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Abstract

In this work a new strategy is proposed in order to build analytic and microscopic models of fluctuating 
polymer rings subjected to topological constraints. The topological invariants used to fix these constraints 
belong to a wide class of the so-called numerical topological invariants. For each invariant it is possible to 
derive a field theory that describes the statistical behavior of knotted and linked polymer rings following a 
straightforward algorithm. The treatment is not limited to the partition function of the system, but it allows 
also to express the expectation values of general observables as field theory amplitudes.

Our strategy is illustrated taking as examples the Gauss linking number and a topological invariant be-
longing to a class of invariants due to Massey. The consistency of the new method developed here is checked 
by reproducing a previous field theoretical model of two linked polymer rings. After the passage to field 
theory, the original topological constraints imposed on the fluctuating paths of the polymers become con-
straints over the configurations of the topological fields that mediate the interactions of topological origin 
between the monomers. These constraints involve quantities like the cross-helicity which are of interest in 
other disciplines, like for instance in modeling the solar magnetic field.

While the calculation of the expectation values of generic observables remains still challenging due to 
the complexity of the problem of topological entanglement in polymer systems, we succeed here to reduce 
the evaluation of the moments of the Gauss linking number for two linked polymer rings to the computation 
of the amplitudes of a free field theory.
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1. Introduction

Topological structures appear everywhere in nature and shape the properties of physical 
systems at practically almost every scale of length, from proteins and long polymers to stars. 
Eliminating knots and links in polymer materials allows to construct polymer networks that are 
supersoft and superelastic [1]. On the other side of the scale, it is known that topology constrains 
the energy stored in the solar magnetic field [2,3]. It is important to quantify the topological com-
plexity of the solar magnetic lines in order to predict phenomena that are potentially dangerous 
for our civilization like solar flares and coronal mass ejections [4–6].

One of the most outstanding tasks of polymer physics is to construct analytic and microscopic 
models that are able to characterize the behavior of matter in the presence of topological con-
straints. The main difficulty is that in physics the interactions are traditionally taken into account 
by potentials, but the entanglement of long, quasi one-dimensional objects cannot be easily de-
scribed in this way. Some help in the case of polymers with closed conformations has come from 
the advances made by knot theory in the last decades. Nowadays powerful topological invari-
ants are available in order to distinguish the different topological states of a given system. Field 
theoretical models of topological entanglement based on some of these invariants already exist. 
Their main feature is that topological field theories are responsible for mediating the interactions 
between the monomers arising due to the presence of the topological constraints. The first field 
theory describing the statistical behavior of two rings in a solution and linked together has been 
derived in Ref. [7]. Before, several other models have been proposed, in which the fluctuations 
of one of the polymers have been approximated in several ways, for instance by considering 
them as white noise [8–14]. In [7] the topology of the two-ring system is fixed using the Gauss 
linking number, a topological invariant that is related to the vacuum expectation values of the 
observables of a topological field theory called the Abelian BF model [15]. The vector bonds 
of the two polymer rings are replaced by monomer densities, whose fluctuations are taken into 
account in the partition function by performing a statistical sum over a set of replica complex 
scalar fields. The interactions due to the presence of the topological constraints are propagated 
by the topological fields of the Abelian BF model. This simple model has allowed some useful 
predictions. For example, it has been possible to conclude that the topological complexity of a 
link formed by two polymer rings, measured according to increasing values of the Gauss linking 
number, rises linearly with the length of the rings [16]. This prediction has been later confirmed 
by an independent calculation in [11]. Moreover, the renormalization group analysis performed 
in [17] has shown that the monomers of two very long polymers entangled together are subjected 
to attractive interactions of entropic origin due to the presence of the topological constraints. This 
attraction has also been observed experimentally in [18]. On the other side, it is known that un-
entangled polymer rings slightly repel each other even in the absence of excluded volume forces. 
In [19] the co-existence of attractive and repulsive forces in a system of two linked polymer rings 
has been proved with the help of nonperturbative methods.

Once a model has been derived for a given topological system, it can be useful to understand at 
least some of the features of other systems in which topological relations play an important role. 
Indeed, topological matter may be realized using very different quasi one-dimensional objects, 
like for instance polymers or the lines in the solar magnetic field, but the behavior of these 
objects is influenced by the same topological constraints. For instance, the Abelian topological 
field theory [7], originally derived for polymers, can be mapped into a theory of quasi-particles in 
multi-layered superconductors [19] and is relevant for topological computing too [22–29]. On the 
other side, the topological field theories of [20,21], constructed having in mind the application 
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to polymer physics of more powerful topological invariants than the Gauss linking number, turn 
out to be important for topological insulators [30–33].

The major drawback of the Gauss linking number is that it is a weak topological invariant. It 
is not uncommon that the values of the Gauss linking number computed in the case of two topo-
logically inequivalent links are the same, so that the two links cannot be distinguished according 
to this invariant. In order to construct models based on more refined invariants it is possible to 
follow different strategies. Here we choose the approach pioneered by Sam Edwards [8] which 
has shown to be very promising in the past. This approach makes use of the so-called numer-
ical topological invariants. The latter have the advantage that can be expressed in the form of 
contour integrals computed along the paths of the loops composing a knot or link. As a conse-
quence, these invariants depend explicitly on the physical paths of the polymers. The topological 
constraints are imposed on a set of N loops C1, . . . , CN by requiring that the value of a given nu-
merical topological invariant τN(C1, . . . , CN) should be equal to some number m. The statistical 
sum over all loop conformations is performed via path integral techniques [34]. The constraint 
τN(C1, . . . , CN) − m = 0 is taken into account by inserting in the partition function a Dirac 
delta function enforcing that condition. The presence of a Dirac delta function in a path inte-
gral is quite awkward. This shortcoming is circumvented exploiting the Fourier representation 
δ(τN − m) = ∫ +∞

−∞
dλ√
2π

e−iλ(τN−m). In this way a new parameter λ is introduced, namely the 
Fourier variable conjugate to m. Yet, the expression of τN(C1, . . . , CN) consists in general of 
very complicated multiple contour integrals over the paths C1, . . . , CN , a fact that makes the 
evaluation of the statistical sum over the loops C1, . . . , CN an outstanding problem. It is at this 
point that field theory comes into play. The idea of [20] is to construct a topological field the-
ory with the special characteristics that: i) it is possible to define N observables O1, . . . , ON

such that their expectation value 〈O1 . . . , ON 〉 coincides with e−iλτN (C1,...,CN ); ii) The observ-
ables O1, . . . , ON are non-local objects similar to the Wilson loops possibly with some slight 
modifications in order to make them both gauge invariant and metric independent; iii) the whole 
dependence on the i−th loop Ci , where i = 1, . . . , N , is confined to the i−th observable, i. e.: 
Oi = Oi (Ci). If such a theory exists, the path integration over all possible loop conformations 
can be split into N separate integrations in which only a single loop is considered. This is a 
consistent simplification that, together with property ii), allows a straightforward passage from 
paths to monomer densities using standard second quantization techniques [20]. As an upshot, 
the partition function of a system of interlocked polymer rings is mapped into the partition func-
tion of a field theory that is both polynomial and local, thus eliminating the non-polynomiality 
and non-locality that were present in the original formulation. In the case of the Gauss linking 
number, an example of topological field theory that satisfies the requirements i)–iii) is the already 
mentioned Abelian BF model of Ref. [7]. For higher order invariants, special Chern-Simons field 
theories with non semi-simple gauge groups are necessary [21,20]. Numerical topological invari-
ants are often characterized by path ordering, so that the order of the integrations in the multiple 
contour integrals over the loop paths is constrained. In this case Chern-Simons fields must be 
coupled with auxiliary one-dimensional fields that take into account the path ordering. A topo-
logical field theory of this kind related to a topological invariant called the triple Milnor invariant 
has been derived in [35].

Despite many efforts and some relevant advances that have been achieved with the help of field 
theories or alternative methods [12,13,36,37], the modeling of topological structures in polymer 
systems is still affected by several limitations. In what concerns the techniques based on field 
theory worked out in [7,21,20,35], their validity is restricted to a few invariants and, in the case 
of an arbitrary invariant, there is no general algorithm for building topological field theories sat-
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isfying the properties i)–iii) defined above. It is licit to expect that the difficulties of deriving such 
field theories will increase with increasing complexity of the topological invariant used to fix the 
constraints. In the case of knots, even the simplest numerical topological invariant is character-
ized by a very complex mathematical expression. This is the major reason for which up to now 
no microscopic analytical model exists that is able to describe the statistical behavior of a single 
knotted polymer ring. Moreover, so far only the partition function of the interlocked polymer 
rings can be mapped to field theory. No generalization of this mapping exists if, instead of the 
partition function, the averages of observables like the gyration radius or the distance between 
two points of the link are considered. A further complication stems out from the fact that the 
coupling constant that determines in the field model the strength of the interactions between the 
monomers due to the topological constraints is the Fourier parameter λ. This coupling constant 
can take any possible value on the real line, making it difficult to choose a suitable approximation 
for performing any calculation.

In this paper a new approach to construct field theoretical models of links formed by polymers 
and overcome at least in part the above difficulties is presented. In the previous approaches the 
lack of potentials describing topologically entangled polymer rings has been solved by the intro-
duction of very special topological field theories that are able to reproduce with their amplitudes 
the expression of the invariant used to fix the topological constraints. On one side this strategy is 
very elegant, because it considers the interactions of topological origin between the monomers in 
the same way as the fundamental interactions in high energy physics. The only difference is that 
in polymer systems the interactions originate from the presence of topological constraints and are 
mediated by topological fields. On the other side, the models obtained in this way are affected by 
the drawbacks explained before. With the present work potentials gain back the leading role. The 
idea is that numerical topological invariants can be regarded as potentials. Despite the fact that 
the expressions of such invariants are complicated, being both non-local and non-polynomial, it 
will be shown here that it is possible to simplify them with the help of field theories. The starting 
point is the observation that numerical topological invariants consist of a sum of multiple contour 
integrals along the paths of the N loops composing a given link. The loops are curves in space 
whose positions are specified by the position vectors r1(s1), . . . , rN(sN), where the parameters 
s1, . . . , sN are the arc-lengths parametrizing the curves. The trick, which is well known in poly-
mer physics and in solar magnetohydrodynamics, is to replace the position vectors by magnetic 
flux densities concentrated inside the loops. Instead of searching for topological field theories 
whose amplitudes coincide with the exponent of the topological invariant e−iλτN(C1,...,CN ), N
magnetic flux densities b1(x), . . . , bN(x) are introduced. Suitable constraints relate these densi-
ties to the paths of the N loops and allow to write the invariant τN(C1, . . . , CN) as a function 
of b1(x), . . . , bN(x): τN(C1, . . . , CN) = τN(b1(x), . . . , bN(x)). This procedure, which consists 
in a few simple steps that will be stated precisely in the Conclusions, is sufficient in order to 
disentangle the loops, reducing the statistical sum over all their possible conformations to N in-
dependent path integrals, each one involving a single loop. Using standard techniques of second 
quantization, for each topological invariant a field theoretical model is obtained, in which the 
action governing the fields is both polynomial and local. Surprisingly, this simple strategy has 
never been investigated in the over fifty years of history of the application of field theory to build 
models of topologically entangled polymers.

The new way of mapping the problem of topologically entangled polymer into a field theory 
presents several advantages with respect to the previous ones:



F. Ferrari / Nuclear Physics B 948 (2019) 114778 5
1. In the final field theoretical model the connection with the original topological constraints is 
not lost. The requirement τN(C1, . . . , CN) = m is substituted by the following condition on 
the magnetic flux densities: τN(b1, . . . , bN) = m.

2. The passage from the statistical sum over the loop conformations to a path integral over fields 
is straightforward and can be easily generalized to any numerical topological invariant.

3. There is no need as in previous approaches to use the Fourier representation of Dirac delta 
function imposing the topological constraints. We will show here that in this way the expres-
sion of the second topological moment of the Gauss linking number, that could be calculated 
only approximately in Ref. [16], may be derived in closed form after evaluating the ampli-
tudes of a free field theory.

4. The passage from loops to fields may be easily extended to include also the expectation 
values of the observables and not only the partition function of the entangled polymer system.

In this work the new method is applied to numerical topological invariants with no path ordering. 
First, the procedure is tested in the case of the Gauss linking number denoted here with the sym-
bol τ2(C1, C2). The final field theory is a Ginzburg-Landau type model with replica scalar fields 
coupled to abelian BF fields. The equivalence of this model with the previous model of Ref. [7]
is proved. The original condition on the Gauss linking number τ2(C1, C2) = m is replaced by 
the condition that the so-called cross-helicity of two abelian BF fields is equal to m. The cross-
helicity is a well known topological invariant used for instance in solar magnetohydrodynamics 
[38–40]. Next, we build a field theory model corresponding to a third order topological invariant 
that has been derived in [21,20] by computing the amplitudes of the observables of a topological 
field theory with a non semi-simple gauge group of symmetry. The same invariant has also been 
proposed to describe the topological entanglement of the lines of the solar magnetic field, see 
[40]. With respect to the previous methods, not only the partition function of the system, but also 
the averages of a general class of observables are mapped into the amplitudes of replica scalar 
fields.

2. The case of the Gauss linking number

The Gauss linking number τ2(C1, C2) is the simplest example of numerical topological in-
variants. It describes the topological states of two closed polymers whose paths C1 and C2 are 
linked together. To simplify the notations, we will assume that both loops have the same length 
L. Representing C1 and C2 as curves parametrized by the arc-lengths s1 and s2 respectively, 
with 0 ≤ s1, s2 ≤ L, it is possible to express τ2(C1, C2) in a form in which the dependence on 
the physical conformations C1 and C2 is explicit:

τ2(C1,C2) = 1

4π

L∫
0

ds1

L∫
0

ds2ṙ1(s1) ·
[
ṙ2(s2) × (r2(s2) − r1(s1))

|r2(s2) − r1(s1)|3
]

(1)

In Eq. (1) the position vectors r1(s1) and r2(s2) specify the positions of the points of C1 and C2
in space and ṙ i (s) = dr i (s)

ds
. In the partition function Z[m] describing the fluctuations of the two 

polymer loops the topological states will be restricted by requiring that:

τ2(C1,C2) = m (2)

Using the path integral formulation of the statistical mechanics of polymers due to Edwards [8], 
Z[m] may be written as follows:
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Z[m] =
∫

Dr1(s)Dr2(s)e
−S2

pol δ (τ2(C1,C2) − m) (3)

In the above equation we have put

SN
pol =

N∑
i=1

L∫
0

ds
3

2a
ṙ2

i (s) (4)

with N = 2. a denotes the Kuhn length. Moreover, we have assumed that the path integrations in 
Dr i (s), i = 1, 2, are performed over loops that start and end in a fixed point ri,0. An additional 
integration over r1,0 and r2,0 is necessary in order to recover the case of two freely moving 
polymer rings.

In order to simplify the path integration over r1(s) and r2(s), we introduce the new quantity:

τ2(b
1,b2) = 1

4π

∫
d3x

∫
d3yεμνρb1

μ(x)
(x − y)ν

|x − y|3 b2
ρ(y) (5)

b1(x) and b2(x) being two fictitious magnetic flux densities with spatial components b1
μ(x) and 

b2
μ(x), μ = 1, 2, 3. In Eq. (5) the symbol εμνρ denotes the completely anti-symmetric tensor in 

three dimensions defined by the condition ε123 = 1. The identity

τ2(b
1,b2) = τ2(C1,C2) (6)

is satisfied provided b1 and b2 are defined as follows:

b1(x) =
L∫

0

dsṙ1(s)δ(x − r1(s)) (7)

b2(y) =
L∫

0

dsṙ2(s)δ(y − r2(s)) (8)

b1(x) and b2(x) may be thought as magnetic flux densities generated by two fictitious currents 
j1(x) and j2(x) circulating respectively along the loops C1 and C2:

j i (x) =
L∫

0

dsṙ i (s)
1

|x − r i (s)| i = 1,2 (9)

Let us notice that, due to the presence of the Dirac delta functions in their definitions, b1 and 
b2 transform under general diffeomorphisms as vector densities and not as pure vectors. This 
means that, with respect to pure vectors, they pickup after a general coordinate transformation 
an additional factor consisting of the inverse Jacobian of the transformation. Moreover, it turns 
out from the definitions of Eqs. (7)–(8) that both b1 and b2 are purely transversal, i.e.

∇ · b1,2(x) = 0 (10)

This is because the line integral around a closed loop of the gradient of a function that is not 
multivalued is always zero. Taking into account Eqs. (5)–(8), the partition function of Eq. (3)
becomes:
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Z[m] =
∫

Dr1(s)Dr2(s)Db1(x)Db2(x)e−Spol

× δ

(
1

4π

∫
d3x

∫
d3yεμνρb1

μ(x)
(x − y)ν

|x − y|3 b2
ρ(y) − m

)

×
2∏

i=1

δ

⎛
⎝bi (x) −

L∫
0

dsṙ i (s)δ(x − r i (s))

⎞
⎠ 2∏

j=1

δ
(
∇ · bj (x)

)
(11)

In the last line of the above equation the first product of two functional delta functions en-
forces the conditions (7)–(8) on the fields b1,2. These conditions affect only the tranverse 
degrees of freedom of b1 and b2. For this reason, the additional product of delta functions ∏2

j=1 δ
(∇ · bj (x)

)
has been inserted in the partition function in order to impose also the 

transversality conditions of Eq. (10). Technically speaking, Z[m] is the partition function of 
an abelian gauge field theory quantized in the pure Lorentz gauge. For such kind of theories the 
longitudinal degrees of freedom are present only in the gauge fixing terms.

At this point we use the Fourier representation of the two functional delta functions that fix 
the constraints (7) and (8) in Eq. (11). As a result, the path integration in Dr1(s) and Dr2(s)

reduces to a product of two path integrals in which the integrations over the conformations of the 
loops C1 and C2 are completely decoupled:

Z[m] =
∫

Db1(x)Db2(x)Dc1(x)Dc2(x)e
−i

∑2
i=1

∫
d3x

(
ci (x)·bi (x)

)

× δ

(
1

4π

∫
d3x

∫
d3yεμνρb1

μ(x)
(x − y)ν

|x − y|3 b2
ρ(y) − m

)
δ
(
∇ · ci

)

×
2∏

j=1

δ
(
∇ · bj (x)

) 2∏
i=1

[∫
Dr i (s)e

− ∫ L
0 ds

[
3

2a
ṙ2
i (s)−iṙ i (s)·ci (r i (s))

]]
(12)

We remark that the new fields c1 and c2 are true vector fields and not magnetic field densities. 
The partition function of Eq. (12) is invariant under the gauge transformations ci (x) −→ ci (x) +
∇ϕi(x). As a matter of fact, the fields ci (x) are appearing either in the scalar product with the 
purely transverse fields bi (x) or in loops over closed paths. This invariance has been fixed using 
the pure Lorentz gauge. The gauge fixing terms in this case consist of the product of functional 
delta functions 

∏2
i=1 δ

(∇ · ci (x)
)
. The summations over r1(s) and r2(s) may be transformed

into path integrals over replica fields using the formula (see Appendix A and [8,34] for its proof):∫
Dr i (s)e

− ∫ L
0 dsL(ṙ i (s),r i (s),c

i ) = lim
ni→0

[
ni∏

a=1

∫
Dψ∗

i,aDψi,a

]
|ψi,1(ri,0,0)|2

× exp

⎧⎨
⎩−

ni∑
a=1

∫
d3x

L∫
0

dt

[
ψ∗

i,a

(
∂

∂t
− a

6
(∇ − ici )2 − iηi(x)

)
ψi,a

]⎫⎬
⎭ (13)

where

L(ṙ i (s), r i (s), c
i ) = 3

2a
ṙ2

i (s) + iṙ i (s) · ci (r i (s)) + iη(r i (s)) (14)

The fields ψ∗
i,1(x, t), . . . , ψ∗

i,ni
(x, t) and ψi,1(x, t), . . . , ψi,ni

(x, t) are ni−tuples of replica com-
plex scalar fields, while the ηi(x)’s represent real scalar fields. For the moment, we will assume 
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that ηi(x) = 0. With the help of Eq. (13) the partition function Z[m] of Eq. (12) may be rewritten 
as follows:

Z[m] = lim
n1,n2→0

∫
D(fields)δ

(
1

4π

∫
d3x

∫
d3yεμνρb1

μ(x)
(x − y)ν

|x − y|3 b2
ρ(y) − m

)

×
2∏

i=1

[
δ
(
∇ · bi

)
δ
(
∇ · ci

)
|ψi,1(ri,0,0)|2

]
e
−i

∑2
i=1

∫
d3x

(
ci (x)·bi (x)

)

× exp

⎧⎨
⎩−

2∑
i=1

ni∑
ai=1

∫
d3x

L∫
0

dt

[
ψ∗

i,ai

(
∂

∂t
− a

6
(∇ − ici )2

)
ψi,ai

]⎫⎬
⎭ (15)

with

∫
D(fields) =

∫ 2∏
i=1

Dbi (x)Dci (x)

ni∏
ai=1

Dψ∗
i,ai

(x, t)Dψi,ai
(x, t) (16)

Instead of dealing with the magnetic flux densities bi (x), it will be more convenient to introduce 
the new vector fields a1, a2 performing the field transformation:

bi (x) = ∇ × ai (x) i = 1,2 (17)

The fields ai are not vector field densities. The Jacobian of the transformation (17) is a trivial 
constant. After performing the above change of variables, the functional delta function imposing 
the topological constraints in (15) can be simplified using the identity:

1

4π

∫
d3x

∫
d3yεμνρb1

μ(x)
(x − y)ν

|x − y|3 b2
ρ(y) =

∫
d3xεμνρa1

μ(x)∂νa
2
ρ(x) (18)

To derive Eq. (18) we have used the formula below:

1

4π
εμνρ∂νερστ

(x − y)τ

|x − y|3 =
(

δμ
σ − ∂σ ∂μ

∂2

)
δ(x − y) (19)

In terms of the new degrees of freedom ai , the partition function (15) describes a model in which 
the interactions due to the topological constraints are propagated by a set of abelian BF fields:

Z[m] = lim
n1,n2→0

∫
D(fields)δ

(
1

4π

∫
d3xεμνρa1

μ∂νa
2
ρ − m

)
e−S2

× |ψ1,1(r1,0,0)|2|ψ2,1(r2,0,0)|2
2∏

i=1

δ
(
∇ · ai (x)

)
δ
(
∇ · ci (x)

)
(20)

with

S2 = i

2∑
i=1

∫
d3xεμνρci

μ∂νa
i
ρ

+
2∑

i=1

ni∑
a =1

∫
d3x

L∫
dt

[
ψ∗

i,ai

∂

∂t
ψi,ai

+ a

6

∣∣∣(∇ − ici
)

ψi,ai

∣∣∣2] (21)

i 0
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and

∫
D(fields) =

∫ 2∏
i=1

Dai (x)Dci (x)

ni∏
ai=1

∫
Dψ∗

i,a1
(x, t)Dψi,ai

(x, t) (22)

This is the desired result. As it is possible to see, the topological constraint (2) imposed on the 
conformations of the fluctuating loops C1 and C2 has been replaced in the final polymer partition 
function by the condition:∫

d3xa1 · b2 = m (23)

The quantity in the left hand side of Eq. (23) is called the cross-helicity of the magnetic fluxes 
b1(x) = ∇ × a1(x) and b2(x). The cross-helicity is a topological invariant widely applied in 
solar magnetohydrodynamics [40].

2.1. The Laplace transformed partition function

An alternative expression of the partition function of two linked polymer rings can be derived 
by performing a double Laplace transform of the partition function (3) with respect to the lengths 
of the loops. Taking the Laplace transform of the partition function Z[m] of Eq. (12) with the 
help of formulas (A.11)–(A.13) in Appendix A, we obtain the partition function Z̃[m] in the 
Laplace space:

Z̃[m] = lim
n1,n2→0

lim
ε1,ε2→0

∫
D(fields)δ

(
1

4π

∫
d3xεμνρa1

μ∂νa
2
ρ − m

)
e−S̃2

× |ψ1,1(r1,0)|2|ψ2,1(r2,0)|2
2∏

i=1

δ
(
∇ · ai (x)

)
δ
(
∇ · ci (x)

)
(24)

where

S̃2 = i

2∑
i=1

∫
d3xεμνρci

μ∂νa
i
ρ

+ i

2∑
i=1

ni∑
ai=1

∫
d3xψ∗

i,ai

[
(zi + iεi) + a

6

(
∇ − ici

)2
]

ψi,ai
(25)

and

∫
D(fields) =

∫ 2∏
i=1

Dai (x)Dci (x)

ni∏
ai=1

∫
Dψ∗

i,a1
(x)Dψi,ai

(x) (26)

2.2. Equivalence with the previous model of Ref. [7]

In this Section the equivalence of the field partition function in Eq. (20) with that of the model 
derived in Ref. [7] will be shown. To this purpose we go back to Eq. (15) and express the Dirac 
delta function imposing the topological constraint using its Fourier representation:
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Z[m] = lim
n1,n2→0

+∞∫
−∞

dλeiλm

∫
D(fields)e

−i
∑2

i=1
∫

d3x
(
ci (x)·bi (x)

)

×
2∏

i=1

δ
(
∇ · bi (x)

)
δ
(
∇ · ci (x)

)
|ψi,1(ri,0,0)|2

× exp

{
− iλ

4π

∫
d3x

∫
d3yεμνρb1

μ(x)
(x − y)ν

|x − y|3 b2
ρ(y)

}

× exp

⎧⎨
⎩−

n1∑
a=1

∫
d3x

L∫
0

dt

[
ψ∗

1,a

(
∂

∂t
− a

6
(∇ − ic1)2

)
ψ1,a

]⎫⎬
⎭

× exp

⎧⎨
⎩−

n2∑
b=1

∫
d3x

L∫
0

dt

[
ψ∗

2,b

(
∂

∂t
− a

6
(∇ − ic2)2

)
ψ2,b

]⎫⎬
⎭ (27)

In this new form it turns out that one of the fields b1, b2 may be interpreted as a Lagrange 
multiplier. For example, the integration over b2 produces in Eq. (27) a functional delta function 
enforcing the condition:

c2μ(x) + εστμ λ

4π

∫
d3yb1

σ (y)
(x − y)τ

|x − y|3 = 0 (28)

Thus, after integrating over b2, the partition function (27) becomes:

Z[m] = lim
n1,n2→0

+∞∫
−∞

dλeiλm

∫
D(fields)′e−i

∫
d3x

(
c1(x)·b1(x)

) 2∏
i=1

|ψi,1(ri,0,0)|2

× δ

(
c2μ(x) + λ

4π

∫
d3yεστμb1

σ (y)
(x − y)τ

|x − y|3
)

δ
(
∇ · b1

) 2∏
i=1

δ
(
∇ · ci

)

× exp

⎧⎨
⎩−

n1∑
a=1

∫
d3x

L∫
0

dt

[
ψ∗

1,a

(
∂

∂t
− a

6
(∇ − ic1)2

)
ψ1,a

]⎫⎬
⎭

× exp

⎧⎨
⎩−

n2∑
b=1

∫
d3x

L∫
0

dt

[
ψ∗

2,b

(
∂

∂t
− a

6
(∇ − ic2)2

)
ψ2,b

]⎫⎬
⎭ (29)

where, with respect to the measure D(fields) in Eq. (22), in D(fields)′ the sum over the field 
b2(x) is missing. At this point we perform the substitutions:

b1
σ (x) = εσρκ∂ρB1κ(x) c1

μ(x) = B2
μ(x) (30)

B2
μ(x) being a completely transversee vector field. In this way, the constraint (28) simplifies to:

c2
μ(x) = λB1

μ(x) (31)

and the partition function Z[m] of Eq. (29) reduces to:
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Z[m] = lim
n1,n2→0

+∞∫
−∞

dλeiλm

∫
D(fields)′′e−iεμνρ

∫
d3xB2

μ∂νB1
ρ

×
2∏

i=1

δ
(
∇ · B i (x)

)
|ψ1,1(r1,0,0)|2|ψ2,1(r2,0,0)|2

× exp

⎧⎨
⎩−

n1∑
a=1

∫
d3x

L∫
0

dt

[
ψ∗

1,a

(
∂

∂t
− a

6
(∇ − iλB2)2

)
ψ1,a

]⎫⎬
⎭

× exp

⎧⎨
⎩−

n2∑
b=1

∫
d3x

L∫
0

dt

[
ψ∗

2,b

(
∂

∂t
− a

6
(∇ − iλB1)2

)
ψ2,b

]⎫⎬
⎭ (32)

with

D(fields)′′ =DB1(x)DB2(x)

2∏
i=1

ni∏
ai=1

Dψ∗
i,ai

(x, t)Dψi,ai
(x, t) (33)

The above partition function coincides with that of the model derived in [7].

2.3. Statistical mechanical interpretation of the derivation of Eq. (32)

First, we note that the partition function (20) can be regarded as a statistical sum in the micro-
canonical ensemble where the energy has been replaced by the cross-helicity. Indeed, we may 
rewrite Eq. (20) in schematic form as follows:

Z[m] =
∫

DXDYδ (H(X) − m) exp {−iX · Y + S(Y )} (34)

where X represents a generic configuration of the fields a1(x) and a2(x), Y denotes the 
configurations of the remaining fields and H(X) is the cross-helicity. Moreover X · Y =∑2

i=1 εμνρ
∫

d3xai
μ∂νc

i
ρ and S(Y ) contains all the contributions of the fields ci (x), ψ∗

i,ai
(x, t)

and ψi,ai
(x, t). In order to pass to the canonical partition function, we introduce the fictitious 

thermodynamic temperature λ−1 and sum Z[m] over all possible values of the energy levels m:

Z[λ] =
+∞∫

−∞
e−i m

λ Z[m]dm (35)

The results of the integration over m is:

Z[λ] =
∫

DXDYe−i
H(X)

λ exp {−iX · Y + S(Y )} (36)

Z[λ] can be considered as the canonical partition function. The only difference in the passage 
from the microcanonical ensemble to the canonical one is dictated by the fact that in the present 
case the energy is replaced by the cross-helicity. In statistical mechanics the energy is supposed 
to be bounded from below. The cross-helicity instead can take arbitrary negative values. For this 
reason in Eq. (35) Z[λ] is obtained from Z[m] via a Fourier transformation and not via a Laplace 
transform.
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In Eq. (36) the integration over the X degrees of freedom, i.e. the fields a1(x) and a2(x), 
becomes straightforward. The result of this integration is the partition function of Eq. (32). It is 
thus possible to say that the model of linked two polymers obtained here, see Eq. (20) and that 
of Ref. [7] are the same partition function represented in two different statistical ensembles.

2.4. Solving the constraint 1
4π

∫
d3xεμνρa1

μ∂νa
2
ρ = m

As we have seen, the field theory version of the constraint (2) is a condition on the cross-
helicity of the fields ai (x), i = 1, 2:

1

4π

∫
d3xεμνρa1

μ∂νa
2
ρ = m (37)

In order to find the solution of the above equation, we consider two non-fluctuating (i.e. static) 
loops C̄1 and C̄2 that are concatenated in such a way that the link formed by them has Gauss 
linking number equal to m:

χ(C̄1, C̄2) = εμνρ

∮
C̄1

dx
μ
1

4π

∮
C̄2

dxν
2
(x2 − x1)

ρ

|x2 − x1| = m (38)

Next, we rewrite the above equation in a field theory form:∫
d3x

4π
εμνρA1

μ∂νA
2
ρ = m (39)

Indeed, choosing the configurations of the classical fields A1(x), A2(x) as follows:

A1 μ(x) =
∮
C̄1

dx
μ
1 δ(x − x1) and A2 μ(x) =

∮
C̄2

dx
μ
2

|x − x2| (40)

it is easy to show that:

εμνρ

∮
C̄1

dx
μ
1

4π

∮
C̄2

dxν
2
(x2 − x1)

ρ

|x2 − x1| =
∫

d3x

4π
εμνρA1

μ∂νA
2
ρ (41)

Eq. (40) provides the solutions A1(x), A2(x) of the field theoretical version of the topological 
constraint given in Eq. (37).

Performing in the partition function (20) the change of variables:

ai (x) = Ai (x) + δai (x) (42)

where δai (x) is a small perturbation of the static field configurations Ai (x), it is possible to 
study the fluctuations around the fixed conformations C̄1 and C̄2 of two polymer rings forming a 
given link with Gauss linking number equal to m.

3. The case of a higher order link invariant

In this Section the previous strategy to build field theory models of linked polymer rings will 
be generalized to higher order numerical topological invariants. In particular, it will be considered 
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the following invariant which takes into account of the topological relations between three rings 
C1, C2, C3:

τ3(C1,C2,C3) =
∫

d3xεijkε
μνρBi

μ(x)Bj
ν (y)Bk

ρ(z) (43)

where

Bi
μ(x) = εμστ

4π

∮
Ci

drσ
i

(x − ri)
τ

|x − r i |3 (44)

In the above equation the indices i, j, k = 1, 2, 3 number the loops C1, C2, C3. τ3(C1, C2, C3) is 
a special case of a class of invariants due to Massey. It has already been proposed to distinguish 
the topological states of the solar magnetic field [40] and of a system of linked polymers [20,
21]. It has been shown in [21] that the expression of τ3(C1, C2, C3) may be isolated from the 
amplitudes of a Chern-Simons field theory with non semi-simple group of gauge symmetry. As 
in the case of the Gauss linking number, we rewrite τ3(C1, C2, C3) using magnetic flux densities 
b1, b2 and b3:

τ3(b
1,b2,b3) = εijk

∫
d3xd3yd3zbi

κ1
(x)bj

η1
(y)bk

λ1
(z)I κ1η1λ1(x,y,z) (45)

with

I κ1η1λ1(x,y,z) =
∫

d3ωεμνρεμκ1κ2ενη1η2ερλ1λ2
(ω − x)κ2

|ω − x|3
(ω − y)η2

|ω − y|3
(ω − z)λ2

|ω − z|3 (46)

It is easy to check that the relation

τ3(C1,C2,C3) = τ3(b
1,b2,b3) (47)

is valid provided:

bi (x) =
L∫

0

dsṙ i (s)δ(x − r i (s)) (48)

In the following we will consider the amplitude of an observable O of the general form:

O =
3∑

i,j,k=1

L∫
0

dsi

L∫
0

ds′
j

L∮
0

ds′′
k f (r i (si), rj (s

′
j ), rk(s

′′
k ))Aijk (49)

The Aijk’s, i = 1, 2, 3, are constant coefficients. Similarly to what has been done in the case of the 
Gauss linking number, we eliminate the contour integrations over C1, C2, C3 in the observable 
introducing fields. In the present case it is possible to rewrite the expression of O using a set of 
scalar fields φ1, φ2, φ3 such that:

φi(x) =
L∫

0

dsiδ(x − r i (si)) (50)

The form of O in terms of the fields φ′s is:
i
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O =
3∑

i,j,k=1

∫
d3xd3yd3zf (x,y,z)φi(x)φj (y)φk(z)A

ijk (51)

We are now ready to consider the expectation value 〈O〉 for a system of three polymer rings 
whose fluctuations are constrained by the condition τ3(C1, C2, C3) = m:

〈O〉 =
3∏

i=1

[∫
Dr i (s)Dbi (x)Dφi(x)

]
δ
(
τ3(b

1,b2,b3) − m
)

×
⎛
⎝ 3∑

i,j,k=1

∫
d3xd3yd3zf (x,y,z)φi(x)φj (y)φk(z)A

ijk

⎞
⎠

×
3∏

i=1

⎡
⎣δ

⎛
⎝φi(x) −

L∫
0

dsδ(x − r i (s))

⎞
⎠
⎤
⎦ 3∏

i=1

[
δ
(
∇ · bi (x)

)]

×
3∏

i=1

⎡
⎣δ

⎛
⎝bi (x) −

L∫
0

dsṙ i (s)δ(x − r i (s))

⎞
⎠
⎤
⎦ e

−S3
pol (52)

The definition of S3
pol has been provided in Eq. (4). To pass to the Fourier representation of the 

functional Dirac delta functions in the last two lines of Eq. (52), we introduce the new fields 
ηi(x) and ci (x). They are respectively the Fourier conjugate fields of φi(x) and bi (x). As an 
upshot, it is possible to rewrite Eq. (52) as follows:

〈O〉 =
3∏

i=1

[∫
Dbi (x)ci (x)Dφi(x)Dηi(x)

]
δ
(
τ3(b

1,b2,b3) − m
)

×
⎛
⎝ 3∑

i,j,k=1

∫
d3xd3yd3zf (x,y,z)φi(x)φj (y)φk(z)A

ijk

⎞
⎠

×
[

3∏
i=1

δ
(
∇ · bi

)][ 3∏
i=1

δ
(
∇ · ci

)]

× exp

{
−i

3∑
i=1

∫
d3x

(
φi(x)ηi(x) + ci (x) · bi (x)

)}
Z
[
ηi, c

i
]

(53)

where

Z
[
ηi, c

i
]

=
3∏

i=1

∫
Dr i (s) exp

⎧⎨
⎩−

L∫
0

ds

[
3

2a
ṙ2

i (s) − iṙ i(s) · ci (r i (s)) − iηi(r i (s))

]⎫⎬
⎭ (54)

The integrations over the polymer conformations ri (s) can be performed using Eq. (13). The 
result is that 〈O〉 is mapped into the amplitude of a local field theory:
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〈O〉 = lim
n1,n2,n3→0

3∏
i=1

⎡
⎣∫ Dbi (x)ci (x)Dφi(x)Dηi(x)

ni∏
ai=1

[
Dψ∗

i,ai
(x, t)Dψi,ai

(x, t)
]⎤⎦

×
⎛
⎝ 3∑

i,j,k=1

∫
d3xd3yd3zf (x,y,z)φi(x)φj (y)φk(z)A

ijk

⎞
⎠ δ

(
τ3(b

1,b2,b3) − m
)

× exp

{
−i

3∑
i=1

∫
d3x

(
φi(x)ηi(x) + ci (x) · bi (x)

)}

× exp

⎧⎨
⎩−

3∑
i=1

ni∑
ai=1

∫
d3x

L∫
0

dtψ∗
i,ai

[
∂

∂t
− a

6

(
∇ − ici

)2 − iηi(x)

]
ψi,ai

⎫⎬
⎭

×
3∏

i=1

|ψi,1(r i,0,0)|2δ
(
∇ · bi (x)

)
δ
(
∇ · ci (x)

)
(55)

The fields ηi(x) are Lagrange multipliers. The integration over these degree of freedom results 
in the appearance in the right hand side of Eq. (55) of a functional Dirac delta functions imposing 
the conditions:

φi(x) =
ni∑

ai=1

L∫
0

dt |ψi,ai
(x, t)|2 i = 1,2,3 (56)

As a consequence, after the summation over the fields φi(x) and ηi(x) we obtain as a result:

〈O〉 = lim
n1,n2,n3→0

3∏
i=1

⎡
⎣∫ Dbi (x)ci (x)

ni∏
ai=1

[
Dψ∗

i,ai
(x, t)Dψi,ai

(x, t)
]⎤⎦

×
⎛
⎝ 3∑

i,j,k=1

Aijk

∫
d3xd3yd3zf (x,y,z)

ni∑
ai=1

L∫
0

dt |ψi,ai
(x, t)|2

×
nj∑

aj =1

L∫
0

dt ′|ψj,aj
(y, t ′)|2

nk∑
ak=1

L∫
0

dt ′′|ψk,ak
(z, t ′′)|2

⎞
⎠

× δ
(
τ3(b

1,b2,b3) − m
) 3∏

i=1

|ψi,1(r i,0,0)|2
[

3∏
i=1

δ
(
∇ · bi

)
δ
(
∇ · ci

)]

× exp

{
−i

3∑
i=1

∫
d3xci (x) · bi (x)

}

× exp

⎧⎨
⎩−

3∑
i=1

ni∑
ai=1

∫
d3x

L∫
0

dtψ∗
i,ai

[
∂

∂t
− a

6

(
∇ − ici

)2
]

ψi,ai

⎫⎬
⎭ (57)

Finally, we perform the field transformations:
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bi (x) = ∇ × ai (x) i = 1,2,3 (58)

The Jacobian of this transformation is a trivial constant. We require also that the fields ai (x) are 
quantized in the pure Lorentz gauge in which:

∇ · ai (x) = 0 i = 1,2,3 (59)

After a straightforward calculation it is possible to check that in terms of the new fields ai (x) the 
expectation value of the observable O takes the following form:

〈O〉 = lim
n1,n2,n3→0

3∏
i=1

⎡
⎣∫ Dai (x)ci (x)

ni∏
ai=1

[
Dψ∗

i,ai
(x, t)Dψi,ai

(x, t)
]⎤⎦ e−S3

× δ
(
τ3(a

1,a2,a3) − m
)[ 3∏

i=1

δ
(
∇ · ci (x)

)
δ
(
∇ · ai (x)

)]

×
⎛
⎝ 3∑

i,j,k=1

Aijk

∫
d3xd3yd3zf (x,y,z)

⎛
⎝ ni∑

ai=1

L∫
0

dt |ψi,ai
(x, t)|2

⎞
⎠

×
⎛
⎝ nj∑

aj =1

L∫
0

dt ′|ψj,aj
(y, t ′)|2

⎞
⎠
⎛
⎝ nk∑

ak=1

L∫
0

dt ′′|ψk,ak
(z, t ′′)|2

⎞
⎠
⎞
⎠

×
3∏

i=1

|ψi,1(r i,0,0)|2 (60)

where

S3 = i

3∑
i=1

∫
d3xεμνρci

μ∂νa
i
ρ

+
3∑

i=1

ni∑
ai=1

∫
d3x

L∫
0

dtψ∗
i,ai

[
∂

∂t
− a

6

(
∇ − ici

)2
]

ψi,ai
(61)

and

τ3(a
1,a2,a3) =

∫
d3ωεijkε

μνρai
μ(ω)aj

ν (ω)ak
ρ(ω) (62)

4. The moments of the Gauss linking number as amplitudes of a free field theory

The starting point of this Section is the partition function Z̃[m] of Eq. (24). In the action S̃2
of Eq. (25) we isolate the contributions that are linear and quadratic in ci :

S̃2 = i

2∑
i=1

∫
d3xci

μ

{
εμνρ∂νa

i
ρ −

ni∑
ai=1

a

6

[
i
(
ψ∗

i,ai
∂μψi,ai

− ∂μψ∗
i,ai

ψi,ai

)

+ ci,μ|ψ2
i,ai

|
}

+ i

2∑ ni∑[
(zi + iεi)|ψi,ai

|2 − a

6
|∇ψi,ai

|2
]

(63)

i=1 ai=1
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At this point we put

J
μ
i = −

ni∑
ai=1

a

6

[
i
(
ψ∗

i,ai
∂μψi,ai

− ∂μψ∗
i,ai

ψi,ai

)+ ci,μ|ψi,ai
|2
]
⊥ (64)

so that Eq. (63) becomes:

S̃2 = i

2∑
i=1

∫
d3xci

μ

{
εμνρ∂νa

i
ρ + J

μ
i

}

+ i

2∑
i=1

ni∑
ai=1

[
(zi + iεi)|ψi,ai

|2 − a

6
|∇ψi,ai

|2
]

(65)

We note that the ci fields are completely transverse vector fields, so that only the transverse 
part of J i is selected when computing 

∫
d3xci

μJ
μ
i . For that reason in Eq. (64) only the purely 

transverse components of the currents J i are to be chosen, as it is stressed by the presence of the 
subscript ⊥ in the right hand side of Eq. (64). The solutions ai(cl)

ρ (x) of the equations:

εμνρ∂νa
i
ρ = −J

μ
i i = 1,2 (66)

are:

ai(cl)
ρ (x) = 1

4π
ερστ

∫
d3y

(x − y)τ

|x − y|3 J σ
i (x) (67)

It is easy to show that in Eq. (67) only the purely transverse components of the currents J σ
i (x)

are present. Indeed, for any longitudinal vector field ∂σφ(y) the following identity holds:∫
d3yερστ

(x − y)τ

|x − y|3 ∂σ φ(y) = 0 (68)

As a consequence, from now on the subscript ⊥ in the expression of the currents Jμ
i (x) of 

Eq. (64) will be dropped. Performing in Eq. (65) the shift:

ai
ρ(x) = ai′

ρ (x) − ai(cl)
ρ (x) (69)

we may rewrite the partition function Z̃[m] of Eq. (24) as follows:

Z̃[m] = lim
n1,n2→0

lim
ε1,ε2→0

∫ 2∏
i=1

⎡
⎣Dai′(x)Dci (x)

ni∏
ai=1

(∫
Dψ∗

i,a1
(x)Dψi,ai

(x)

)⎤⎦
× δ

(
1

4π

∫
d3xεμνρ

(
a1′
μ − a1(cl)

μ

)
∂ν

(
a2′
ρ − a2(cl)

ρ

)
− m

)
e−S̃′

2

×
2∏

i=1

|ψi,1(ri,0)|2|δ
(
∇ · ai′(x)

)
δ
(
∇ · ci (x)

)
(70)

where
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S̃′
2 = i

2∑
i=1

∫
d3xεμνρci

μ∂νa
i′
ρ

+ i

2∑
i=1

ni∑
ai=1

∫
d3x

[
(zi + iεi) |ψi,ai

|2 − a

6
|∇ψi,ai

|2
]

(71)

In order to obtain Eqs. (70) and (71) we have used the fact that the integration measure of the 
ai fields is left invariant by the field transformations (69). Moreover, since ∇ · ai(cl) = 0, the 
transversality condition of the fields ai (x) imposed with the help of Dirac delta functions in 
Eq. (24), applies also to the fields ai′(x).

In the action (71) the ci (x) fields are Lagrange multipliers enforcing the condition:

εμνρ∂νa
i′
ρ (x) = 0 (72)

Together with the transversality requirement ∇ · ai′(x) = 0, this implies that the fields ai′(x)

may be easily integrated out in the partition function of Eq. (70). As a result of this integration 
the fields ai′(x) can be set everywhere to be equal to zero. The final expression of the partition 
function Z̃[m] becomes:

Z̃[m] = lim
n1,n2→0

lim
ε1,ε2→0

∫ 2∏
i=1

ni∏
ai=1

(∫
Dψ∗

i,a1
(x)Dψi,ai

(x)

)

× δ

(
1

4π

∫
d3xεμνρa1(cl)

μ ∂νa
2(cl)
ρ − m

) 2∏
i=1

|ψi,1(ri,0)|2|e−S̃′′
2 (73)

with

S̃′′
2 = i

2∑
i=1

ni∑
ai=1

∫
d3x

[
(zi + iεi) |ψi,ai

|2 − a

6
|∇ψi,ai

|2
]

(74)

Note that, while the action S′′
2 contains only the fields ψ∗

i,ai
, ψi,ai

and there are only quadratic 
terms with no coupling, Eq. (73) does not represent the partition function of a free model. As 
a matter of fact, the fields ψ∗

i,ai
, ψi,ai

interact via the Dirac delta function that enforce the con-
straint:

1

4π

∫
d3xεμνρa1(cl)

μ ∂νa
2(cl)
ρ = m (75)

This interaction becomes evident after passing to the Fourier representation of the delta function:

δ

(
1

4π

∫
d3xεμνρa1(cl)

μ ∂νa
2(cl)
ρ − m

)
=

+∞∫
−∞

dλe
−iλ

[
1

4π

∫
d3xεμνρa

1(cl)
μ ∂νa

2(cl)
ρ −m

]
(76)

Looking at the expression of the fields ai(cl)
μ given by Eqs. (64) and (67), it is easy to realize 

that the exponent in the right hand side of the above equation contains quartic interactions of the 
fields ψ∗

i,ai
, ψi,ai

.

Even if the partition function Z̃[m] of Eqs. (73) and (74) is not free, it is still possible to 
compute exactly the momenta 〈mk〉, k = 1, 2, . . . of the Gauss linking number:
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〈mk〉 =
+∞∫

−∞
dm mkZ̃[m] (77)

Indeed, after performing the easy integration over m, we obtain:

〈mk〉 = lim
n1,n2→0

lim
ε1,ε2→0

∫ 2∏
i=1

ni∏
ai=1

(∫
Dψ∗

i,a1
(x)Dψi,ai

(x)

)

×
(

1

4π

∫
d3xεμνρa1(cl)

μ ∂νa
2(cl)
ρ

)k 2∏
i=1

|ψi,1(ri,0)|2|e−S̃′′
2 (78)

where the fields ai(cl)
μ (x) and the action S′′

2 are provided respectively by Eqs. (67) and (74).

5. Conclusions

One of the advantages of the mapping of the polymer problem to field theories is that the 
partition function of the system and the expectation values of its observables become drastically 
simpler. This simplification is well known in polymer physics starting from the pioneering works 
of Edwards and de Gennes [8,41,42] and is particularly helpful in the presence of topological re-
lations. As a matter of fact, the statistical sum over the polymer paths is intrinsically complicated 
due to the mathematical complexity of the topological invariants which consist of functionals that 
are both non-polynomial and non-local in the position vectors r1(s), . . . , rN(s). The examples 
worked out so far [7,21,20,16], show indeed that the partition function of topological constrained 
polymers can be expressed via local and polynomial field theories. Despite these progresses, a 
full formulation of the statistical mechanics of polymers in terms of field theoretical models has 
stumbled against the difficulties arising when attempting to fix the topological constraints with 
sophisticated topological invariants.

The strategy proposed here to overcome these difficulties is an algorithm to construct field 
theoretical models that is valid for any numerical topological invariant τN(C1, . . . , CN) describ-
ing the topological states of N loops C1, . . . , CN and with no path ordering. For the first time it 
has also been possible to include the averages of observables given in the form of Eq. (49). The 
algorithm consists of three simple steps:

1. Substitute in τN(C1, . . . , CN) all the occurrences of the contour integrals 
∮
Ci

dr i (· · ·) over 
the loops C1, . . . , CN with volume integrals as follows:∮

Ci

dr i (s)(· · ·) −→
∫

d3xbi (x)(· · ·) (79)

where bi (x) is a magnetic flux density such that:

bi (x) =
∮
Ci

dr i (s)δ(x − r i (s)) (80)

In the integrand (· · ·) the position vector r i (s) should be replaced by the space coordinate 
x. After these substitutions the topological invariant τN(C1, . . . , CN) does no longer depend 



20 F. Ferrari / Nuclear Physics B 948 (2019) 114778
on the loop paths C1, . . . , CN and a new quantity τN(b1, . . . , bN) is obtained. The con-
straints (80) ensure that τN(C1, . . . , CN) = τN(b1, . . . , bN). Examples of this procedure are 
Eqs. (5)–(8) in the case of the Gauss linking number and Eqs. (45)–(48) in the case of the 
Massey invariant (43).

2. In the partition function of the system:

Z[m] =
∫

Dr1 . . .DrNe
∑N

i=1
3

2a
ṙ2
i (s)δ(τN(C1, . . . ,CN) − m) (81)

substitute τN(C1, . . . , CN) with τN(b1, . . . , bN). Impose the constraints (80) on the fields 
bi (x) using functional Dirac delta functions:

Z[m] =
∫

Dr1 . . .DrN

∫
Db1 . . .DbNe

∑N
i=1

3
2a

ṙ2
i (s)δ(τN(C1, . . . ,CN) − m)

×
N∏

i=1

δ

⎛
⎜⎝bi (x) −

∮
Ci

dr i (s)δ(x − r i (s))

⎞
⎟⎠ (82)

In the above equation the dependence on the position vectors ri (s) is concentrated in the 
polymer action and in the functional delta functions. Rewriting the latter using the Fourier 
representation, the polymer action factorizes into N independent actions describing the fluc-
tuations of a single polymer loop immersed in a magnetic field.

3. Apply Eq. (13) or alternatively Eq. (A.13) in order to eliminate the integrations over the 
polymer paths and to pass to a local and polynomial field theory.

The averages 〈O〉 of general observables O require an additional recipe:

1-bis) In the expression of an observable O describing the properties of n loops substitute the 
integrals over the arc-lengths of the i−th loop 

∫ L

0 dsi(· · ·) with the volume integrals ∫
d3xφi(x)(· · ·), where the fields φi(x) for i = 1, . . . , n satisfy the conditions:

φi(x) =
L∫

0

dsiδ(x − r i (si)) (83)

Implement these conditions in 〈O〉 by inserting in the related path integral functional 
Dirac delta functions. Similarly as in step 2), also in the present case it is possible to 
split the integrations over the paths ri (s) into N path integrals in which the sum over 
these paths can be performed separately using the formulas in Eq. (13) or (A.13). The 
fields φi(x) may be easily integrated out and the computation of 〈O〉 becomes equivalent 
to the evaluation of an amplitude of a local and polynomial complex scalar field theory 
interacting with topological fields.

The above algorithm has been worked out in full details in the case of two different linking in-
variants, the Gauss linking number of Eq. (1) and the Massey invariant of Eq. (43). The final field 
theoretical models are respectively given in Eq. (20) and (60). The initial conditions on the fluc-
tuations of the polymer paths transform into new conditions imposed on the field configurations. 
As a consequence, the connection with the original topological constraints is not lost after the 
mapping from polymer paths to fields as it happens in the abelian BF theory coupled to replica 
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scalar fields of Ref. [7]. For instance, in the partition function (20) a constraint is imposed on the 
cross-helicity of the magnetic fields b1 and b2, see Eq. (23). In Eq. (60) the third-order topologi-
cal invariant (62) restricts the fluxes of the fields a1, a2, a3. Both these invariants are of interest 
not only for polymer physics, but also for hydrodynamic studies of the solar magnetosphere 
[38–40]. The Gauss linking number and the triple link invariant τ3(C1, C2, C3) of Eq. (43) are 
just a few examples of topological invariants that can be included in modeling polymer systems 
with the approach discussed in this paper. By applying the same approach to more complicated 
invariants it will be possible to extract further topological relations between fields. Such relations 
could be relevant in the investigations of different systems in which the behavior of long and thin 
filaments is influenced by topology.

Let us note that the number of abelian Chern-Simons fields needed using the prescriptions 
1)–3) and 1-bis) in order to take into account the topological constraints imposed by an N−th-
order invariant τN(C1, . . . , CN) scales as 2N . This is an important simplification with respect 
to Ref. [21], in which six non-Abelian Chern-Simon fields are necessary in order to reproduce 
the exponent e−iλτ3(C1,C2,C3), where τ3(C1, C2, C3) is the Massey type invariant of Eq. (43). 
Moreover, in the present approach the introduction of non-local gauge invariant and metric inde-
pendent operators like those of Ref. [21] is not required. Only in the case of the Gauss linking 
number the partition function (20) contains an excess of abelian topological fields with respect 
to the previous model of Ref. [7]. However, we have seen in Subsection 2.2 that the number of 
fields can be reduced to two at the price of having to deal with the Fourier parameter λ. In gen-
eral, the passage from the fixed value m of the applied numerical invariant to its Fourier conjugate 
variable λ is always possible and is actually helpful in order to get rid of the presence of cum-
bersome Dirac delta functions. The disadvantage of that procedure is that the Fourier parameter 
λ takes values over the whole real line, so that many approximation schemes cannot be applied. 
Moreover, after any calculation there is the additional difficulty of performing the inverse Fourier 
transform of the obtained result.

To check the compatibility of the models built following the prescriptions 1)–3) and 1-bis) 
listed above, in Subsection 2.2 the partition function of two linked polymers derived in Ref. [7]
has been recovered starting from the partition function (20). We have also shown that the theories 
of topologically entangled polymer rings obtained here provide several advantages with respect 
to the previous ones. For instance, they allow a very efficient calculation of the moments 〈mk〉 of 
the underlying topological invariants. In Section 4 the expression of 〈mk〉 has been reduced in the 
case of the Gauss linking number to the amplitude of a free field theory that may be computed in 
closed form. So far only an approximated expression of the second topological moment 〈m2〉 was 
available [16]. Another important advance is the possibility of mapping the averages of general 
observables into the expectation values of fields. An example is the average 〈O〉 for the wide 
class of observables O given in Eq. (49).

Despite the progress represented by the approach discussed in this work with respect to pre-
vious analogous methods used to construct analytic and microscopic models of topologically 
entangled polymer matter, there are still open problems and several future developments are pos-
sible. First of all, we have seen that the calculation of the moments of the topological invariants 
has become much easier and, at least in the case of the Gauss linking number, it can be reduced 
to the evaluation of the amplitude of a free field theory. The extension of this result to more 
complicated invariants is still missing, but it should be straightforward. A tougher challenge is 
certainly provided by the computability of the averages of general observables O. Thanks to the 
new algorithm proposed here, now these averages can be expressed in the form of amplitudes 
of replica scalar fields coupled to abelian topological fields. However difficulties in their explicit 
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evaluation could be expected due to the presence of a Dirac delta function in the expectation 
value 〈O〉. There are only a few techniques that have been developed in order to cope with the-
ories containing delta functions, see e.g. Refs. [43–45]. A perturbative approach should also be 
possible. The basis for a potential perturbative treatment are the classical solutions of Eq. (40)
for the fields ai (x) derived in Subsection 2.4. In this way small fluctuations of the polymer rings 
around a fixed link conformation satisfying the condition (37) could be investigated. Unfortu-
nately, the equations that determine the classical configurations of the replica complex fields and 
the other couple of topological fields ci (x) are too complicated to be solved in closed form. In 
conclusion, it is very likely that new, more powerful methods and approximations will be needed 
in order to calculate amplitudes such as that in Eq. (60). Finally, the algorithm 1)...3) together 
with step 1-bis) is valid only for numerical topological invariants with no path ordering in the 
integrations over the contours of the polymer paths. The presence of path ordering in numerical 
topological invariant is very common. For example the simplest numerical invariant that is able 
to distinguish the topological states of a single polymer knot contains path ordered contour in-
tegrals. This fact has prevented so far the derivation of an analytic model of polymer knots. For 
this reason it would be highly desirable to generalize the present approach to include invariants 
with path ordering.
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Appendix A. Field theory representation of the Green function of a particle moving inside 
a magnetic field

The main task of this Appendix is the derivation of Eq. (13). The starting point is the La-
grangian (14) that will be rewritten here for convenience in the form:

L(ṙ(s), r(s),A) = 3

2a
ṙ2(s) + iṙ(s) · A(r(s)) + iη(r(s)) (A.1)

Apart from the presence of the complex factor i in the magnetic potential, this Lagrangian can 
be interpreted as that of a particle immersed in a magnetic field. The related Hamiltonian is:

H = a

6
(p − iA)2 − iη(r) (A.2)

First, we suppose that the polymer is an open chain with ends located in the fixed points r and 
r0. The case of a polymer ring will be obtained in the limit:

r(L) = r = r(0) = r0 (A.3)

The path integral

I[r, r0] =
r(L)=r∫

r(0)=r0

Dr i (s)e
−L(ṙ i (s),r i (s),A) (A.4)

is the matrix element between the states 〈r| and |r0〉 of the evolution operator e−HL:

I[r, r0] = 〈r|e−HL|r0〉 (A.5)
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〈r|e−HL|r0〉 satisfies the equation:[
∂

∂L
− a

6
(∇ − iA)2 − iη

]
〈r|e−HL|r0〉 = δ(L)δ(r − r0) (A.6)

together with the boundary condition:

〈r|e−HL|r0〉
∣∣∣
L=0

= δ(r − r0) (A.7)

From Eq. (A.6) it turns out that 〈r|e−HL|r0〉 is the inverse of the operator 
[

∂
∂L

− a
6 (∇ − iA)2 −

iη
]

and can be written as the Green function of a complex scalar field theory as follows:

.〈r|e−HL|r0〉 =
∫
Dψ∗Dψe

∫
d3x

∫ L
0 dtψ∗

[
∂
∂t

− a
6 (∇−iA)2−iη

]
ψ
ψ∗(r,L)ψ(r0,0)∫

Dψ∗Dψe

∫
d3x

∫ L
0 dtψ∗

[
∂
∂t

− a
6 (∇−iA)2−iη

]
ψ

(A.8)

Finally, to get rid of the denominator in the right hand side of the above equation, we use the 
replica trick Z−1 = limn→0 Zn−1. To this purpose we introduce a set of n replica complex fields 
ψ∗

a , ψa , a = 1, . . . , n. In this way, putting together Eqs. (A.4)–(A.8), it is possible to conclude 
that

r(L)=r∫
r(0)=r0

Dr i (s)e
−L(ṙ i (s),r i (s),A) = lim

n→0

∫ [
n∏

a=1

Dψ∗
aDψa

]
ψ∗

1 (r,L)ψ1(r0,0)

× e

n∑
a=1

∫
d3x

∫ L
0 dtψ∗

a

[
∂
∂t

− a
6 (∇−iA)2−iη

]
ψa

(A.9)

In the limit of a closed ring (A.3) in which the point r(L) = r(0) = r0, the above equation 
becomes:∮

r(0)=r0

Dr i (s)e
−L(ṙ i (s),r i (s),A) = lim

n→0

∫ [
n∏

a=1

Dψ∗
aDψa

]
|ψ1(r0,0)|2

× e

n∑
a=1

∫
d3x

∫ L
0 dtψ∗

a

[
∂
∂t

− a
6 (∇−iA)2−iη

]
ψa

(A.10)

This completes the derivation of Eq. (13).
An useful variant of this formula can be obtained taking the Laplace transform of 〈r|e−HL|r0〉:

+∞∫
0

e−zL〈r|e−HL|r0〉 = 〈r| 1

z + H
|r0〉 (A.11)

with z ≥ 0. The Green function 〈r| 1
z+H

|r0〉 is the inverse of the operator z + H . Using a similar 
strategy as we did in the case of 〈r|e−HL|r0〉, it is possible to express also 〈r| 1

z+H
|r0〉 in the 

form of the propagator of complex replica fields:

〈r| 1

z + H
|r0〉 = − δ2

∂J1(r)δJ ∗
1 (r0)

lim
n→0

lim
ε→0

∫ [
n∏

a=1

Dψ∗
aDψa

]
e−ε

∫
d3xψ∗

a ψa

× e
i

n∑
a=1

∫
d3xψ∗

a

[
(z+iε)− a

6 (∇−iA)2−iη
]
ψa+J ∗

a ψa+Jaψ∗
a

∣∣∣∣∣∣ ∗
(A.12)
Ja =Ja=0
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Let us notice in the above equation the presence of an overall purely imaginary i factor in the 
action and the term − 

∫
d3xψ∗

a ψa to guarantee convergence. Performing in the above equation 
the functional derivatives with respect to J ∗

1 (r0) and J1(r) we arrive to the final result:

〈r0| 1

z + H
|r0〉 = lim

n→0
lim
ε→0

∫ [
n∏

a=1

Dψ∗
aDψa

]
|ψ1(r0)|2

× e
i

n∑
a=1

∫
d3xψ∗

a

[
(z+iε)− a

6 (∇−iA)2−iη
]
ψa

(A.13)
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