is given by:

E ({ri}) =
N∑
i,j

εijd(ri, rj), (1)

where {ri} represents a chain configuration, εij is deter-
mined by the H/P type of i and j  residues, that is εHH = −1 
and εPP = εHP = 0. d(ri, rj) = 1 if i and j  are non-sequential 
residues in contact, that is ri and rj  are first-neigbouring sites. 
Otherwise, d(ri, rj) = 0. In this description the solvent is rep-
resented by the unoccupied sites in the lattice. The attractive 
interaction between H residues minimizes their exposure to 
the solvent sites, favoring the formation of a collapsed hydro-
phobic core.

The HP model has been extensively employed to investi-
gate the thermodynamic features of protein folding (see e.g. 
[139–142]). In the framework of knotted proteins the HP 
model has been employed by Wüst et al to asses the statistical 
rarity of knotted native states [143]. In their work the authors 
compared the probability of finding knots in low-energy, 

Figure 10. Cubic lattice representation of a polymer (graphics 
produced with VMD [103]).
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compact conformations of HP lattice polymers with random 
or designed sequences, as opposed to the behaviour of H-type 
homopolymers. Exploiting the simplicity of the HP model, 
the authors explored the space of possible residue patterns, 
unveiling important correlations between the sequence infor-
mation and the folding and knotting processes. The results 
demonstrated that the sequence of hydrophobic-polar mono-
mers is crucial in the determination of the knotting probability 
of a polymer chain. We underline that the purpose of analyzing 
native-like conformations requires the efficient exploration of 
the rugged free-energy landscape associated to the system, 
that can hardly be attained with classical metropolis sampling. 
In [143] the sampling was enhanced via the Wang–Landau 
method combined with two specific MC moves [131, 144].

In HP models the ground state of a protein representa-
tion is not known a priori, unless the sequence is specifically 
designed to favor some compact configuration. In Gō models, 
instead, the minimum of the potential energy corresponds to 
a specific pre-defined conformation, representing the native 
structure of the protein model [135, 145]. For this reason Gō 
models are also referred to as structure based models (SBM). 
The chosen interaction is again a contact potential, which now 
favors the vicinity of residues that are in contact in the native 
conformation {r0i}. Using the notation of equation (1), the Gō 
model energy is given by:

E ({ri}) =
N∑
i,j

Cijd(ri, rj), (2)

where the matrix C:

Cij =

{
ε if |r0i − r0j| = 1
0 otherwise

, (3)

indicates if two residues are in contact (|r0i − r0j| = 1, in units 
of lattice spacing) in the native configuration. ε is a negative 
constant that determines the attraction between non-sequential 
native contacts. This description allows to study the thermo-
dynamic and kinetic stability of pre-designed native struc-
tures, and also to enlighten the folding pathways preferred 
by the protein model [146–150]. The theory underlining the 
for mulation of Gō potential is the so-called energy landscape 
theory, according to which the existing protein sequences have 
been selected by evolution so that their folding free-energy 
landscape is ‘funneled’. This means that a strong natural bias 
exists towards the sampling of native-like conformations, 
which drives the collapse of the polymer chain towards the 
native fold, determining an efficient and reproducible folding 
process. More details about energy landscape theory can be 
found in [151]. One can also interpret the potential of equa-
tion (2) as a model for the hydrogen bonds that stabilize the 
native structure of a protein.

In the framework of knotted proteins Gō models have been 
extensively used, both with lattice and off-lattice representa-
tion. We focus here on the former, while off-lattice models are 
treated in the following. In general, Gō models on a lattice 
do not aim at representing existing structures, so the contact 
potentials are defined to promote a designed native conforma-
tion. This, in the framework of knotted proteins, represents 

an advantage, allowing to design and test specific topologies. 
Such a strategy has been applied by Faisca et  al in [152], 
where the folding thermodynamics and process of a model 
protein, with a designed native structure containing a shallow 
trefoil knot, were investigated with MC lattice simulations. 
The possibility of defining a priori the native target confor-
mation allows also to simulate and compare structural homo-
logues, whose native structures mostly overlap. Exploiting 
this option, in [152] the authors compared the behaviour of 
a knotted protein model to an unknotted homologue, sharing 
90% of the native conformation with the former. This com-
parison made it possible to assess the effects of the knotted 
topology on the folding and unfolding processes.

The simplicity of this model allows to perform a thorough 
sampling in the configuration space, similarly to the case of HP 
model. It is indeed possible to gather a large number of folding 
trajectories, so that folding and knotting probabilities can be 
computed, and possible intermediate states retrieved. This strat-
egy allowed to enlighten key features of the folding and unfold-
ing kinetics. For example lattice Gō models have shown that the 
average folding time of a knotted protein model is considerably 
longer than that of its unknotted homologue [152, 153], or that 
the knotting process typically occurs in the late phases of the 
folding, when most of the contacts are formed [152, 153]. The 
possibility of designing the target native structure enables also 
the study of more complex topologies, such as that of a 52 knot 
[154], or to gradually increase the knot depth [153].

Another interesting methodological possibility is that of 
analysing the effect of mutations, that is modifying the inter-
action of some specific contacts. In [154] the authors demon-
strated that, by turning off some particular contact interaction, 
located on the knotting loop and on the threading terminus, 
the folding success rate could be remarkably enhanced. 
Indeed, as mentioned in section 2, the early creation of native 
contacts can form topological bottlenecks, or kinetic traps, 
that considerably slow down the folding. The protein then has 
to backtrack, breaking the untimely formed contacts in order 
to retrace a correct folding path. The introduction of muta-
tions prevents the early creation of contacts, reducing possible 
topological bottlenecks and speeding up the folding. This can 
be seen as the simplest way to model non-native interactions 
which, as underlined in the following, have been shown to play 
a relevant role in the folding of knotted proteins [155–157].

In [152] the MC moves were accepted/rejected by means 
of the classical Metropolis algorithm, properly choosing the 
simulation temperature to simulate either the folding or the 
unfolding of the protein. However, as in the case of [143], 
the large free-energy barriers involved in the conformational 
space, make the use of an enhanced sampling approach desir-
able. In [158] this issue was addressed by applying replica 
exchange (RE) of MC simulations of different temperatures 
[153, 154, 158].

4.2. Coarse-grained models in continuous space

In this section the detail of the protein description is increased, 
dropping the discretized space, and redefining the polymer 
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representation ‘off-lattice’, namely in a continuous three-
dimensional space (among the seminal works about off-lat-
tice protein and polymer modelling the reader can refer to  
[159–163]). The sampling in a continuous space can be per-
formed via MC, e.g. redefining the MC moves as discussed 
in [156], but also with molecular dynamics (MD), that is by 
numer ically solving the Hamilton equations  of the system. 
MD can in principle represent the actual dynamics of the pro-
tein and it is therefore a crucial tool to study the kinetics of 
folding. However, if CG is operated, special attention should 
be paid when retrieving kinetics[163–165].

We start by considering those off-lattice protein models in 
which each amino-acid is represented by an interacting bead 
situated at the position of the Cα atom. The internal degrees of 
freedom of each residues are neglected, as it is neglected the 
presence of solvent molecules. To mimic the effect of the sol-
vent environment, and to sample the canonical ensemble at a 
desired temperature T, Langevin dynamics is solved. Namely, 
the equation of motion for the chain is given by:

mR̈ = −∇RU − γṘ + Γ, (4)

where R = (r1, . . . , rN) is the generalized vector containing 
the coordinates of the N beads, ∇R is the gradient in the coor-
dinate space, U is the interaction potential of the model, γ  is 
the viscosity coefficient and Γ is the random force term that 
introduces thermal fluctuations. γ  is tipically chosen large 
enough that inertial effects are damped, but still lower than the 
equivalent viscosity of amino acids in water solution [160]. 
It has been shown that, in this regime, the timing of fold-
ing events, such as β-sheet formation, scales linearly with γ   
[163–165], allowing the choice of a lower viscosity to speed-
up the calculations. The stochastic term Γ is drawn from a 
Gaussian distribution with variance related to the temperature 
by the relation:

〈Γ(t)Γ(0)〉 = 2γkBTδ(t), (5)

where kB is Boltzmann’s constant and δ is Dirac delta distri-
bution. Equation (4) does not fully account for the action of 
the solvent, as no description of hydrophobicity is provided. 
However, in the considered CG models, the hydrophobic 
response of amino-acids is implicitly incorporated within the 
interaction among the different beads, as in the HP lattice 
model. An example of off-lattice CG model driven by hydro-
phobic potentials can be found in [160, 166].

In the framework of self-entangled folding structure-based 
CG models have been widely used. In continuous space it is 
indeed possible to construct Gō-models that have the exper-
imentally known knotted protein conformations as energy 
minimum. The general form of the potential energy for an off-
lattice Gō-model can be written as follows:

U = Ubond + Ubb + Unat + Unon−nat, (6)

in which Ubond  is the bond energy between consecutive beads 
of the chain, Ubb restrains the relative directions of the chain 
vectors to mimic backbone stiffness, Unat is the interaction 
among residues in contact in the native state (analogous 
to equation  (2) in MC descriptions), and Unon−nat gener-
ates the excluded volume and other interactions among the 

remaining residues. To define Unat one constructs the ‘con-
tact map’ from the experimentally detected native structure 
of a protein. The contact map is the off-lattice counterpart of 
C matrix in  equation (3), that is an N × N  matrix indicating 
which non-consecutive residues are in contact and, in some 
cases, the specific nature of the interaction (e.g. hydrogen or 
aromatic bonding, ionic bridges). The simplest way to con-
struct a contact-map is by defining a cut-off distance between 
the Cα atoms belonging to different amino acids. If the native 
distance is lower than this cut-off the two residues are con-
sidered in contact. Another approach, that introduces further 
structural detail, was proposed by Tsai [167], usually referred 
to as Tsai contact map. In this method the position of all non-
hydrogen atoms of the native structure are represented by 
spheres, of radii equal to the relative atomic van der Waals 
radius, rescaled by a factor 1.24. Whenever spheres belonging 
to different residues overlap, the two residues are considered 
in contact. By default, pairs of consecutive or next-to-con-
secutive residues, are excluded from contact map definitions, 
as their interactions are already accounted by Ubond  and Ubb. 
Several definitions of contact maps have been proposed and 
tested, details and references can be found e.g. in [168–170] 
and, in the framework of knotted folding, in [171]. Once the 
contact map is defined, Unat is constructed as a sum of attrac-
tive potentials among all pairs of residues natively in contact.

The potential terms in equation  (6) can be specified in 
many different ways, as shown e.g. in the study of [168]. In 
the following, we review those descriptions employed for the 
computational study of self-entangled proteins.

4.2.1. Clementi et al model. This first model was introduced 
in the framework of small globular protein folding by Cle-
menti et al [172], in Onuchic group. The polypeptide is rep-
resented by a chain of N spherical beads centered at the Cα 
atom positions R = r1, . . . , rn. The potential energy of the 
model is given by equation (6), in which the different potential 
contrib utions are defined as follows. Let di = |ri+1 − ri| be 
the Euclidean distance vector between two consecutive beads, 
and di its magnitude. The bond energy between consecutive 
beads is:

Ubond =

N−1∑
i=1

kb(di − d0i)
2, (7)

where d0i is the native distance between the ith and the i  +  1th 
residues. The backbone stiffness is represented by restraining 
the bending and dihedral angles of the protein chain to their 
native values, namely:

Ubb = Ubending + Udihedral, (8)

where Ubending is a harmonic potential involving triplets of 
consecutive beads:

Ubending =
N−2∑
i=1

kθ(θi − θ0i)
2, (9)

in which θi is the ith angle, formed by beads i, i  +  1 and i  +  2, 
and θ0i  is its respective native value. The dihedral term is 
given by:
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Udihedral =
N−2∑
i=1

[k1φ(1 + cos(φi − φ0i)) + k3φ(1 + cos(3φi − 3φ0i))] ,

 (10)
where φi is the ith dihedral angle of the chain, i.e. the angle 
between two intersecting planes, one containing i, i  +  1 and 
i  +  2 beads and the other containing i  +  1, i  +  2 and i  +  3 
beads. φ0i is the respective native value. Equation (8) has been 
used also in other protein models, employing standard, non-
specific equilibrium angles (see e.g. [160]).

The Unat term involves 12–10 Lennard-Jones pair 
potentials:

Unat =

N−1∑
i<j

Cijε

[
5
(
σij

rij

)12

− 6
(
σij

rij

)10
]

, (11)

where the contact map Cij is equal to 1 for residues in con-
tact in the native state, and 0 otherwise. Since Ubb regulates 
the interaction among consecutive quadruplets of beads, pairs 
of sequential distance |i − j| � 3 are excluded from the native 
contact map (i.e. Cij  =  0). The length scale σij is equal to the 
distance r0ij between the ith and j th residues in the native state, 
so that the minimum of the potential is at rij = r0ij. The non-
native term Unon−nat contains only a repulsive contribution:

Unon−nat =

N−1∑
i<j

C̃ijε

(
σ

rij

)12

, (12)

where C̃ij = 1 − Cij  is the complement of the contact map, and 
includes all possible residue pairs except the native contacts. 
In equation (12) the length scale is constant, typically σ = 4 
Å . A common choice for the parameters in Clementi’s model 
is: kb = 100ε, kθ = 40ε, k1φ = 1.0ε, k3φ = 0.5ε, where ε is the 
energy unit corresponding to the depth of the native contact 
well in equation  (11). Since its publication, this model was 
further developed, for example by implementing the shadow 
contact map [169], or by introducing a Gaussian-shaped well 
potential for the native contacts [173]. All these methodolo-
gies are available to the public by means of the SMOG [174] 
and SMOG2 [175] interfaces.

Clementi’s description has been widely used in protein 
folding, and it is widespread also in self-entangled protein 
studies. To provide few examples, it has been employed to 
investigate the folding of MJ0366 [105, 171], the smallest 
knotted protein, or even more complex systems, such as the 
laboratory engineered 2ouf-knot [176] and the 52-knotted 
Ubiquitin C-terminal Hydrolases [177], and other kind of 
backbone entanglements, including complex lassos [111, 113, 
114] and links [116, 178].

4.2.2. Cieplak et al model. A widely used Gō-like descrip-
tion in the framework of self-entangled protein folding has 
been initially proposed by Cieplak and Hoang to study univer-
sality of protein folding times [179]. The main feature of this 
model is that the Ubb potential is implemented as a four body 
term that favors the native chirality of the backbone:

Ubb =

N−2∑
i=2

1
2
κε (χi − χ0i)

2 . (13)

χi  indicates the chirality associated to the residue i, that is 
defined, in terms of the distance vectors di:

χi =
(di−1 × di) · di+1

d3
0i

. (14)

χ0i in equation (13) indicates the value of the native conforma-
tion. This form of Ubb was first proposed in [180], and it is a 
simpler and more numerically efficient version of the original 
potential proposed in [179]. The coupling constant κ is usu-
ally chosen equal to 1. The chirality potential of equation (14) 
plays an analogous role as the angular terms in Clementi’s 
model, but it has in general a weaker action. It can be demon-
strated [168] that equation (14) is approximately equivalent to 
the dihedral term in equation (8). The bending stiffness is here 
unrestrained, so that the chain is less stiff than in the previous 
case. To compensate for this, native contacts between i and 
i  +  3 residues are included in the contact map. A further dif-
ference with previous description consists in the use of a 12–6 
Lennard-Jones potential for the native contacts:

Unat =

N−1∑
i<j

Cij4ε

[(
σij

rij

)12

−
(
σij

rij

)6
]

, (15)

where the σij are chosen so that the distance of the energy 
minimum (21/6σij) corresponds to the native distance r0ij.

In the framework of self-entangled proteins, Cieplak model 
has been used to investigate the folding of the smallest knot-
ted protein [49], of deeply knotted proteins YibK and YbeA  
[48, 57], and of protein dimers [122, 177], and to explore 
thermal unfolding [181, 182]. Moreover, as discussed in the 
following (section 4.4), this description has been employed 
in combination with methods to simulate protein dynamics 
under specific conditions, such as the presence of interface 
environment [182], the translocation through a proteasome 
channel [183], or co-translational folding [48].

Cieplak’s model has been also extensively employed to 
simulate protein stretching experiments, in which single 
molecules are manipulated by means of atomic force micros-
copy [185] or optical tweezers [186], and stretched pulling 
two selected residues apart (see figure  11(A). The resulting 
force-extension (F  −  d) diagrams show complex peak pat-
terns (an example is shown in figure  11(B), that can reveal 
useful information about the structure and stability of the ana-
lyzed proteins [187, 188]. MD simulations represent a useful 
tool for the interpretation of these experimental results [189], 
generating theoretical F  −  d diagrams that can be recon-
ducted to the experimental ones to clarify the nature of the 
different force peaks. The stretching force is generated by 
constraining the position of a selected residue, and by impos-
ing a moving harmonic potential to a second residue. Both 
constant velocity and constant force pulling procedures have 
been implemented. An interesting aspect of this simulation 
protocol is that the simulated velocity of stretching can be 
set orders of magnitude larger than in experiments, still being 
able to extrapolate to the experimental timescales. As a result, 
the computational time required for stretching simulations is 
relatively shorter and allows also the use of atomistic resolu-
tion MD (see section 4.3). Nonetheless, CG models such as 
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Cieplak’s have shown to be useful for large surveys of stretch-
ing simulations, that could help generalize the mechanical 
properties of proteins [190, 191]. In the field of self-entangled 
protein studies mechanical stretching represents a crucial tool 
of analysis, being capable of revealing possible intermedi-
ate conformations, or providing information on the stability 
of backbone entanglements [63]. Cieplak’s model has been 
widely employed to simulate the stretching of self-entan-
gled proteins [58, 59, 181, 192–194] and protein complexes  
[122, 177].

Comparisons between the two presented variants of CG 
Gō-models can be found in the literature (see e.g. [168, 195] 
and, in the realm of entangled folding, [49]), showing e.g. the 
lower stability of chirality potential with respect to the angular 
potential of equation (8), or indicating the different ranges of 
folding temperatures for the two models.

4.2.3. Prieto et al model. An example of off-lattice Gō-model 
that has been used in combination with MC sampling is that 
proposed by Prieto et al in [196, 197]. In this description, the 
protein is represented as a chain of hard spheres centered on 
the Cα atoms. The new conformations are generated by MC 
moves, which are constrained by the imposition of excluded 
volume of the spheres, and by fixed bond distances d  =  3.8 ̊A .  
The energy of a configuration is then determined by native 
and backbone interactions, which are both described by a har-
monic well potential, namely:

Ubb+nat =
∑
i<j

uw(rij), (16)

where the pair interaction is given by:

uw(rij)

{
wij[(rij − r0ij)

2 − a2], if r0ij − a < rij < r0ij + a
0, otherwise

,

 (17)
in which a  =  0.6 Å , r0ij is the native distance of the residues i 
and j  and wij defines the contacts. wij corresponds to the native 
contact map but, since there are no angular interactions, also 
contacts separated by two or three bonds are here considered. 

In order to preserve the native chirality, when contacts between 
i and i  +  3 , a sign is assigned to rij. This description has been 
employed to assess the effects of local flexibility and steric 
confinement on the knotted folding of MJ0366, in comparison 
with the results of a lattice model [198].

4.2.4. Heterogeneous interactions. The models presented up 
to here are characterized by sequentially homogeneous inter-
action, meaning that parameters such as the LJ energy scale ε, 
or the angular stiffnesses kθ , k1φ and k3φ, are independent of the 
residue index. In these descriptions the sequence information 
is all represented by the native structure information. This can 
be an useful simplification to reproduce protein folding only 
on an approximate, qualitative level. However, in some cases, 
the lack of interaction specificity can prevent the folding, in 
particular when the native conformation exhibits a complex 
topology [48]. In order to improve the effectiveness of pro-
tein modelling, many choices of heterogeneous native-contact 
potentials have been explored, some examples can be found 
in the systematic study of [193]. One of the simplest choices 
is that of rescaling the native contacts corre sponding to cyste-
ine-cysteine bridges, increasing the depth of the potential well 
so that the rupture of the bond becomes unlikely [193]. This 
method has been used in the study of self-entangled proteins 
for which cysteine bridges are topologically relevant, such as 
complex lasso structures[111, 113–115] and protein dimers 
[177]. In some other cases cysteine bridges are treated equally 
to peptidic bonds (e.g. equation (7)) [59, 111, 113, 114].

An example of how interaction heterogeneity can be cru-
cial for knotted folding can be found in [199], where the 
atomic interaction-based coarse grained (AICG) model, ini-
tially proposed to study allosteric proteins [200], is applied 
to self-entangled proteins. The AICG approach is built on the 
potential energy of Clementi’s model, in which the coupling 
constants are made residue dependent. This means that AICG 
has heterogeneous bond energy stiffnesses (kb → kbi), angular 
stiffnesses (kθ → kθi, k1φ → k1φi and k3φ → k3φi), and native 
contacts (ε → εij). The first step to construct the AICG model 
is the definition of the relative strength of native contacts.  

Figure 11. (A) Scheme of typical protein stretching experiment, with fixed and movable optical traps, linked to the terminals of the protein. 
(B) Typical F  −  d diagrams, obtained from mechanical unfolding of a slipknot protein. Reprinted with permission from [184]. Copyright © 
2012, American Chemical Society.
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The coupling constant is decomposed as εij = εavwij , where 
εav describes the average strength of residue-residue contacts, 
and wij is the relative weight. The wij’s are computed by means 
of all-atom (AA) implicit solvent MD in the native state, 
defining an energy decomposition protocol to retrieve CG 
contact energies from atomistic interactions [200, 201]. One 
can either perform an all-atom native state simulation for each 
protein to be studied, or use a linear regression model pro-
posed in [200], trained over an ensemble of different proteins. 
After the wij’s are set, the remaining free parameters of the 
potential are tuned. The multiplicity of bending and angular 
parameters is first reduced, assigning each residue to a specific 
secondary structure such as β-strands or α-helixes, to which 
a unique set {kb, kθ, k1φ, k3φ} is associated. The reduced set of 
parameters is then optimized iteratively by matching the aver-
age equilibrium fluctuations of CG MD with those of AA MD. 
Again, one can perform this tuning for any specific system, or 
use a set of trained parameters obtained from an ensemble of 
optimizations.

In [199] the AICG approach has been applied by using a 
backbone potential differing from equation  (8), named flex-
ible local potential, constructed from a library of angular 
distributions via Boltzmann inversion [202], with the aim of 
reproducing more realistic backbone flexibility. This variant 
of the model, named AICG2 has been employed to study the 
folding of the engineered knotted protein 2ouf-knot, of the 
smallest knotted protein MJ0366, and of the deeply knotted 
YibK. In the first two cases the AICG2 model obtained a much 
larger propensity of folding with respect to the homogeneous 
Gō-model, demonstrating that interaction specificity can play 
a crucial role in entangled folding. In the case of YibK the 
folding was instead inaccessible, suggesting that crucial inter-
actions in this system are still neglected at the level of this 
description.

4.2.5. Non-native interactions. The models presented until 
now are purely native-centric, meaning that non-native inter-
actions (the Unon−nat term of equation (6)) are described only 
by excluded-volume contributions, implicitly assuming that 
these interactions play a negligible role in determining the 
folding dynamics. This represents a radical approximation, 
which is nonetheless supported by accurate MD simulation 
studies [203]. On the other hand, multiple computational 
studies have shown that non-native interactions might play 
a relevant role [204], especially when entangled proteins are 
considered. As seen earlier, the effects of structural mutations 
on the lattice model of [154] demonstrated that moving away 
from the purely native-centric picture can improve the folding 
propensity of knotted lattice proteins.

Non-native interactions were proven to be crucial in entan-
gled folding by means of a CG off-lattice model in the pio-
neering work of Wallin et al [155]. In this work the folding of 
the deeply knotted protein YibK was investigated by means 
of the previously discussed Clementi Gō-model, equipped 
with an extra non-native attractive potential term. Let us 
decompose the non-native contact matrix (see equation (12)) 
as C̃ij = Rij + Aij, where Rij and Aij represent repulsive and 

attractive contacts, respectively. The non-native potential is 
then given by:

Unon−nat = Usteric + 0.8ε
N−1∑
i<j

Aije(rij−σnn)
2/2, (18)

where Usteric is given by equation (12) and σnn = 4.0 Å  is the 
attractive contact length. In [155] these contacts are chosen 
ad-hoc within residues that are involved in the entanglement 
formation. The inclusion of this attractive term has a striking 
effect on the folding propensity of the model: while the bare 
native-centric model was unable to reach the correct topol-
ogy in all the presented simulations, with non-native interac-
tion the model could always reach the native conformation. 
These results supported the idea that non-native contacts can 
regulate the kinetic accessibility of the entangled state, and 
increase the folding probability of the protein.

Further studies on the impact of non-native interactions 
in the folding of entangled proteins were obtained by means 
of a more physically detailed model in [53, 156, 157]. This 
model, presented in detail in [156] is based on a Gō-like CG 
description, that can be described by equation (6). Apart from 
the common harmonic bond potential (equation (7)), this 
description features heterogeneous angular and native contact 
interactions [205, 206]. The angular potentials do not include 
native angles as in equations (9) and (10), but depend on the 
secondary structure associated to the respective residues. The 
bending term is given by a double-well potential:

Ubending =

N−2∑
i=1

− 1
γ
ln
[
e−γkα(θi−θα)2−γεα + e−γkβ(θi−θβ)

2
]

,
 (19)
where θα = 92◦ and θβ = 130◦ are equilibrium values for 
helical and extended chain respectively, and kα,εα and kβ are 
specific parameters, typical values are reported in [207]. The 
dihedral term is a generalization of equation (10):

Udihedral =

N−2∑
i=1

4∑
n=1

knφ [1 + cos(nφi − δn)] , (20)

where knφ and δn depend on the secondary structure associated 
to the two central residues of the ith dihedral. The employed 
values are indicated in [205]. The native contacts are described 
by the following heterogeneous term:

Unat =

N−1∑
i<j

Cijεij

[
13

(
σij

rij

)12

− 18
(
σij

rij

)10

+ 4
(
σij

rij

)6
]

,

 (21)
where εij is set as the specific hydrogen bond energy, if a native 
hydrogen bond is present. Otherwise, εij is chosen proportional 
to the quasi-chemical contact potentials of Miyazawa and 
Jernigan [208], properly renormalized to the hydrogen bond 
energy scale. As shown in figure 12, the pair term in equa-
tion (21) qualitatively differs from the other LJ-like potentials 
in that a small energy barrier must be overcome to establish 
the contact, mimicking desolvation energy cost.

On top of this native-centric potential, a non-native term 
and a long-range electrostatic term are introduced. As in the 
previous case, the non-native contact matrix is divided in 
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attractive and repulsive contributions, defining the following 
non-native potential term:

Unon−nat =

N−1∑
i<j

[AijUA(rij) + RijUR(rij) + Uel(rij)], (22)

where UA and UR are the attractive and repulsive contact 
potentials, and Uel describes the long-range electrostat-
ics. Attractive contacts interact via a heterogeneous 12-6 LJ 
potential:

UA(rij) = 4|εij|

[(
σij

rij

)12

−
(
σij

rij

)6
]

,

 (23)
and repulsive contacts interact with the following functional 
form (displayed in figure 12):

UR(rij) =




4εij

[(
σij

rij

)12
−
(

σij

rij

)6
]
+ 2εij, if rij < 21/6σij

−4εij

[(
σij

rij

)12
−
(

σij

rij

)6
]

, if rij � 21/6σij

.

 (24)
The length-scale of the contacts is σij = (σi + σj)/2 where σi 
and σj are the van der Waals radii of the interacting residues. 
The interaction strength is set as εij = λ(eij − e0), where eij 
are negative values taken from the Miyazawa and Jernigan 
residue interaction matrix [208] and λ and e0 are free param-
eters, obtained in [207] by fitting calculated binding affinities 
with experimental values. The average non-native interaction 
strength resulting from equations  (23) and (24) is approxi-
mately 1/10 of native one. Finally, the electro-static term is 
given by Debye–Huckel potential:

Uel(rij) =
qiqj

4πε0Drij
exp

(
−

rij

ξ

)
, (25)

in which qi and qj  are the residue charges, ε0 is the di electric 
constant in vacuum, D is the relative dielectric constant of 
water and ξ ∼ 10 Å  is the Debye screening length. While the 
resulting model is definitely richer of physical ingredients 
than the usual Gō-models, non-native interactions introduce 
frustration, slowing down the diffusion of the protein along 
the folding funnel. For this reason, in [53, 156] the sampling 
is performed via MC, applying a set of local moves that allow 
to retrieve dynamic properties with a significantly lower cost 
than with MD [129, 209].

By comparing the results obtained by this model with and 
without equation  (22), it had been possible to enlighten the 
key role of non-native interaction in favoring early knot for-
mation in carbamoyltransferases [156], and in determining the 
knotted folding of MJ0366 [53].

4.2.6. Elastic folder model. As mentioned before, in the 
study of entangled protein folding one of the issues of Gō-like 
potentials is the untimely formation of native contacts, that 
can entrap the chain in a misfolded configuration. These bonds 
need then to be ruptured in order to reach the native topology. 
This backtracking mechanism amplifies the simulation time 

required to reach the folded state, resulting in very low fold-
ing probabilities. Nonetheless, it is believed that topologically 
complex proteins have evolved to fold in a reproducible and 
efficient way, so their sequence should encode sufficient infor-
mation to avoid kinetic traps and misfolded configurations. 
Building on this idea, Najafi and Potestio have proposed a CG 
off-lattice description, dubbed elastic folder model (EFM), 
which is constructed to fold along optimal pathways, that is in 
the most reproducible and rapid way.

To achieve this the EFM employs a typical CG Cα descrip-
tion of the protein, in which native contact potentials are 
absent and the folding is governed by the back-bone angular 
interactions alone. The energy can be written as:

Utot = Ubond + Usteric + Ubb, (26)

where the Kremer–Grest model [210] is used to represent pep-
tidic bonds and steric interactions. The former are described 
with the finitely extensible non-linear elastic potential:

Ubond = −
N−1∑
i=1

kFENE

2

(
R0

σ

)2

ln

[
1 −

(
ri,i+1

R0

)2
]

, (27)

in which kFENE = 30.0ε is the interaction strength parameter, 
in units of an energy constant ε, R0 = 1.5σ and the length-
scale σ = 3.8 Å  is the typical extension of a peptidic bond. 
The Weeks–Chandler–Anderson interaction [211] is used for 
the steric part:

Usteric =

N∑
i<j

UWCA(rij), (28)

with:

Figure 12. Comparison of LJ-like functional forms employed in 
different pair potentials presented in the text: the LJ 12-6 interaction 
of equation (15) (red solid line), the LJ 12-10 form of equation (11) 
(yellow dashed line), the LJ 12-10-6 potential of equation (21), 
and the non-native repulsive potential UR defined in equation (24). 
The potential is in units of ε, and the length scale is r0ij so that the 
stationary points of the different functions coincide. In the native 
potentials, r0ij is the native distance between residues i and j . This 
corresponds to 21/6σ in LJ 12-6, and to σ in LJ 12-10 and LJ  
12-10-6. For the non-native interaction UR, r0ij = 21/6σ, where the 
length scale σ is the mean of the residues van der Waals radii.

J. Phys.: Condens. Matter 31 (2019) 443001



Topical Review

23

UWCA =




4ε
[(

σ
rij

)12
−
(

σ
rij

)6
]
+ ε if r < 21/6σ

0 otherwise.
 (29)

The structural information of the protein is included in the 
back-bone angular potential, which has the same functional 
form used by Clementi model (equation (8)). The driving 
force of the folding is thus provided by the bending and torsion 
terms. The idea of folding pathway optimality is implemented 
by using heterogeneous angular stiffnesses kθi, k1φi, k3φi, 
which are tuned through a stochastic optimization approach, 
aimed at maximizing the folding propensity of the model. 
This optimization procedure is based on iteratively tuning 
the parameters kθi, k1φi, k3φi building on the results of several 
folding simulations. In [55] this is done by a MC sampling 
of the parameter space, in which a mutation of the stiffness 
is accepted or rejected according to its effect on the folding 
probability. This technique has been used to investigate the 
folding routes of two small knotted proteins [55], observing a 
qualitative agreement with the results of more detailed mod-
els. The optimization procedure has been recently improved 
via an evolutionary, parallelized strategy that allows a more 
efficient exploration of the parameter space [115].

4.2.7. More detailed CG. During decades of computational 
protein studies distinct CG descriptions of the polypeptide 
chain have been proposed, naturally increasing the detail 
starting from the simple Cα representation. However, mainly 
for computational requirements, these models have not been 
extensively employed in the field of entangled proteins.

An example of a more detailed description of the pro-
tein chain is found in [212], where the thermal unfolding of 
YibK is simulated with different techniques. Among these, 
wo CG models were employed, both increasing the detail 
of Cα representation by describing further elements of the 
amino-acid chain. The first one, described in [213], is a MC 
approach which includes side-chain and Cβ  interaction sites. 
The Hamiltonian contains heterogeneous backbone and native 
contact interactions, that combine general potential forms for 
secondary structures, native structure information, and statis-
tical potentials built over a database globular proteins [214]. 
The second model as well includes a side-chain representa-
tion, and employs interaction potentials parametrized over 
known protein structures and ab initio calculations [215–217]. 
This second description is employed with MD sampling.

A second example of detailed CG in knotted proteins can 
be found in [218], where the folding of tRNA methyltrans-
ferase, presenting a deep native trefoil knot, is addressed. 
Actually only the entangled fragment of the protein chain is 
considered in the presented calculations. The used represen-
tation is inspired from the associative memory Hamiltonian 
used in structure-prediction studies [219, 220], that describes 
the structure retaining the position of Cα, Cβ  and O atoms. 
The energy function is the sum of a back-bone term, including 
self-avoiding and stiffness interactions, and a heterogeneous 
gaussian Gō-like term for Cα − Cα, Cα − Cβ and Cβ − Cβ 

pairs. The detailed form of the Hamiltonian can be found in 
[218, 220]. Another peculiar aspect of this work is the use of 
structure prediction methods to investigate the kinetics of the 
model. In these techniques the sampling of the folding space 
is obtained by generating a complex network of the possible 
local energy minima, using a combination of MC moves, 
minimum energy path, and energy optimization algorithms 
[221–223]. The transition rates across this network of con-
formations are then computed using discrete path sampling 
method [224], and the global kinetics of the model is inferred.

4.3. All-atom simulations

In this section we further increase the resolution of the model-
ling, focusing on those methods that employ an all-atom (AA) 
protein representation. This level of detail implies a signifi-
cant increase of computational time with respect to CG simu-
lations, considerably limiting the accessible timescales. Even 
using state-of-the-art super-computers, or dedicated computa-
tional architectures [225], a gap still exists between the time-
scales accessible with AA modelling of biological systems 
(roughly within the range µs–ms), and the typical timescales 
of biological processes (that can easily exceed minutes [8]). 
These limitations are critical in the study of self-entangled 
protein folding, motivating the popularity of simple CG mod-
els. Nonetheless, exploiting specific strategies to reduce the 
computational times, AA methods have been also applied to 
the study of topologically complex proteins.

Before discussing the usage of AA modelling in self-entan-
gled proteins, we briefly outline few crucial features of this 
methodology. The AA representation provides a more accu-
rate description of the molecular geometry, and of the realistic 
packing that can play a crucial role in processes such as protein 
folding. Beside this, a full atomistic description makes it pos-
sible to use physics-based potentials, that include a realistic 
treatment of interactions. These potentials, usually referred to 
as ‘force-fields’ (FFs), aim at reproducing the potential energy 
surfaces derived from quantum mechanics, in a transferable 
way throughout large sets of molecules. In general, atomistic 
FFs are based on additive terms, describing bonded and non-
bonded interactions [226]. The former include bond, bending 
and dihedral energies, already encountered in the CG models, 
and the latter include electrostatic and van der Waals forces. 
Each contribution is typically considered as an additive term, 
however also cross-terms can be introduced, describing the 
interdependence of different degrees of freedom [227]. Once 
the functional form of each term is fixed, a set of free param-
eters regulating the strength of each additive term has to be 
chosen, typically fitting the results of ab initio calculations on 
specific chemical groups and accounting for crystallography 
and spectroscopy data. Nowadays, several FFs are available, 
such as Charmm, Amber or OPLS, each adopting different 
functional forms and parametrization techniques, that result in 
specific domains of applicability (liquids, nucleic acids, pro-
teins and so on). A review on the topic can be found in [226].

The mentioned FFs describe the interaction of those atoms 
belonging to the biological complex under study, while for 
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the solvent environment, typically water, a specific descrip-
tion is employed. The AA modelling of water, also referred to 
as ‘explicit solvent’ treatment, has a long history, and many 
approaches are available, each using a particular interaction 
site geometry and parametrization protocol [228]. A popular 
alternative to AA description of the solvent is the so-called 
‘implicit solvation’, in which the solvent is accounted for as 
a continuum medium, approximating the average effect of 
water on the solute system. An example of this technique is 
to apply the generalized born approximation to solve the elec-
trostatics, while the remaining effects are accounted for with 
an estimate of the solvent accessible surface area [229–231]. 
The use of implicit solvation forces a radical approximation 
of the AA treatment, but it can still provide accurate results, at 
the same time significantly reducing the computational load.

Let us now review how the mentioned methodologies could 
be applied in the study of entangled proteins. As mentioned 
earlier, a proper framework for AA MD of proteins is that of 
mechanical stretching simulations, that involve shorter time-
scales than in the folding. The stretching protocol is equivalent 
to that described in section 4.2.2, namely fixing or restraining 
the position of a selected atom, typically the Cα of a terminal 
residue, and then pulling another atom apart, typically at the 
other end of the chain, by means of a moving harmonic poten-
tial [189, 232]. The velocity of the moving potential is several 
(∼6–8) orders of magnitude larger than the pulling speed in 
experiments, but the resulting F  −  d patterns are compatible 
to those resulting from AFM measurments, allowing the inter-
pretation of the latter. The chosen velocity of pulling allows to 
reach significant stretching of the protein within nanoseconds, 
timescales that are nowadays accessible by AA simulations. 
The first AA stretching simulations on an entangled protein 
were performed already in 2004 in [233], where a theoretical 
interpretation was provided to previous stretching experiments 
on the trefoil knotted carbonic anhydrase [234]. Here, both 
implicit and explicit solvent representations were utilized, 
reproducing in both cases the experimental force peaks. These 
results were successively complemented by further atomistic 
simulations [235]. Other works on stretching of topologically 
complex proteins can be found, together with experimental 
results, in [236], where the figure-of-eight knot in phytocrome 
is tightened while unfolding the polypeptide, or in [61, 184], 
where the slipknotted protein AFV3-109 is manipulated.

As said, when biological timescales come into play, the 
use of AA simulations can lead to unreasonable computa-
tional times. For this reason only few groups have tried to 
study the folding of self-entangled proteins by using fully 
atomistic representations. A viable strategy to obtain indica-
tions on the folding transition, avoiding the time-scale issue, 
is that of simulating the high-temperature unfolding process 
starting from the equilibrated native conformation. The higher 
temperature accelerates the conformational changes, and time 
requirements can be strongly reduced. In [212] the untying 
of deep trefoil knot of YibK was simulated with AA MD in 
explicit water, setting the temperature to T = 900 K . These 
calculations gave insights on the conformational change link-
ing the native entangled state to a fully denaturated state, and 
on the stability of the knotted structure.

When the actual folding process is considered, one cannot 
escape the time-scale requirements. For this reason, by now, 
only the folding of the smallest knotted protein, MJ0366, has 
been studied with full atomistic detail. Moreover, to achieve 
this result, different strategies aimed at reducing the com-
putational requirements have been proposed. One possible 
approach is that of combining the AA representation with 
ELT, employing Gō-like interaction potentials, the calcul-
ation of which is much less expensive than that of realistic 
force-fields [237]. This is the method chosen in [105], where 
an AA model is employed to sample the folding free-energy 
landscape of MJ0366. The employed model, presented in 
[174, 238], includes only non-hydrogen atoms, featuring the 
standard harmonic bond and angular terms, and the dihedral 
potential indicated by equation (10), which regulates also the 
dihedral angles of the side-chains. An extra harmonic term is 
added to restrain the improper dihedrals of the structure, typi-
cally to preserve planar arrangements. Non-native interactions 
are purely repulsive, while an atomistic contact map is built. 
Gaussian potentials were used to generate the pair interactions 
[173]. This description allowed to observe the effect of the 
realistic atomistic packing and protein geometry on the fold-
ing of MJ0366, in comparison with the results of ordinary CG 
simulations [105].

In a crucial work by Beccara et  al [53], the folding of 
MJ0366 has been simulated by means of a fully atomistic 
description of the protein, together with a realistic interac-
tion potential (Amber99SB [239]). Here the problem of time 
limitation has been tackled by employing an implicit solvent 
representation [231], together with an enhanced sampling 
technique. More in detail, the authors applied the dominant 
reaction pathway approach [240], combining a ratchet-and-
pawl [241] biasing protocol, to favor the evolution towards 
the folded state, together with an a-posteriori scoring method,  
to estimate the relative probability of the biased trajectories 
[242, 243]. By means of this technique the full folding trans-
ition of MJ0366, starting from an initially denatured confor-
mation up to the knotted, native state, was observed, and useful 
insights on the preferential folding pathways were collected.

Finally, the folding of MJ0366 was studied with an even 
higher detail of modelling in [244], where the Amber99SB 
force-field was employed together with an explicit solvent 
model (TIP3P water [245]). The authors performed unbiased 
MD calculations of this system, composed by about 1.9 × 104 
atoms, using the special-purpose facility ANTON [225]. The 
results showed the dynamics of the native knot formation, 
starting from slipknotted conformations previously generated 
with the AA Gō-model of [105]. These are the only unbiased, 
AA, explicit solvent calculations of a protein knotting events 
available up-to-date. However, with this level of detail, the 
simulation of the full entangled folding process still remains 
out-of-reach.

4.4. External factors

In this section  we review simulation techniques that aim at 
modelling those external factors influencing the dynamics of 
self-entangled proteins. The picture of an isolated protein, 
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spontaneously folding in water at physiological conditions 
is far from being general, as interactions with other cellu-
lar components or proteins are the standard. Moreover, the 
environment plays a crucial role also after the folding has 
occurred, influencing the biological functions of proteins. For 
this reason, several simulation techniques have been proposed 
to account for specific external factors, some of key interest in 
the realm of topologically complex structures.

4.4.1. Protein complexes. Many of the studied proteins con-
stitute functional homo-dimers. In such cases it can be relevant 
to simulate the cooperative folding of two protein specimens, 
and observe their interactions and dimerisation process [173]. 
As previously mentioned, in [105] the folding of MJ0366 
was simulated via an AA Gō-model. In this paper, the authors 
also investigated the possible dimerisation along or after the 
folding process, modelling the native contacts between two 
MJ0366 monomers via Gō-potential, with the same interac-
tion strength and functional form (Gaussian) employed for 
the intramonomer native contacts. The monomers were held 
together by an harmonic potential acting on their centers of 
mass. Varying the curvature of this potential, the effect of dif-
ferent crowding on folding and dimerisation was probed. The 
interaction between protein dimers was simulated also in [122, 
178, 246], where the study of both folding and stretching was 
addressed, this time using the CG Gō-model of Cieplak. Once 
again, the contacts between monomers were treated like the 
intra-chain native contacts. Using the same approach, in [122], 
the folding of known homo-dimeric knotted proteins, such as 
MJ0366 and YibK, was simulated, assessing the impact of the 
dimerisation potential on the process.

Cieplak Gō-model has been employed to simulate also 
other dimeric structures, forming protein links. In [122], the 
authors propose a four-terminal pulling simulation protocol, 
that detects the intertlinking among homo and hetero-dimer 
structures. This technique has been applied to more than 104 
n-meric structures, detecting about 9% of entangled com-
plexes. Four of these linked dimers have been studied in [178], 
assessing their folding and thermodynamic properties. In gen-
eral the full dimerisation is found to occur as a late step, sub-
sequent to the proper folding of the monomers.

4.4.2. Co-translational folding. Another aspect that plays a 
crucial role in protein folding in vivo, is the translation [52]. 
Indeed, the folding dynamics can take place already while 
the polypeptide chain is emerging from the ribosome, and 
this possibility can completely alter the picture of spontane-
ous folding adopted in standard simulations. This ‘co-transla-
tional’ folding can be particularly relevant for self-entangled 
proteins, as the sequential character of topology formation can 
be regulated by the time-scale of translation. This possibility 
is addressed in [48], where a simple model of on-ribosome 
protein folding is proposed. In this model the protein is rep-
resented by means of the Cieplak CG description, introduced 
before, while the ribosome is represented as a plane that gen-
erates a uniform potential:

Ur =
3
√

3
2

ε

(
σ0

z

)9

,
 

(30)

where z is the distance from the plane and σ0 = 4 × (2)−1/6. 
The protein chain emerges from a fixed coordinate on the plane, 
giving birth to a new Cα residue every tw, starting from the 
N-terminal. This simple representation of the process aims at 
modelling the sequential generation of the polypeptide, and 
the excluded volume determined by the ribosome. This tech-
nique was used to simulate the folding of knotted proteins  
[48, 49], observing an improvement in the folding propensity. 
A simpler, but relatable study was performed in [158], where 
one terminal of the lattice protein chain was constrained to 
a chemically inert plane (determining only excluded vol-
ume). This method can provide a rough approximation of 
the entropic limitations present in nascent folding, but also in 
single molecule experiments. An alternative, more detailed, 
approach to simulate co-translational folding was recently 
proposed in [50], where the folding of the deeply knotted pro-
tein Tp0624 is simulated by modeling the ribosome channel 
with a cylindrical 10 Å  tunnel with a funneled exit located 
on a planar wall. Initially, the stretched protein is contained 
in the tunnel, and a constant force is applied to its residues 
in order to push them through the channel exit. The protein 
description adopted is the Clementi model, with Gaussian 
native contacts. The interaction of the wall with the residues 
can be repulsive (WCA potential, equation (29)) or attractive 
(LJ 12-6, equation (23)). By assigning attractive interactions 
to a pre-selected set of residues this scheme could promote the 
formation of a loop on the ribosome wall at the channel exit. 
Starting from this configuration the authors demonstrated that 
the tying of the deep knot could be strongly favored by the 
ribosome action.

4.4.3. Air-water interface. An external factor that can play a 
key role in protein dynamics is the interaction with an air-
water interface [247]. The vicinity of such interfaces had been 
also found to influence the topology of proteins [182], e.g. 
favoring non-native entanglements, or untying shallow knots. 
The method used here is again based on Cieplak’s CG Gō 
model, where the air-water interface is effectively described 
by a field of forces coupled to the hydropathy of amino acids. 
The force acting on the ith residue is defined as follows:

Fwa
i = qiA

exp
(
−z2

i /2W2
)

√
2πW

,
 (31)
where qi is the hydropathy index associated to the amino-acid 
[248], zi its coordinate on the axis perpendicular to the inter-
face, and A = 10ε and W  =  5 Å  are energy and length-scale 
of the interaction.

4.4.4. Chaperonin cage. It is well known that the folding 
of proteins can be assisted, and accelerated, by the bacterial 
chaperonin GroEL-GroES, a complex of two large heptam-
eric units that form a compartment capable of accomodating a 
folding polypeptide [249]. The encapsulated protein exhibits a 
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faster folding rate, which can be the result of an active action 
of the chaperonin, via e.g. destabilisation of misfolded con-
figurations, and a passive action, via the steric confinement 
determined by the compartment. The GroEL-GroES complex 
is of interest also in the field of self-entangled folding, as it 
has been shown to assist the folding of knotted proteins such 
as YibK and YbeA [8, 43]. To better understand the action of 
the chaperonin, computational techiques that simulate fold-
ing under spatial confinement have been proposed [250]. Of 
interest for topologically complex folding is [198], where the 
confinement effect was studied by means of both lattice (see 
section 4.1) and off-lattice CG Gō models (see section 4.2.3). 
The methodology simply consists in limiting the space acces-
sible to the protein chain to a cubic or spherical cavity, the 
size of which is chosen accordingly to the typical chaperonin 
size (few nm of radius). Moreover, in [177, 251], the chap-
eronin cage was modeled by means of a cylindric repulsive 
cavity, following [250]. The spatially confined folding of dif-
ferent entangled proteins was here studied using Clementi’s 
CG Gō model. Overall, the steric effect of the cage is found 
to enhance the capability of folding of the protein models, 
reducing the folding time and promoting different routes with 
respect to bulk simulations.

4.4.5. Pore translocation. Crucial biological processes, such 
as mithocondrial import, or degradation, require proteins to 
be translocated through nanopores of 12–14 Å  of minimum 
diameter. This size is too narrow to accomodate a native 
folded structure, and the protein needs to be unfolded by the 
action of unfoldases, that employ energy from ATP hydrolysis 
to perform this operation. It has been proposed that topologi-
cally complex proteins could prevent such a process, as it was 
shown that a mechanically tightened protein knot has a size 
comparable or larger than the pore diameter [28, 252]. It is 
therefore of interest to understand how the cellular machin-
eries that operate protein translocation can cope with the 
presence of knots, untying the chain before it jams the pore 
channel.

In simulations this is attempted by means of an external 
repulsive potential that models the pore channel, and by apply-
ing a pulling force on one extremity of the protein model, to 
drive its translocation through the pore potential. Once again, 
because of computational time requirements, the preferential 
protein descriptions for these simulations, are simple Cα rep-
resentations of self-entangled proteins. As a first example, in 
[253], specifically designed knotted polypeptides were repre-
sented by the model of [160, 166], and pulled by a constant 
force directed along the axis of the pore. The latter was repre-
sented by a cylindrical repulsive potential of length L ≈ 50 Å  
and radius ρ ≈ 6.5 Å . Different topologies were tested, show-
ing that the knotted polypeptide can still translocate through 
the pore, but the rate of the process is significantly reduced.

A similar strategy was employed in [254], where models of 
real knotted proteins such as YibK, YbeA and MJ0366 were 
tested. Cieplak Gō-model was used for the representation of 
the protein, and a cylindrical repulsive potential modeled the 
pore, while a constant pulling force was used to drive the trans-
location dynamics. To mimic the transport into mitochondria, 

which is mediated by a short polypeptide sequence attached 
to the protein end, a 10-bead unstructured chain was added 
to the end of the protein to be pulled through the pore poten-
tial. The effective radius of the modeled pore was similar to 
the previous case, ρ ≈ 7 Å , but the results demonstrated how 
deep protein knots can get stuck at the pore entrance. In [255] 
the same techniques and test systems were employed, but a 
periodic pulling force was applied to the protein terminals. 
This cyclic force, which is more realistic in reproducing an 
ATP-hydrolisis activated behaviour, could resolve the translo-
cation jam by letting the knot slide off the chain.

A different pore-model has been introduced in [256], to 
represent the translocation into the proteasome. In this model, 
the entrance ring of the proteasome is described as a repulsive 
torus with major and minor radius of 13 and 6 Å  respectively, 
placed at the end of a cylindric channel of radius ρ ≈ 7.5 Å , 
which mimics the proteasome chamber. These two elements 
share the longitudinal axis, determining a cylindrical chan-
nel with a smooth, funneled entrance of 7 Å  radius (the torus 
hole). Also here, proteins were described by means of Cieplak 
structure-based model, while the pulling of the protein inside 
the channel was performed either with a constant force or a 
constant velocity protocol. In [183] this methodology was 
used to simulate translocation of knotted globular proteins 
such as YibK and MJ0366 and transiently knotted polyglu-
tamine tracts, assessing the dependence of the translocation 
process on protein topology, pulling force and pore model. 
Also a more rugged pore entrance was tested, by substitut-
ing the torus with 12 overlapping spheres of 6 Å  of radius, 
arranged in circle. This model was also dynamic, implement-
ing the temporary shrinking of the entrance spheres, three at 
a time. This behaviour is meant to reproduce the allosteric 
transformations of the proteins that compose the proteasome 
entrance ring, providing a more realistic description of the 
biological process.

5. Summary and conclusions

In the previous pages we have reviewed numerous compu-
tational techniques, proposed during decades of scientific 
research to shed light on a complex and fascinating topic 
such as that of self-entanglements in proteins. Here, we have 
focussed in particular on those exquisitely computational 
methodologies that have been developed and employed to 
comprehend the nature of these entanglements—their role, 
their occurrence, their formation, and their impact on a bio-
molecule’s life cycle.

Albeit limited on the one hand by the vastness of the argu-
ment, and on the other hand by the necessity and intention 
to provide the Reader with a sufficiently agile document for 
a first experience in the field, the coverage and depth of this 
review is certainly far from completeness and high-resolution 
accuracy. It is nonetheless our hope that the present review 
will spark interest in researchers, particularly young ones, and 
motivate them to pursue a research activity aimed at the dis-
covery of the many different facets encountered when tackling 
the study of self-entangled proteins.
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The wide phenomenology of these systems, and the corre-
spondingly broad range of computational methods required to 
make sense of their properties, are strong indications of two 
crucial aspects. Firstly, we notice that the community active 
in this field is in fast development, and that the number of 
available instruments keeps steadily increasing, thereby open-
ing a spectrum of possibilities that were unthinkable only a 
few years ago; this is largely due not only thanks to the quick 
advancements in computer science, rather also, and maybe 
most prominently, to the coordinated efforts of biologists, 
chemists, and physicists. Secondly, it is easy to see how the 
different models employed for the study of self-entangled pro-
teins constitute a very heterogeneous substrate, from which a 
variety of results could be obtained, sometimes reaching also 
jarring contradictions. This is in part due to computational 
limitations, which impose radical approximations to meet 
the temporal requirements of simulating complex biophysi-
cal processes such as knotted protein folding. Consequently, 
the questions raised by the existence of native protein entan-
glements, despite the undoubtedly remarkable progresses 
attained insofar, are far from being answered, and a long road 
still needs to be travelled.

In fact, the computational limitations will not be solved, at 
least for few years, by the progress of computer hardware alone, 
since the gap between the biological timescales of interest and 
the ones accessible with accurate MD models still ranges for 
few orders of magnitude. The greatest advancements will thus 
come from improved algorithms, that is, smarter and more 
efficient ways of modelling these systems, sampling their con-
formations, simulating their behaviour, and extracting relevant 
information from simplified in silico models.

To this end, one of the most promising strategies—in this 
particular subfield as well as in many others of computational 
biophysics—is to employ a multi-scale description of the sys-
tem, combining models and methods that use different level 
of detail in a hierarchical and/or concurrent manner. This 
approach enables one to attain an improved qualitative and 
often quantitative picture of the process as a whole, taking 
advantage of the efficiency of coarse-grained models as well 
as extracting accurate physico-chemical information thanks to 
the atomistic or, in general, higher-resolution detail.

In this respect, this review has aimed at summarising a 
picture of the whole set of instruments currently available 
to undertake this endeavour, providing the appropriate refer-
ences to combine different techniques and tackle a specific 
problem. An encompassing overview of computational mod-
els and methods also entails the chance to facilitate the com-
munity in spotting possible weaknesses in the current stage 
of the simulation and modelling technologies, thereby better 
directing the efforts to resolve them and complement the arse-
nal of available techniques with novel, sharper ones.
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