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ABSTRACT Understanding how polypeptides can efficiently and reproducibly attain a self-entangled conformation is a
compelling biophysical challenge that might shed new light on our general knowledge of protein folding. Complex lassos, namely
self-entangled protein structures characterized by a covalent loop sealed by a cysteine bridge, represent an ideal test system in
the framework of entangled folding. Indeed, because cysteine bridges form in oxidizing conditions, they can be used as on/off
switches of the structure topology to investigate the role played by the backbone entanglement in the process. In this work, we
have used molecular dynamics to simulate the folding of a complex lasso glycoprotein, granulocyte-macrophage colony-stim-
ulating factor, modeling both reducing and oxidizing conditions. Together with a well-established G�o-like description, we have
employed the elastic folder model, a coarse-grained, minimalistic representation of the polypeptide chain driven by a struc-
ture-based angular potential. The purpose of this study is to assess the kinetically optimal pathways in relation to the formation
of the native topology. To this end, we have implemented an evolutionary strategy that tunes the elastic folder model potentials to
maximize the folding probability within the early stages of the dynamics. The resulting protein model is capable of folding with
high success rate, avoiding the kinetic traps that hamper the efficient folding in the other tested models. Employing specifically
designed topological descriptors, we could observe that the selected folding routes avoid the topological bottleneck by locking
the cysteine bridge after the topology is formed. These results provide valuable insights on the selection of mechanisms in
self-entangled protein folding while, at the same time, the proposed methodology can complement the usage of established
minimalistic models and draw useful guidelines for more detailed simulations.
SIGNIFICANCE We have investigated the folding mechanism of granulocyte-macrophage colony-stimulating factor, a
glycoprotein that handles diverse functions in the human body. This protein folds in a rather common self-entangled
conformation named complex lasso. Understanding how a polypeptide encodes into its sequence the capability of tying
itself into such kinds of self-entangled structures would represent a major advancement in the comprehension of protein
folding. To study this folding mechanism, we have employed molecular dynamics simulations, using both a well-known
minimalistic model of the protein and an alternative model specifically designed to highlight the preferential pathways of
entangled folding. Our calculations show how the protein can avoid the kinetic traps related to self-entanglement,
managing to fold in a reproducible and efficient way.
INTRODUCTION

Almost a quarter of a century of research has been dedicated
to the study of proteins that exhibit a self-entangled native
fold. Nowadays, up to 6% of the structures deposited in
the Protein Data Bank (PDB) (1) are self-entangled proteins
(2,3). Since the first natively knotted protein was discovered
in 1994 (4), the existence of such topologically complex
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folds has represented a new challenge in the understanding
of protein folding, fostering a wide range of studies. A num-
ber of reviews addressing the topic of self-entangled pro-
teins can be found in the literature (see, e.g., (2,5–7), just
to name the most recent), each addressing a different aspect
of this variegated research field. The discovery of self-en-
tangled protein structures has raised a few crucial questions
related to their scarcity (8,9), their conservation along evo-
lution (10,11), and their possible biological function
(2,7,12–14).

In this work, we address the following question: how can
the amino-acid chain fold reproducibly and efficiently into a
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specific, nontrivial topology? Many experiments were con-
ducted to answer this question, showing, e.g., that these pro-
teins can spontaneously tie themselves into the native
topology (15); that the formation of the entanglement is a
rate-limiting step (15–17); and that one or few folding
routes happen to be dominant, presumably representing
the most efficient and reliable mechanisms (18). These
crucial results demonstrate that self-entangled folding
clearly differentiates from the simple picture of two-state
folding of small, non-entangled proteins, but it is evident
that efforts are still needed to reach a comprehensive and
sound picture of this phenomenon.

In this framework, an interesting class of proteins is rep-
resented by complex lassos (CLs) (19), entangled structures
that exhibit a covalent loop closed by a disulphide bridge.
The surface of this loop is pierced one or more times by
the polypeptide chain, forming a nontrivial topology. Since
leptin was classified as the first CL protein (20), this topo-
logical state has been found to be widespread in the known
PDB structures, characterizing �18% of the proteins con-
taining a cysteine bridge (21). Most of the CLs are secreted
proteins with signaling functions, and their topology is
believed to have a crucial role in their biological activity
(22,23). Moreover, the topology of CLs can be controlled
externally because the cysteine bridge is stable in an
oxidizing solution, whereas it does not form in a reducing
environment. This feature allows one to directly study the
effect of the topological barrier on the folding mechanism,
making CLs ideal test systems for a deeper understanding
of entangled folding.

As for simple proteins, the experimental probe of folding
pathways in self-entangled proteins such as CLs can only
provide indirect indications. For this reason, molecular dy-
namics (MD) simulation represents an essential comple-
mentary tool for the study of the process. We must,
however, stress that the time duration of self-entangled
folding typically exceeds the range accessible by all-atom
simulations employing realistic interactions. This is the
reason why, except in two notable cases (24,25), the avail-
able computational results have been obtained using simpli-
fied, minimalistic protein models, which allow for a
thorough sampling of the conformational space while at
the same time providing indications on the theoretical prin-
ciples of the folding.

By, far the most used methods are the so-called G�o
models (G�oMs) (see, e.g., (26,27)), named after the pioneer-
ing work of G�o (28). In G�oMs, the protein is described as a
heteropolymer chain that encodes its native fold in the inter-
action potential. This kind of description stems from the es-
tablished energy landscape theory, according to which
proteins have evolved to fold along a smooth, funneled
free-energy landscape. Such a ‘‘folding funnel’’ determines
the efficient and reproducible collapse of the denatured
polymer chain to its compact and functional three-dimen-
sional structure (29). The majority of G�oMs employ a
2 Biophysical Journal 117, 1–15, July 9, 2019
coarse-grained (CG) representation of the protein, in which
each residue is mapped onto a sphere centered at the posi-
tion of the Ca atoms. The residues in contact in the native
state interact via attractive pair potentials, defined so that
the energy minimum of the model corresponds to the native
fold. This picture assumes that folding is dominated by
native contact interactions, whereas non-native interactions
play a minor role (30). G�oMs have been validated using both
experimental data and more detailed simulation models
(31–36), and their predictions are considered reliable in
the framework of small protein folding.

G�oMs have been widely used to study the folding of en-
tangled proteins, providing valuable indications on their
thermodynamics and kinetics (37–41) as well as in the
framework of lasso folding (20,22,23). However, the under-
lying theory clashes with the presence of knots in proteins
because the formation of entanglements implies a high de-
gree of coordination at different length scales that can
hardly be encoded in native contact potentials. For example,
the mandatory passage through the specific, nonalternative
folding intermediates imposed by topological barriers can
trigger the untimely formation of native contacts, which
can entrap the molecule in misfolded states. When this hap-
pens, the protein has to break such contacts and retrace the
proper folding route. On the one hand, this ‘‘backtracking’’
process can explain the longer folding times measured for
knotted proteins; on the other hand, it lowers the capability
of G�oMs to fold reproducibly, resulting in very low success
rates (40).

For this reason, the possibility of including non-native in-
teractions within G�oMs has been explored, obtaining signif-
icant improvements in the folding efficiency (42–45). This
suggests that non-native interactions can play a crucial
role in topologically complex folding, regulating the timing
of native contacts formation, and guiding the concerted
nonlocal moves required for the tying of the backbone
(46). Moreover, in agreement with energy landscape theory,
the folding of G�oMs exhibits multiple pathways reaching
the folded state (38,42,47) differently from the indications
of all-atom MD (24) and experiments (18), which suggest
the reproducible selection of a single route.

The presence of a dominant pathway can indicate that
evolution has optimized knotted proteins in their folding
behavior, minimizing the probability of misfolding, and pro-
moting the most reliable and fast folding routes. Building on
this optimality principle, in (48), an alternative CG descrip-
tion for the study of knotted folded proteins has been pro-
posed. This model, dubbed the elastic folder model
(EFM), is a CG, minimalistic description in which the
folding of the polypeptide is driven exclusively by backbone
bending and torsion potentials. EFM embodies the idea that
the folding process has been kinetically optimized by evolu-
tion in that it promotes the most efficient pathways of the
backbone across the topological bottlenecks of knotted
folding. To attain this optimality, once a specific protein is



FIGURE 1 2GMF protein structure and geometry of topological descrip-

tors. (a) A cartoon representation of chain A of 2GMF in its native fold is

shown. The cysteine bridges are shown with atomistic resolution. (b) A

view of 2GMF native structure, showing only the Ca residues, is given.

Cysteines 88 and 121, forming b1, are represented as yellow beads. The

structure reduction employed for the definition of the topological variables

L and G (see the text) is also displayed: the five residues chosen to represent

the loop are highlighted as red circles connected by red lines, and the three

residues representing the threading hairpin are highlighted as green circles

connected by green lines. The red dashed lines indicate how the loop sur-

face is divided in three triangles for computing L. The green arrows repre-

sent the integration verse along the hairpin segments used for the

calculation of G. (c) shows the same as (b) but rotated. The color of back-

bone residues depends on their index along the chain, going from red

(N-terminal) to blue (C-terminal). VMDwas employed for the protein visu-

alization (75). To see this figure in color, go online.
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chosen, the relative magnitudes of its angular forces are
tuned via a stochastic process aimed at maximizing the
folding success rate. The heterogeneous force-field obtained
through this optimization procedure represents a sort of
mean-field approximation of the cooperation between native
and non-native interactions and can provide valuable
information on the folding mechanisms of the system under
examination. This model has been used to investigate the
folding of two small knotted proteins (48), observing a
qualitative agreement with the all-atom simulations results
of (24).

In this work, we have employed EFM simulations to
study the folding of a glycoprotein, granulocyte-macro-
phage colony-stimulating factor, that exhibits a CL native
state. We have extended the original EFM, introducing con-
tact interactions between those cysteines that form a disul-
fide bridge in the native conformation. This allowed us to
simulate the folding in oxidizing conditions, assessing the
differences with respect to the process in a reducing envi-
ronment. The angular potentials of this protein model
have been optimized with an evolutionary strategy that
could tune the model to fold reproducibly and rapidly,
avoiding kinetic traps and efficiently surpassing the topolog-
ical bottleneck associated to the formation of the lasso. The
resulting dynamics has been compared with that of a well-
established G�oM (26) with the purpose of enlightening the
most efficient folding pathways in relation with the topolog-
ical state of the protein. To this aim, we have also introduced
and employed two topological variables that, building on the
minimal surface analysis (19) and the Gauss linking number
(49) methods, allow for monitoring the evolution of the CL
topology along the MD trajectory.

As a result, we could outline a detailed picture of the
folding scenario, demonstrating that the same, kinetically
optimal mechanism dominates in both reducing and
oxidizing conditions. This folding route, characterized by
the formation of the cysteine bridge after the lasso topology,
is supported both by the G�oM simulations at the fastest
folding temperature and by the optimized EFM. These re-
sults show how the principle of kinetic optimality can
determine the selection of a single folding mechanism
among the possible ones and qualify the considered protein
as an interesting testing ground for all-atom simulations or
experimental study.
METHODS

In this work, we have studied the folding of granulocyte-macrophage col-

ony-stimulating factor, a monomeric glycoprotein that acts as growth factor

for white blood cells. We shall refer to the protein by using the PDB code of

its crystal structure, 2GMF (50). 2GMF is a helical cytokine formed by 127

residues, of which 121 are resolved in the PDB structure, shown in Fig. 1.

As highlighted in the figure, 2GMF forms two cysteine bridges, which we

name b1, connecting residues 88 and 121, and b2, connecting residues 54

and 96. 2GMF is classified as an L2 lasso structure, in which the covalent
loop formed by b1 is threaded by a 12-residue hairpin from residue 43 to

residue 53. Instead, b2 does not determine any lasso topology.

Three different MD models of the protein were employed: a non-opti-

mized EFM with homogeneous stiffness coefficients, an optimized EFM

obtained with the MFFO procedure presented in the following, and a

G�oM constructed using the native-contact-based description proposed by

Clementi et al. (26). The folding of 2GMF was studied by performing

sets of MD runs starting from random stretched configurations in both

reducing and oxidizing conditions. As discussed in the following, the stabil-

ity of cysteine bridges in an oxidizing environment is modeled in the EFM

by means of native contact potentials between the cysteine pairs and in the

G�oM by rescaling the existing native contacts. We shall employ natural

units, indicating energies in units of E, temperatures in units of E/kB,

lengths in units of s, and time-lengths in units of tMD ¼ s
ffiffiffiffiffiffiffiffiffi
m=e

p
, m being

the bead mass.
Elastic folder model simulations

The EFM introduced in (48) is here reviewed in detail. The model describes

an N-residues polypeptide chain by means of a CG representation, in which

only the Ca atom positions are retained, resulting in a chain of N identical

beads connected by stiff bonds. The steric hindrance of each residue is rep-

resented by a short-range excluded volume interaction. As said, the driving

force of the folding is modeled by bending and torsion potentials, parame-

terized so that the energy minimum is attained for a chosen reference
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configuration. In principle, this reference corresponds to the native PDB

structure; however, other choices can be convenient as well (48).

The total potential energy is

Utot ¼ Usteric þ Ubonds þ Uangular þ Ubridges: (1)
Weeks-Chandler-Anderson interaction (51) is used for the steric term:

Usteric ¼
XN
i< j

UWCA

�
ri;j
�
; (2)
where ri, j ¼ jri � rjj and the pair potential is given by

UWCA ¼
�
ULJðr; e; sÞ þ e if r < 21=6

0 otherwise
; (3)
UsLJ ¼

8><
>:

ULJðrÞ � ULJðrcÞ � ðr � rcÞ dULJ

dr
jr¼ rc

if r < rc

0 otherwise

: (10)
in which ULJ is the Lennard-Jones potential:

ULJðr; e; sÞ ¼ 4e

��s
r

�12

�
�s
r

�6
	
: (4)

The chain beads are connected via finitely extensible nonlinear elastic

(FENE) bonds (52), namely

Ubonds ¼ �
XN�2

i¼ 0

kFENE
2



R0

s

�2

ln

"
1�



ri;iþ1

R0

�2
#
; (5)

in which kFENE is the interaction strength parameter and R0 is the maximal

bond length. The length scale s is chosen equal to the steric diameter of

Eq. 2, which corresponds to the separation between two consecutive Ca,

i.e., roughly 3.8 Å.

The remaining terms of Eq. 1 contain specific structural information of

the protein that has to be described. As mentioned, the folding is guided

by the angular potential, which generates the dynamics of the chain bending

and torsion angles:

Uangular ¼
XN�2

iþ1

Ubending

�
qi; q

0
i ; k

bend
i

�

þ
XN�3

iþ1

Utorsion

�
fi;f

0
i ; k

tor
1i ; k

tor
3i

�
;

(6)

in which q0i and f0
i are, respectively, the i-th bending and torsion angles of

the reference conformation. kbendi and ktori are the stiffness coefficients asso-

ciated to the angular potentials, which are given by

Ubending

�
q; q0; k

� ¼ k
�
q� q0

�2
(7)

and
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Utorsion

�
f;f0; k1; k3

� ¼ k1cos
�
f� f0

�þ k3cos
�
3f� 3f0

�
:

(8)

In the EFM, we consider a single torsion coefficient, imposing k3 ¼ k1/3.

Angular interactions such as Eqs. 7 and 8 (or analogous chiral potentials)

have been included in G�oMs as well (26,27) to bias the formation of proper

backbone chirality (53).

In this work, we have modeled the formation of disulfide bridges by

introducing an attractive potential term Ubridge between those nB cysteine

pairs {c1, c2} that form a bridge in the reference state:

Ubridge ¼
X
fc1;c2g

UsLJðrc1c2; eb; sbÞ; (9)

in which rc1c2 is the distance between the cysteines and UsLJ is a truncated

and force-shifted LJ potential, given by
The scale length sb is chosen so that the minimum ofUbridge is located at the

reference distance between the residues in the considered pair.

The folding of this protein model is studied, simulating its Langevin dy-

namics starting from a stretched (i.e., end-to-end distance �Ns), randomly

generated configuration. The potential parameters, as well as the MD set-

tings, were chosen following the previous work on EFM (48). The FENE

parameters had the typical values kFENE ¼ 30 and R0 ¼ 1.5, the friction

time of Langevin equation was tfrict ¼ 1.0, and the integration time step

was Dt ¼ 5 � 10�4. The EFM dynamics was integrated by means of an in-

house software.
Single force-field optimization

To satisfy the principle of optimality of the folding pathway, the EFM

angular force parameters kbendi and ktori are tuned to maximize the success

rate of the folding. In (48), this optimization is performed through a sto-

chastic search procedure, which we recall here. Let us first define

K ¼ �
kbend1 ;.; kbendN�2; k

tor
1 ;.; ktorN�3

 ¼ (11)

¼ fkang;.; kang g; (12)
1 2N�5

in which kangi is used for both bending and torsion stiffnesses. We shall refer

to K as the force-field of the model. The optimization step consists of two

operations. First, a mutated force-field K0 is generated:

K0 ¼ �
kang1 ;.; kangj þ dk;.; kang2N�5


; (13)

in which the j-th coefficient is modified by adding dk. j is randomly chosen

among the 2N � 5 coefficients, whereas dk is generated with a prescribed

probability distribution (e.g., in our calculation, it is normally distributed,

with SD equal to 2.5). Second, the mutation to K0 is accepted or

rejected according to a Metropolis-like criterion: K0 is tested by

performing a set of n parallel folding simulations, starting from a randomly

generated stretched configuration and running for some properly chosen
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length trun. The outcome of the n test trajectories is then assessed by

measuringF , namely the mean-square displacement (MSD) from the target

configuration R0, defined as

Fðt;K0Þ ¼ 1

Ns2

��RðtÞ � R0
�� 2; (14)

where R(t) is the configuration vector of the protein model and j.j is the
Euclidean distance. We then define

hFðt;K0Þi ¼ 1

n

Xn

i¼ 1

F iðt;K0Þ; (15)

which is the average MSD computed at t¼ t over the n test runs. t is chosen

so that Eq. 15 provides a measure of the folding success of the test runs. It

can be set, e.g., equal to trun or, as in (48), chosen according to the conver-

gence of the MSD value along the trajectory. In this work, we have selected

t ¼ tmin, namely the time at which the MSD reaches its minimal value

during the test run. The probability of acceptance of the new force-field

K0 is then

PðK0 jKÞ ¼ minf1; exp½hFðt;KÞi � hFðt;K0Þi�g: (16)

The operation just described is then iterated to minimize hFi, enhancing
the average success rate of the folding trajectories. A schematic representa-

tion of this procedure, which we name single force-field optimization

(SFFO), is displayed in Fig. 2.

For a polypeptide such as the smallest knotted protein MJ0366, with

N¼ 82 residues, the parameter space is quite large, and the SFFO algorithm

can explore only a minimal portion of it in reasonable computation time.

The situation can be partially improved by constraining the kang to be

locally equal. For example, in (48) as well as in this work, neighboring pairs

of coefficients are constrained, that is,

K ¼�
kbend1 ¼ kbend2 ; kbend3 ¼ kbend4 ;.; ktor1

¼ ktor2 ; ktor3 ¼ ktor4 ;.

:

(17)
FIGURE 2 Schematic illustration of the SFFO and MFFO algorithms. To

see this figure in color, go online.
These local constraints reduce the dimensionality of the stochastic search

but also the generality of the model. In this work, we have employed

Eq. 17, pairing neighboring angular coefficients.
Multiple force-field optimization

In this work, we have employed a development of the SFFO strategy,

aiming at a more efficient exploration of the K-space. The basic idea is

to apply SFFO for the parallel optimization of several force-fields and

then combine the results with an evolutionary strategy, as graphically illus-

trated in Fig. 2. An initial set or population of force-fields fKjgNK

j¼1 is chosen,

and each of them undergoes m SFFO steps independently from the others.

The resulting NK mutated force-fields are then ranked according to their

capability of folding. The specific ranking criterion is discussed in detail

later on. The Nwin top-ranked force-fields, which we shall call ‘‘winners,’’

are selected to build the new population fK0
jgNK

j¼1 while the remaining,

low-ranked candidates are discarded. The new force-field population is

given by

fK0
kgNK

k¼ 1 ¼
�
fWigNwin

i¼ 1;
�
Hj

NK�Nwin

j¼ 1

�
; (18)

in which W indicates the winners and H indicates a set of NK � Nwin

newly generated force-fields, which we shall refer to as ‘‘hybrid.’’ The

latter ones are obtained by means of a crossover operation, typical of ge-

netic algorithms (see, e.g., (54)). In more detail, the Hj values are gener-

ated by combining fragments of force-fields randomly picked from a set

of parent force-fields, as displayed in Fig. 3. The parent set is formed by

the Nwin winners together with Nlow ‘‘low-fit’’ candidates, which ensures

diversity among the population. The latter can be selected among the

worst-ranked force-fields or, otherwise, generated with randomly distrib-

uted angular coefficients. Further details about the crossover operation

are provided in the Supporting Materials and Methods. Once the new

population is set, the optimization cycle is completed, and the algorithm

is reiterated. We name this procedure multiple force-field optimization

(MFFO).

We now discuss the criterion for the force-field ranking, which naturally

builds on the outcomes of the folding tests gathered during the SFFO steps.

As explained, each SFFO mutation is tested via n folding simulations. The

resulting n trajectories can provide indications on the folding propensities

of the NK force-fields. One can, e.g., compare the average MSD (Eq. 15)

attained by each force-field. Another possibility, which we have adopted

in this work, is to rank the NK candidates according to Pf, namely the

folding probability along the test runs. More precisely, we have defined

an estimate pf of the folding probability based on the measurement of the
FIGURE 3 Schematic representation of the crossover operationgenerating

the hybrid force-fields. The color bars indicate the sets of kang coefficients

associated to the winners and the low-fit force-fields. These are mixed

randomly in the hybrid force-fields. To see this figure in color, go online.
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MSD along the test runs. A threshold value F 0 has been set, below which

the protein is considered to be in the native state.

Then, for a set of n test runs, we have defined

pf ðF 0; tÞ ¼ 1

n

Xn

i¼ 1

q½F 0 �Fðt;KÞ�; (19)
where q is a function that switches from 0 to 1 when its argument becomes

positive. In particular, we used a Fermi function

qðzÞ ¼
h
1þ exp

�
� z

w

�i�1

(20)
that switches continuously with length scale w. Clearly, pf represents

only a proxy of the real folding probability, on the one hand,

because the sole MSD is not always reliable in discriminating

between the native basin and misfolded configurations, and on the other

hand, because it depends on a limited number of finite trajectories.

Nonetheless, we have verified that the value of F represents a suitable

descriptor to identify the great majority of folding trajectories for the

chosen test case (2GMF), and this positively affected the outcome of

the MFFO. In general, the evaluation of pf should involve proper vari-

ables that differentiate the folded conformations, such as the fraction

of native contacts or the topological variables introduced in the

following.

As mentioned, the ranking operation has been performed every m SFFO

iterations. Therefore, the trajectories employed in computing Eq. 19 come

from the m-th iteration. However, we can assume that the local mutations

tested along each SFFO step have a relatively small effect on the force-field

folding propensity. It is thus convenient to include in the ranking also the

information from the previous m � 1 SFFO steps. To achieve this, we

have employed an exponential moving average, defined by the iterative

formula

P
ðiÞ
f ¼ ap

ðiÞ
f þ ð1� aÞPði�1Þ

f ; (21)
where p
ðiÞ
f is the folding probability relative to the i-th SFFO iteration and a

is the smoothing factor 0< a< 1. The final value, i.e.,PfhP
ðmÞ
f , includes

the contribution of all m SFFO iterations, assigning them a weight that in-

creases exponentially with i. Thus, the NK force-field candidates have been

ranked by increasing values of Pf.

In the optimization presented in this work, the MFFO strategy has

been applied to a population of NK ¼ 16 force-fields, initially having ho-

mogeneous angular coefficients kbendi ¼ kb and ktori ¼ kt, where kb and kt
were chosen among the possible combinations of 20.0, 40.0, 60.0, or

80.0. Each force-field was optimized via SFFO, during which it mutated

pointwise. The local mutations were accepted via a Metropolis criterion,

based on the average MSD of 16 parallel folding trajectories (Eqs. 15

and 16) of length trun ¼ 3.5 � 103. This trajectory time length has

been chosen based on the folding times measured for the HM to promote

only the faster folding routes. Every m ¼ 50 steps, the force-fields were

ranked according to the value of Pf, as given by Eqs. 19 and 21, where

the threshold MSD was F 0 ¼ 0:9, the switching length scale w ¼ 0.2,

and the smoothing factor a ¼ 0.03, corresponding to a decay time of

ta ¼ 33 steps of the exponential moving average weight. As mentioned,

the resulting Pf is a proxy of the success probability Pf, which provided

an on-the-fly estimate of the optimization progress. After the force-fields

were ranked, the six best were chosen as winners and continued the opti-

mization. The remaining 10 force-fields were constructed combining the

winners and four randomly generated forcefields, with kbendi and ktori uni-

formly distributed between 30.0 and 60.0 (more details are reported in

the Supporting Materials and Methods).
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G�o model simulations

The employed G�oM is that introduced by Clementi et al. in (26). The sys-

tem setup was generated using the SMOG web server (http://smog-server.

org) (55). Details on the interaction potential, which is based on 12-10 Len-

nard-Jones native contacts, can be found in the cited references. The

shadow contact map (56) is used for the definition of native contacts. As

mentioned before, this description also models the backbone stiffness

with the angular potentials of Eq. 6. The stiffness coefficients are here ho-

mogeneous, set to kbend¼ 40.0, ktor1 ¼ 1:0, and ktor3 ¼ 0:5. The formation of

cysteine bridges in oxidizing condition is modeled by increasing the ampli-

tude Eij of the native contact potential associated to the cysteine-cysteine

contacts. The value was set to Eij ¼ 10 kBT so that thermal fluctuations

would hardly break the bridge once formed.

As for the EFM, the G�oM folding is studied by means of Langevin dy-

namics, starting from random stretched configurations. GROMACS

2018.3 package (57,58) was used for integrating the motion. The MD pa-

rameters were chosen consistently with the EFM simulations, with time

step Dt ¼ 5 � 10�4 and friction time tfrict ¼ 1.0. To select the simulation

temperature, we have performed a study of folding times and probabilities

at different values of T; the results are presented in the Supporting Materials

and Methods.
Topology analysis

Minimalistic CG models make it possible to collect a large statistics of

folding trajectories, even in complex folding processes like those of

self-entangled proteins. However, to gather useful information on the

folding dynamics, the analysis of these trajectories strongly benefits

from the definition of proper topological descriptors. Many methods for

detecting the entangled state of a polymer chain have been proposed

(see, e.g., (59) for further details) and extensively applied. For example,

in the framework of knotted proteins, knot searching algorithms have

been used to classify the topology of known native structures, gathering

a comprehensive database (3). In general, these techniques operate on

the three-dimensional structure of a polymer chain, first, by associating

it to an equivalent closed curve (60,61) so that the topological state is

mathematically well-defined, and second, by simplifying this structured

curve without changing its topology (8,62). The resulting curve is then

analyzed by computing topological invariants (63,64), and its entangled

state is classified.

Although this is the typical approach used to analyze knotted proteins,

the nontrivial topology recognized in CL structures is not yet classified

from a mathematical point of view (2). In (19), an approach specifically

aimed at detecting CLs is presented. This technique, named minimal sur-

face analysis, uses triangulation algorithms borrowed from computer

graphics to determine the minimal area surface spanned by a protein co-

valent loop. When this surface is obtained, the lasso type is detected by

searching for segments of the backbone that pierce the minimal surface.

This is a robust method to assess and classify CL structures, and it has

been employed to establish a database of polymeric structures character-

ized by this topology (19,21). However, in our work, we are interested in

descriptors that can monitor the topological state along the folding tra-

jectory of a specific protein. To this purpose, the computation can be

expensive, and a faster, less general method could be more effective.

We can exploit the fact that proteins fold reproducibly in a well-defined

topology, which is known a priori. For this reason, we relax the general-

ity of the topological descriptor and focus on the specific native geom-

etry of the system under consideration. In CL geometries, the main

topological feature is a covalent loop closed by a cysteine bridge,

pierced by part of the backbone. For simplicity, we limit the discussion

to the case of a single loop and a single threading segment; the strategy

can be then generalized to more complex topologies. Let l1;.; lNl
be the

indexes of loop residues and t1;.; tNt
be the indexes of the threading

segment residues. We operate a reduction of the structure, selecting

http://smog-server.org
http://smog-server.org
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only few crucial residues, namely l01;.; l0Ml
for the loop and t01;.; t0Mt

for the threading tail, where Ml < Nl and Mt < Nt. The residues l0 and t0

are chosen so that their position can describe whether the protein is in

the native topology or not. This operation is similar to the smoothing

performed for protein knot detection (65); however, the procedure is

not automated and needs some preliminary analysis of the structure

and folding behavior. For clarity, in Fig. 1 (and in the Supporting Mate-

rials and Methods), the reduction we adopted for 2GMF is illustrated.

The surface spanned by the Ml loop residues is then approximated by

Ml � 2 triangles, with vertexes corresponding to the l0 residues positions.
After this, the threading of an jRt0 þ 1 � Rt0 j segment through the

loop can be verified by computing its intersections with the surface

triangles. Once the number and directions of the piercings through the

loop surface are determined, it is clear whether the protein has attained

its native topology. By means of continuous switching functions

(see, e.g., Eq. 20), we can associate this binary information to a contin-

uous value L varying from 0 (non-native topology) to 1 (native topol-

ogy); we name this quantity the lasso variable. The approximated

surface formed by the Ml � 2 triangles is not the minimal area surface

of (19), which is typically formed by many more triangles. However,

in our study, this simplification is convenient to speed up the

calculations.

Another interesting approach to topology detection is adopted in (49,66).

The idea developed in these works is that of employing the Gauss linking

number (67), namely the double line integral:

Gh
1

4p

Z
g1

Z
g2

r1 � r2��r1 � r2j3
, ðdr1 � dr2Þ; (22)
r2 being the position vectors belonging to g1 and g2, respectively. If the two
3

in which the integrals are performed along the two curves g1 and g2, r1 and

curves are closed (in R ), G takes an integer value that is a topological

invariant typically used to define links. By applying a proper closure pro-

cedure, G can be therefore employed to detect the entanglement of two

chains.

A crucial observation is that when g1 and g2 are not closed, G is not an

integer topological invariant, but it still provides relevant information on the

curves’ mutual entanglement (67). This property can then be exploited to

assess the linking in protein dimers (49) or the self-entanglement of folded

proteins (66) without the need to define a closure operation. A strong cor-

relation has been found between the value of G computed over open curves

and its ‘‘closed counterpart.’’ This indicates that Eq. 22 can be used as a

descriptor for the topological state of entangled structures such as CLs.

Once again, because we are interested only in a specific topological state,

we have simplified the calculation of G in the same way as done for L.

Therefore we have computed G by applying Eq. 22 to the polygonal curves

defined by the Mt and Ml residues selected by structure reduction. In this

case, however, we have adopted the convention that the bridge-forming cys-

teines are always the ends of the integration along the covalent loop. This

way, G depends on the distance between the two cysteines being affected

by the opening and closing of the covalent loop.

The cross product in Eq. 22 implies that G depend on the relative orien-

tation of g1 and g2 curves. Therefore, one has to define an orientation along

which the two subchains are integrated. In this work, we have not fixed any

conventional orientation because we have not compared different mole-

cules. However, we have computed G for an L2 lasso structure, in which

the tail pierces the loop twice in opposite directions (as shown in Fig. 1).

In this case, the contribution toG provided by the threading in one direction

is partially compensated (or entirely compensated, if the curves are closed)

by the threading in the opposite direction. To adapt G such that it can detect

this double piercing, we have separated the threading tail in two parts, as-

signing two different orientations for the calculation of Eq. 22. As a result,

the contributions coming from the two piercings add up, detecting the L2
state.
RESULTS

Homogeneous EFM

We first report the folding behavior of 2GMF described by
an homogeneous EFM, in which the angular potentials
(see Eq. 6 in Methods) are parameterized using homoge-
neous angular coefficients kbendi ¼ kb and ktori ¼ kt, where
kb ¼ 36.5 and kt ¼ 38.5. From now on, we shall refer to
this representation as the homogeneous model (HM). The
order of magnitude of kb and kt is consistent with the settings
used in (48), but the values were chosen equal to the average
of the optimized bending and torsion coefficients presented
in the following. This choice allowed us to assess the impact
of the force-field heterogeneity introduced by the optimiza-
tion procedure. Consistently with (48), we have studied the
model at T ¼ 0.1, which is below the melting point of the
model and, as shown in the following, determines a quite
frustrated free-energy landscape. An ensemble of 2048
folding trajectories has been collected in both reducing
and oxidizing conditions. Equation 9 was used to model
the bridge in an oxidizing environment.

To define the successfully folded trajectories, we moni-
tored two variables, the root MSD (RMSD) F 1=2 from the
native state and the lasso variable L, indicating the forma-
tion of the CL topology (see the Methods for the definitions
of F and L). We have selected two threshold values for F 1=2

and L, considering the protein as fully folded only if both
F 1=2 < 0:9 and L > 0.9. In most of the cases, the RMSD cri-
terion was sufficient to classify the nativeness; however, the
measurement of L has allowed for pointing out a few false
positives and to distinguish successful folding trajectories
with better accuracy. In the Supporting Materials and
Methods, we report the comparison between this folding cri-
terion and a more standard one based on the fraction of
native contacts Q (68). In all the cases investigated in this
manuscript, we have found the criterion employed here to
be robust in determining the successfully folding trajec-
tories, achieving a better accuracy than the Q criterion.
Once the success criterion has been defined, the probability
of folding was estimated as Pf ¼ nf/ntot, where nf is the num-
ber of trajectories attaining the folding and ntot¼ 2048 is the
total number of runs. This estimate of the success rate de-
pends on the length trun of the simulated trajectories.
Because the EFM focuses on the optimal pathways of
folding, we aimed at observing those folding events that
occur within the initial stages of the dynamics, not long after
the collapse of the polymer chain. We have chosen trun ¼
1.5 � 104, which, as shown in the following, is enough to
capture all the fastest folding events, obtaining indications
on the timescales of the slower processes as well.

The computed Pf of the HM in reducing conditions is
equal to 55%, whereas in oxidizing conditions, the folded
configuration is reached by 17% of the trajectories. This
shows that the topological barrier introduced by the cysteine
Biophysical Journal 117, 1–15, July 9, 2019 7
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bridge significantly increases the frustration of the model.
We define the ‘‘folding landscape’’ as F ¼ �log f, where f
is the frequency histogram of some chosen reaction
variables (e.g., the RMSD) computed over the ensemble
of trajectories. This quantity is sometimes named ‘‘nonequi-
librium free-energy surface’’ (69,70). We also introduce the
‘‘successful folding landscape’’ Fs ¼ �log fs, which con-
siders only those trajectories that reach the native state.

In Fig. 4, A and B, the folding landscape of the HM in
reducing and oxidizing conditions is reported as a function
of the RMSD and of db1, the distance of the two cysteine
residues forming b1. The corresponding Fs is instead
shown in Fig. 4, C and D. By comparing the successful tra-
jectories to the whole ensemble, we observed that the
native basin is located in the region F 1=2(0:9. In both
environmental conditions, the landscapes show a variety
of metastable states, testifying to the roughness of the
free-energy surface. Because, except from the bridge po-
tential, EFM does not introduce native contacts, this rough-
ness is the result of the topological bottlenecks encountered
during the folding trajectories. In particular, if we consider
only the successful trajectories in reducing conditions
(Fig. 4 C), we observe a metastable state at RMSD �2.0,
presumably connected to the native basin by an open-
bridge pathway, with db1 � 4:0. In oxidizing conditions
(Fig. 4 D), this metastable state is perturbed by the action
of the bridge potential, which restrains part of the trajec-
tories close to its minimum, where the covalent loop is
closed. Most of these trajectories remain trapped in this
state and cannot overcome the topological barrier to reach
the native basin.

To extract valuable information about the folding path-
ways, we have employed the lasso variable L and the Gauss’
A B

C D
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linking number G, defined in the Methods. Both L and G are
useful to monitor the topological state of the protein along
the trajectory, but because they exhibit a different behavior,
we employ them for different purposes. Because L switches
sharply from 0 to 1 when the native topology is attained, it is
used to detect the time of formation of the lasso and, as
mentioned before, to assess the folded state. G displays
instead a smoother behavior; it is thus employed as reaction
variable for computing the folding landscape, as shown in
Fig. 5, where FsðG; db1Þ is reported. The plot confirms that
in reducing conditions, the model establishes the lasso to-
pology (attaining GT1) while the loop is open and that
the metastable state preceding the folding can be identified
with a populated region without lasso conformation (G� 0).
In oxidizing conditions, the topological barrier is instead
surpassed along two separate pathways, either with closed
or open loop. We can classify the folding pathways as
follows:

1) A ‘‘threading’’ mechanism, in which the contact between
C88 and C121 is formed before the topology, and then
the closed loop is threaded by the hairpin to reach the
native basin.

2) A ‘‘bridge reopening’’ mechanism, in which, again, the
covalent loop is closed before the lasso is formed. The
topology is then attained in a second moment thanks to
a wide fluctuation of the bridge distance and to the sub-
sequent penetration of the loop by the hairpin.

3) An ‘‘open-loop’’ path, in which the lasso is formed
before the contact between C88 and C121, with the
loop that ‘‘wraps around’’ the hairpin to form the native
state, a behavior that is reminiscent of the ‘‘embrace-
ment’’ mechanism defined in (47).
FIGURE 4 Folding landscapes F and Fs of the

HM as a function of the RMSD from the native

structure and of the b1 bridge distance. (A) N ¼
2048 trajectories in reducing conditions. (B) N ¼
2048 trajectories in oxidizing conditions. (C) Suc-

cessful trajectories (N ¼ 1133) in reducing condi-

tions. (D) Successful trajectories (N ¼ 350) in

oxidizing conditions. To see this figure in color,

go online.
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FIGURE 5 Successful folding landscape Fs of

the HM as a function of the Gaussian linking num-

ber G and of the b1 bridge distance. (A) Successful

trajectories (N ¼ 1133) in reducing conditions. (B)

Successful trajectories (N ¼ 350) in oxidizing con-

ditions. To see this figure in color, go online.
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A graphical illustration of these three processes is pro-
vided in Fig. 6. The successful trajectories can be classified
according to these three pathways by performing a ‘‘kine-
matic’’ analysis that compares the timing of the main events
in the folding process. For each trajectory, we thus
computed three transition times: 1) the bridge formation
time tb, namely the first time at which C88 and C121
approach at a distance db1 < 1:5sb1 ¼ 1:992; 2) the time of
first topology formation tk, when L > 0.9; and 3) the folding
time tf, which is when the protein first visits the native basin
(F 1=2 < 0:9 and L > 0.9). We required that the conditions
for 1), 2), and 3) remain valid for Dt ¼ 10 for the transition
to be completed. Then, by comparing the measured tb and tk
with the time evolution of db1, which signals the closure of
the loop, and of L, which indicates the topological state, we
could classify the folding routes traveled by the protein in
successful simulations.
FIGURE 6 Illustration of the three folding pathways revealed by 2GMF

simulations. Each box contains the snapshot of a representative configura-

tion along the corresponding folding route (represented by a colored arrow,

numbered according to the pathway definition in the text). For further

clarity, intermediate configurations are provided with a schematic diagram

of the structure. To see this figure in color, go online.
In Fig. 7, the bridge formation times tb are plotted
versus the folding times tf for each successful HM trajec-
tory. The mechanism associated to each trajectory is indi-
cated by different colors. The fraction of trajectories
undertaking different routes is reported in Table 1. The
folding mechanisms are differently distributed in reducing
and oxidizing simulations. In the first case, the successful
folding events are similarly divided between open-loop
and reopening pathways, whereas a relatively small num-
ber of threading trajectories are detected. Instead, in
oxidizing conditions, the reopening is prevented by the
action of the cysteine bridge potential, and, although the
model mostly relies on the open-loop route, threading
events are significant.

Another aspect that emerges from Fig. 7 concerns the
folding timescales characterizing the different pathways.
Most of the observed folding events occurred for t < 103,
in particular those undergoing open-loop mechanism. In
reducing conditions, the reopening events are distributed
also beyond this timescale, whereas the few threading
events were faster. This is somewhat counterintuitive
because we expect that the entropic barrier of piercing the
loop is larger when this is closed. If we look at the oxidized
model results, we observe that threading events exhibit a
bimodal time distribution; this suggests the existence of
two possible threading pathways, a fast process taking place
for t < 103 and a slower one that requires a timescale com-
parable to trun ¼ 1.5 � 104. This bimodality disappears in
reduced folding, in which the slow threadings are sup-
pressed as the reopening of the bridge occurs over faster
timescales. We underline that the defined folded basin al-
lows fluctuations of db larger than 1.5s. This explains the
possibility of having tf < tb, which is evident in Fig. 7 and
in the following Figs. 11 and 12. In these cases, a compact
conformation that features the native lasso topology is at-
tained, whereas the bridge contact occurs slightly later, after
a diffusion phase within the native basin.

Overall, this analysis reveals the main features of the
folding of 2GMF as described by the EFM and highlights
the role of the topological barrier in selecting the accessible
mechanisms to attain the native state. We stress the impor-
tance of the defined topological diagnostics, L and G, in
clarifying the folding pathway scenario.
Biophysical Journal 117, 1–15, July 9, 2019 9
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FIGURE 7 tb versus tf for the successful trajec-

tories of the HM. (A) shows the results of the N ¼
1133 successful trajectories in reducing conditions,

and (B) shows the results of the N ¼ 350 successful

trajectories in oxidizing conditions. The color of the

circles indicates the folding pathway, following the

classification indicated in the text. The line corre-

sponds to tb ¼ tf. To see this figure in color, go

online.
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Optimized EFM

In this section, we report the folding behavior of the EFM
when optimized with MFFO, the evolutionary algorithm
described in the Methods. Like most of the lasso structures,
2GMF is a secreted protein, and its folding occurs in the
endoplasmic reticulum, which is an oxidizing environment.
For this reason, the MFFO has been performed in oxidizing
conditions.

The progress of the optimization procedure is displayed
in Fig. 8, in which the evolution of the folding success
rate is reported. We observe that as the MFFO introduces
heterogeneity in the angular interactions, the rate increases
significantly, reaching a value larger than 0.95. In Fig. 8,
we also show how the folding success rate evolved when
no crossover between different force-fields was operated.
This represents the success rate resulting from 16 indepen-
dent SFFO runs (namely the serial stochastic optimization
algorithm of (48)). It is evident that the MFFO approach
provides a remarkable boost to the optimization, attaining
a strong folding reproducibility, before the independent
SFFOs exhibit any significant improvement. This substan-
tial advancement in the optimization strategy opens the
possibility of employing the EFM for the study of larger
proteins subject to even more complex folding processes.

After 30 MFFO cycles, we chose the top-ranked force-
field and tested it over 2048 folding trajectories in both
reducing and oxidizing conditions. We shall refer to this
TABLE 1 Probability of Folding Pf and Pathway Distribution

Model Environment Pf Pthreading Preopening Popen-loop

HM Red. 0.55 0.01 0.26 0.28

Ox. 0.17 0.06 0.0 0.11

OM Red. 0.96 – 0.01 0.95

Ox. 0.95 0.05 – 0.90

G�oM (T ¼ 0.7) Red. 0.60 0.12 0.01 0.47

Ox. 0.55 0.11 0.01 0.44

G�oM (T ¼ 1.1) Red. 0.63 0.11 0.30 0.23

Ox. 0.27 0.24 0.01 0.02

Folding probability Pf and probability of undergoing different mechanisms

(Pthreading, Preopening, and Popen-loop) for each of the considered models in

reducing and oxidizing conditions. The probabilities are estimated as fre-

quency of occurrence over 2048 trajectories of length trun ¼ 1.5 � 104.
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optimized model with the acronym OM. As described
before, the bending and torsion stiffnesses of the HM have
been set equal to the average values of the OM; this way,
we could assess the impact of heterogeneity on the folding
behavior.

The Pf values obtained for the OM are reported in Table 1.
We notice how the OM reaches high probabilities in both
reducing and oxidized folding, showing that the heterogene-
ity of angular forces can be crucial to achieve a nontrivial to-
pology in a reproducible way, in agreement with what found
for knotted protein folding in (70). We then investigated the
successful folding landscape Fs associated to the OM, re-
ported in Fig. 9 as a function of F 1=2 and db1 and in Fig. 10
as a function of G and db1. The landscapes look qualitatively
different to those of Figs. 4 and 5, indicating that the OM se-
lects different folding pathways with respect to HM. In
particular, we can appreciate how the non-entangled interme-
diate state is now less populated and how the closure of the
cysteine bridge mostly occurs as a late event.

To assess which folding pathways are more populated, we
repeated the kinematic analysis operated for the previous
model. The results, shown in Fig. 11, reveal that the bridge
FIGURE 8 Average success rates of the folding trajectories performed

during the optimization procedure. The reported quantity, Pf, is a proxy

of the folding probability, the definition of which is provided in the

Methods. The red curves correspond to MFFO combining NK ¼ 16 force-

fields, and the blue curves correspond to an MFFO without crossover of

force-fields, equivalent to NK parallel SFFOs. Solid lines indicate the suc-

cess rate of the best-ranked force field, and dot-dashed line indicates the

average rate of the NK concurrent force fields. To see this figure in color,

go online.
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FIGURE 9 Successful folding landscape Fs of the

OM as a function of the RMSD from the native

structure and of the b1 bridge distance. (A) Success-

ful trajectories (N ¼ 1970) in reducing conditions.

(B) Successful trajectories (N ¼ 1946) in oxidizing

conditions. To see this figure in color, go online.
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formation and folding times are on average slower than in
the HM model. The optimization acted on the timescale of
the folding events by delaying the closure of the loop. As
a result, the open-loop folding mechanism is promoted
and characterizes the great majority of the trajectories in
both reducing and oxidizing conditions, as indicated in Ta-
ble 1. In EFM, the open-loop folding turns out to be the
optimal route to the formation of the native lasso fold, in
agreement with the intuition that the closure of the covalent
loop determines an entropic barrier, slowing down the pro-
cess. The behavior of OM shows how the optimization pres-
sure, building on the requirement of a reproducible and
efficient folding, can select a pathway among the possible
ones and polarize the mechanism of folding, similarly to
what is observed in experiments and simulations of small,
knotted protein folding (18,24).
G�oM

To complement the picture obtained by means of the EFM,
we have performed a set of folding simulations employing
the well-established G�oM proposed by Clementi et al.
(26), which has already been used by Haglund et al. to study
lasso proteins (20,22,23). For details on the description, we
refer to the cited references; here, we just underline that the
native contacts are established through a 12-10 Lennard-
Jones potential, which is the main driving force of the
folding. As mentioned in Methods, this description also
models the backbone stiffness with the angular potentials
of Eq. 6. The stiffness coefficients are homogeneous, set
to kbend ¼ 40.0, ktor1 ¼ 1:0, and ktor3 ¼ 0:5. Following
A B
(71), we model the oxidizing conditions by rescaling the
contact potential between the cysteines that form bridges
in the native conformation. As a result of the temperature
study presented in the Supporting Materials and Methods,
we have chosen to simulate this model at a temperature
T ¼ 0.7, at which the folding is referred to as kinetically
optimal or minimally frustrated (27,35).

The folding criterion adopted for this model is the one
chosen for EFM, namely requiring that F 1=2 < 0:9 and
L > 0.9 simultaneously. However, because the dihedral an-
gles are substantially less stiff than in the EFM, the compu-
tation of Lmust involve a larger number of residues (see the
Supporting Materials and Methods for further details). The
folding success rates resulting from 2048 simulations in
both reducing and oxidizing conditions are reported in Ta-
ble 1. The measured probability is in both cases above
0.55, with a lower value in oxidized conditions. This simi-
larity in folding propensity suggests that the topological bar-
rier imposed by the formation of the bridge does not have a
substantial effect in this model. This is possibly related to
the fact that the native contact between the cysteines is pre-
sent also in the model under reducing conditions, albeit
weaker. However, the analysis of the folding pathways pro-
vides further indications to explain this similar capability of
folding.

Applying the same criteria employed for the EFM, we
have analyzed the successful trajectories collected with
reduced and oxidized G�oMs and assessed the population
of different folding mechanisms. The results are reported
in Table 1 and represented in the tb versus tf plots of
Fig. 12, A and B. The data indicate that the distribution of
FIGURE 10 Successful folding landscape Fs of

the HM as a function of the Gauss linking number

G and of the b1 bridge distance. (A) Successful tra-

jectories (N ¼ 1970) in reducing conditions. (B)

Successful trajectories (N ¼ 1946) in oxidizing con-

ditions. To see this figure in color, go online.
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FIGURE 11 tb versus tf for the successful trajec-

tories of the OM. (A) shows the results of the N ¼
1969 successful trajectories in reducing conditions,

and (B) shows the results of the N ¼ 1946 successful

trajectories in oxidizing conditions. The color of the

circles indicates the folding pathway, following the

classification indicated in the text. The line corre-

sponds to tb¼ tf. To see this figure in color, go online.
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foldingmechanisms is similar in reducing and oxidizing con-
ditions. This symmetry confirms indeed that the successful
folding events are not significantly affected by the cysteine
bridge potential. However, most of the trajectories adopted
an open-loop pathway, in which the topology forms before
the contact of cysteine residues. The selection of this mech-
anism is the main reason why the model folds with a similar
success rate in both environmental conditions. In the choice
of the pathway, we have found that the G�oM, at the temper-
ature of fastest folding, is in qualitative agreement with the
OM. Indeed, both descriptions show a rather symmetrical
choice of pathway in reducing and oxidizing conditions, in
which the open-loop mechanism is selected. This means
that both models mostly fold by forming the CL topology
before the closure of the covalent loop, pointing at this way
of overcoming the topological bottleneck as the most effi-
cient option for the protein.

Moreover, almost all folding events take place at early
times (t< 103), whereas only a minor fraction of trajectories
B

C D
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fold in the remaining simulation length. This indicates that
the nonsuccessful runs have reached deep, metastable states
and would need much longer times to find their way to the
native basin. We thus notice that this G�o-like description of
2GMF is prone to kinetic traps, hampering the reproducible
folding of the model. Backtracking is here a crucial factor in
determining the access to the native state, but at this temper-
ature, it would necessitate much longer timescales than
those accessed by our simulations. The optimized EFM
model could instead reach a very high probability of folding
within the early stages of dynamics. This supports the idea
that concerted, nonlocal motions of the backbone, like those
driven by EFM angular potentials, are crucial for reproduc-
ible and efficient folding of self-entangled proteins. The
adopted G�oM, (almost) purely driven by native contacts,
misses this aspect and thus fails in folding reproducibly.

To further enrich this picture, we show the behavior of the
G�oM when the folding temperature is increased, facilitating
the backtracking mechanism. To this purpose, we have
FIGURE 12 tb versus tf for the successful trajec-

tories of G�oM simulations. (A) and (B) display the re-

sults of the G�oM at T ¼ 0.7: the N ¼ 1228 successful

trajectories in reducing conditions are shown in (A),

and the N ¼ 1130 successful trajectories in oxidizing

conditions are shown in (B). (C) and (D) display the

results of the G�oM at T ¼ 1.1: the N ¼ 1291 success-

ful trajectories in reducing conditions are shown in

(C), and the N ¼ 549 successful trajectories in

oxidizing conditions are shown in (D). The color of

the circles indicates the folding pathway, following

the classification indicated in the text. The line corre-

sponds to tb ¼ tf. To see this figure in color, go online.
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studied the G�oM at T ¼ 1.1 in both reducing and oxidizing
conditions. Again, we have collected 2048 runs of length
trun ¼ 1.5 � 104 to detect the fast folding events. As re-
ported in Table 1, the probability of folding within this simu-
lation time is now strongly affected by the environment,
with a much lower success rate in oxidizing conditions.
To investigate the reason for this difference, we have
collected the distribution of folding times, once again distin-
guishing among the different pathways. The results, dis-
played in Fig. 12, show that the process at T ¼ 1.1 is on
average much slower than at T¼ 0.7 and that the population
of folding routes is not any more symmetric between the
reduced and oxidized models.

At T ¼ 1.1, the model is not in the kinetically optimal
regime, and slower routes that at T ¼ 0.7 are prevented by
the roughness of the free-energy surface are made accessible
by thermal fluctuations, which allow backtracking and the
exploration of the folding funnel across different pathways.
This aspect is evident from the behavior of the model in
reducing conditions (Fig. 12 C), in which all three mecha-
nisms are well populated and the incidence of slower path-
ways is limited only by the finite sampling time of the
trajectories. In the oxidized model (Fig. 12 D), the situation
is different because the cysteine bridge potential anticipates
the closure of the loop, narrowing the conformational space
accessible by thermal fluctuations and polarizing the choice
of folding mechanism toward the threading pathway. As in
the OM results, in this last case (oxidized G�oM at T ¼
1.1) as well, a single folding route is promoted. However,
the pathway selection has here a different nature than in
EFM results. Although in this case, it is the early closure
of the bridge that imposes the folding mechanism, in the
OM, the choice was determined by the optimality of folding
kinetics. It would be therefore of great interest to verify the
preferential folding pathway of 2GMF by means of more
detailed all-atom MD simulations or with experimental
probing. This kind of evidence, on the basis of the results
presented here, would indeed provide insights on the nature
of folding mechanism selection that is a characterizing
feature of self-entangled proteins.
CONCLUSIONS

In this work, we have presented an investigation on the
folding of the glycoprotein granulocyte-macrophage col-
ony-stimulating factor (PDB: 2GMF), which presents a CL
native structure. The study is performed by means of MD
simulations, employing both awidely usedG�oMvariant, pro-
posed by Clementi et al. (26), and the EFM, a CG, minimal-
istic description proposed in (48), for investigating the
folding mechanisms of knotted proteins. We here extended
the original models by implementing the formation of native
cysteine bridges to assess their effect on the folding process.

The EFM dynamics is based on optimized bending and
dihedral potentials, which are tuned to improve the folding
capability of the model, with the purpose of enlightening the
optimal pathways toward the native structure. In this work,
we have introduced the MFFO, an evolutionary approach for
the optimization of EFM interaction potentials. The results
show that this algorithm significantly outperforms the orig-
inal stochastic method, allowing the study of more complex
systems with EFM. Moreover, this evolutionary strategy is
general and can be employed to optimize other minimalistic
protein descriptions, such as G�o-like models. Relying
on this evolutionary approach, we have built an OM of
2GMF, capable of reaching a very high success rate during
the early stages of the folding, avoiding kinetic traps, and
providing indications on the pathways that enable efficient
and reproducible folding. We have then compared the
behavior of this model to the results obtained with the G�oM.

In our study, we focused on the capability of folding in
relatively short times, that is, without encountering major
kinetic traps. The optimized EFM is in this sense more suc-
cessful, attaining a folding probability of 0.95 against the
0.6 achieved by the considered G�oM at the temperature of
fastest folding. This demonstrates the importance of force-
field heterogeneity and concerted angular motions for
efficiently crossing the topological bottlenecks of self-en-
tangled folding.

Besides the capability of reaching the native state, we
were also interested in studying the folding pathways of
the protein. To this purpose, we have defined two topologi-
cal descriptors, the lasso variable L and the Gauss linking
number G, inspired by successful methodologies for the
classification of protein structures. By monitoring the topol-
ogy of the protein, these variables turned out to be useful
tools for the analysis and classification of folding trajec-
tories. As a result, we were able to characterize the folding
scenario of 2GMF, outlining three main mechanisms. Build-
ing on this picture, we showed that the optimization of EFM
can polarize the trajectories toward an open-loop folding
route, in which the lasso topology sets in before the cysteine
bridge is formed and seals the covalent loop. The selection
of this optimal pathway is also confirmed by the G�oM that,
at the temperature of fastest folding, privileges an open-loop
folding route.

By simulating the G�oM at a higher temperature to lower
the free-energy barriers and allow for backtracking mecha-
nism, we have found that the scenario of folding pathways
changes. These temperature conditions fall outside the range
of optimal folding kinetics, and the process requires much
longer simulation times. Nonetheless, because native con-
tacts can break more easily, the protein can sample a larger
portion of the free-energy landscape, populating all possible
folding routes. Also, at this temperature regime, under
oxidizing conditions, we have observed a polarization of
the folding pathway toward a single mechanism. However,
differently from the optimal kinetic scenario in which the
open-loop mechanism was privileged, these simulations
favor a loop-threading route. Indeed, the early formation
Biophysical Journal 117, 1–15, July 9, 2019 13
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of the covalent loop imposes an entropic restraint to the
model, restricting the possible routes to the threading one.
Starting from this picture, we think that the study of
2GMF folding using further techniques, either more detailed
simulations or experimental studies, would be crucial to
validate the hypothesis that entangled folding has evolved
to privilege optimal pathways. Overall, this discussion
can provide a useful viewpoint in the debate on protein
folding mechanisms, and their driving principles (see, e.g.,
(72–74)).

The methodological advancements presented here consti-
tute a useful complement to the existing protein models.
They can provide valuable insights on the folding landscape
of topologically complex proteins and draw the guidelines
for molecular simulations using more detailed physical
models. Moreover, by highlighting the most efficient
folding routes, the qualitative picture obtained with the
EFM can also shed light on the role played by environ-
mental factors that accelerate folding, such as chaperonins
or cotranslational folding.
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