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1. INTRODUCTION

From viruses to eukaryotes, genomic DNA filaments are confined in spaces of linear dimension
much smaller than their contour lengths. In bacteriophages, the µm-long genome is stored in 50
nm-wide viral capsids and the corresponding packing density is so high that viral DNA filaments
that have little chance to be entangled in solution (knotting probability <3%) become almost
certainly knotted (>95% probability) once confined inside the capsid (Rybenkov et al., 1993;
Arsuaga et al., 2002; Marenduzzo et al., 2009, 2010). In humans, instead, the various cm-long
chromosomes that make up the genome are kept inside 10 µm-wide nuclei (Alberts et al., 2014).
Despite the major change of scale with respect to viruses, the volume fraction occupied by this
eukaryotic genome is still large, about 10% (Rosa and Everaers, 2008).

These considerations pose several conundrums: How can chromosomal DNA be at the same
time packed and yet accessible to the regulatory and transcriptional machineries?What is its typical
degree of genomic entanglement and how much does it interfere with DNA transactions? To
what extent are these aspects shaped by general passive physical mechanisms vs. active ones, e.g.,
involving topoisomerase enzymes?

2. INTRA- AND INTER-CHROMOSOME ARCHITECTURE

2.1. Phenomenology
Addressing these questions has proved challenging because of the wide range of length and
time scales involved in genome architecture. Classical experimental tools provide details of
chromosome architecture at two opposite scales (Marti-Renom and Mirny, 2011). At the smallest
one (10 − 100 nm) X-ray crystallography revealed that DNA achieves local packing by wrapping
around histones, while at the largest one (1 − 10 µm) fluorescence in situ hybridization
(FISH) showed that each chromosome occupies a compact region of the nucleus, termed
territory (Cremer and Cremer, 2001, 2010).

More recently, experimental breakthroughs such as super-resolution imaging, electron
microscopy tomography plus selective labeling, and chromosome conformational capture (Hi-C)
techniques have significantly extended our multiscale knowledge of genome architecture (Dekker
et al., 2002; Lieberman-Aiden et al., 2009; Boettiger et al., 2016; Ou et al., 2017; Bintu et al., 2018;
Nir et al., 2018).

These and other advancements helped establish various results that foster the present discussion
of genomic entanglement.
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Regarding inter-chromosome organization we recall that:

(i) the positioning of chromosome territories correlates
significantly with sequence-dependent properties
of the underlying DNA [most notably, gene
density (Bolzer et al., 2005)];

(ii) the intermingling of different chromosomes is minimal and
mostly restricted to the boundaries of the territories (Cremer
and Cremer, 2001; Branco and Pombo, 2006).

For intra-chromosome aspects we instead know that:

(iii) on the scale of a few kilo-basepairs up to about 1
mega-basepair, chromosomes are organized into self-
interacting regions, called topologically-associating
domains or TADs (Dixon et al., 2012; Nora et al., 2012).
On the tens of mega-basepairs scale, chromatin is
organized into compartments of varying compactness
depending on their functional and epigenomic
state (Lieberman-Aiden et al., 2009; Wang et al., 2016);

(iv) despite this variability, when averaged over chromosomes
and experimental realizations, the mean contact probability
of two chromosomal loci at genomic distance ℓ scales
approximately as 〈pc(ℓ)〉∼ ℓ−1 (Lieberman-Aiden
et al., 2009), and the mean square separation scales as
〈R2(ℓ)〉∼ ℓ2/3 (Sachs et al., 1995; Münkel et al., 1999).

2.2. Relating Genomic Architecture and
Relaxation Dynamics With Polymer Physics
The interpretation of these experimental results has been
aided by an intense theoretical and computational activity that
demonstrated how salient genomic architecture properties can be
reproduced by a broad range of polymer models, and hence are
likely governed by general physical mechanisms (Mirny, 2011;
Rosa and Zimmer, 2014; Bianco et al., 2017; Haddad et al.,
2017; Jost et al., 2017; Tiana and Giorgetti, 2018). This applies
in particular to the aforementioned properties (i–iv) which can
be rationalized as manifestations of the topological constraints
that rule the behavior of semi-dilute or dense polymer systems,
particularly their relaxation time scales (Doi and Edwards, 1986).

In fact, a solution of initially disentangled chains of contour
length Lc can reach the fully-mixed, homogeneous equilibrium
state only via reptation, a slow and stochastic slithering-like
motion with characteristic time scale equal to τrept ≃ τe(Lc/Le)

3,
where τe is a microscopic collision time and Le is the typical
contour length between entanglement points (De Gennes, 1971;
Doi and Edwards, 1986).

Thus, based on this fundamental polymer physics result, it
was estimated that the characteristic relaxation, or equilibration,
time of mammalian chromosomes exceeds 100 years (Rosa and
Everaers, 2008). The orders-of-magnitude difference between this
time scale and the typical duration of the cell cycle (≈ 1 day) has
several implications for genome organization, as it was realized
even before Hi-C probing methods became available (Rosa and
Everaers, 2008). It is clear, in fact, that mammalian chromosomes
are never fully relaxed as they undergo the cyclic structural
rearrangements from the separate compact rod-like mitotic

architecture to the decondensed interphase one (Grosberg et al.,
1993; Rosa and Everaers, 2008).

2.3. Implications for (Minimal) Intra- and
Inter-chromosome Entanglement
From this standpoint, the emergence of chromosome territories
is quantitatively explained as due to the kinetically trapped
decondensation of the compact mitotic chromatin (Rosa
and Everaers, 2008): interphase chromosomes retain the
memory and limited mutual overlap of the earlier mitotic
state, consistent with experimental results (Cremer and
Cremer, 2001, 2010; Branco and Pombo, 2006). In addition,
the ordered linear organization of the mitotic rods should
also inform the intra-chromosomal architecture, making it
more local than equilibrated polymers. This is consistent
with the experimental fact that the effective scaling behavior
of the contact probability with the genomic separation ℓ

in interphase chromosomes has a more local character
(∼ ℓ−1) than the one expected (∼ ℓ−3/2) for equilibrated
polymers (Lieberman-Aiden et al., 2009). Intuitively,
the same memory mechanism ought to facilitate the
subsequent separation of interphase chromosomes and their
recondensation upon re-entering the mitotic phase in the cell
cycle (Rosa and Everaers, 2008).

For the present discussion, we stress that these out-of-
equilibrium effects should impact not only the architecture
but also the physical entanglement of eukaryotic genomes. In
fact, mammalian chromosomes should be more unlinked (for
the limited inter-chromosomal intermingling) and unknotted
(for the enhanced intra-chromosomal local contacts) than
at equilibrium. These heuristic conclusions are supported
by various studies showing that the aforementioned scaling
relationships obtained by FISH and Hi-C experiments
can be ascribed to the topological constraints at play in
solutions of unknotted and unlinked polymers (Khokhlov and
Nechaev, 1985; Vettorel et al., 2009; Halverson et al., 2014;
Rosa and Everaers, 2014).

2.4. Implications for Genomic Structural
Modeling and Its Improvement
These considerations appear particularly relevant
for the structural modeling of eukaryotic genomes
based on phenomenological data, such as spatial
proximity constraints, which are typically too sparse to
pin down even coarse-grained models of interphase
chromosomes (Lieberman-Aiden et al., 2009).

A key question is whether such structural models should
additionally be informed by the notion that interphase
chromosomes must originate and eventually return to the
separate and condensed mitotic state.

Evidence presented in our earlier work help shed some
light on the matter. With our co-workers, we considered a
model system of six copies of human chromosome 19 in
a cubic simulation box with periodic boundary conditions
to explore the connection between coregulation and
colocalization of genes (Di Stefano et al., 2013). Each copy
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FIGURE 1 | (A) Model conformations of human chromosome 19 (six copies, arranged in a periodic simulation box), described as self-avoiding chains of beads were

reshaped by steered molecular dynamics (MD) simulations to promote the colocalization of pairs of loci that are significantly coregulated. Most (>80%) of the

coregulated pairs were successfully brought into spatial proximity in simulations that started from relaxed solenoidal mitotic-like arrangements, while virtually no

successful colocalization was observed for trajectories started from equilibrated, fully mixed, chromosomal arrangements. Adapted with permission from Di Stefano

et al. (2013). (B) Model conformations of the entire-human genome, obtained by steered-MD colocalization of loci based on Hi-C data in Dixon et al. (2012) and Rao

et al. (2014) could be successfully condensed with minimal hindrance from intra- or inter-chromosomal constraints, consistently with the expected reconfiguration

compliance necessary for the interphase→mitotic transition. The smaller side pictures are cut-through views. Adapted with permission from Di Stefano et al. (2016).

was initially prepared as a mitotic-like conformation (Rosa
and Everaers, 2008), consisting of a polymer filament
forming a solenoidal pattern with rosette-like cross-section
featuring chromatin loops of about 50 kilo-basepairs, see
Figure 1A. We then used a molecular-dynamics steering
protocol to bring in proximity pairs of intra-chromosomal
loci that were known to be significantly co-regulated.
Importantly, topological constraints were accounted

for by avoiding unphysical chain crossings during the
steering process.

Remarkably, and consistently with the gene kissing
hypothesis (Cavalli, 2007), we found that most (> 80%) pairs of
significantly coregulated genes could indeed be colocalized in
space within the contact range of 120nm and further showed that
this colocalization compliance followed from the presence of
gene cliques in the coregulatory network (Di Stefano et al., 2013).
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Conversely, the same protocol applied to the same set of
chains but initially prepared as generic self-avoiding random
walks failed to give colocalization (Di Stefano et al., 2013).
Physically, this happens because the intra- and inter-chain
entanglements present in this system, which mimicks an artificial
set of equilibrated chromosomes, were too numerous and
conflicting to be successfully negotiated on a viable simulation
time scale (see Figure 1A).

Further elements come from the genome-wide structural
modeling of human chromosomes of Di Stefano et al. (2016). In
this study too, the model chromosomes were initially prepared in
mitotic-like states and were then steered to bring in proximity
those pairs of loci that corresponded to significantly enhanced
entries of two independent Hi-C datasets (Dixon et al., 2012; Rao
et al., 2014). The architecture of the final conformations were, as
expected, significantly changed by the steering protocol. Yet, as
illustrated in Figure 1B, we verified that eachmodel chromosome
could be brought to a condensed compact shape as needed for the
interphase-mitotic transition without significant hindrance from
intra- or inter-chromosomal topological constraints (Di Stefano
et al., 2016).

We note that the limitedly-entangled architecture of models of
long eukaryotic chromosomes has emerged lately (Di Pierro et al.,
2016) as the consequence of microphase separation of regions
of different chromatin types (Jost et al., 2014) in a block co-
polymer model with pair interactions tuned to reproduce the
contact propensities of point (iv). The point is reinforced by
studies on the yeast genome showing that knots and links have
a generally low incidence especially in comparison to equivalent
systems of equilibrated chains (Duan et al., 2010; Segal et al.,
2014; Pouokam et al., 2019). Finally, besides the indication from
structural models, other mechanisms such as loop extrusion have
been advocated to be instrumental for maintaining a low degree
of chromosomal entanglement (Racko et al., 2018; Orlandini
et al., 2019).

To some inevitable extent though, physical entanglements are
still expected to arise in eukaryotic chromosomes.

The recent work of Roca’s lab showed that knots do
occur in eukaryotic minichromosomes in vivo, for instance
during transcription, due to transient accumulation of
entanglement (Valdés et al., 2017, 2019). On broader scales,
various knots (Siebert et al., 2017), and even links (Niewieczerzal
et al., 2019), were found in model mouse chromosomes obtained
from single cell Hi-C (Stevens et al., 2017). The genuineness

of the entangled states was suggested by the systematic
recurrence of certain knot types in independent instances of
the reconstructed chromosomal structures (Siebert et al., 2017).
These were obtained by imposing phenomenological constraints
on an initially disconnected set of effective monomers, so
we expect that a more defined knot spectrum could be
obtained by using disentangled self-avoiding chains as the
reference model.

3. CONCLUSIONS

To conclude, we have discussed experimental evidence and
general physical mechanisms based on polymer theory that
consistently point to an unusually low degree of entanglement
expected in long eukaryotic chromosomes. Such property, which
is arguably essential for the capability of chromosomes to
reconfigure as needed at various stages of the cell cycle, appears
important for genomic modeling too.

We argued that the structural modeling of long chromosomes
can benefit, both for realism and computational efficiency,
by starting off with disentangled self-avoiding chains, e.g.,
mitotic-like ones, because their plasticity makes it possible to
accommodate a large number of phenomenological constraints
in a physically-viable manner, i.e., without deformations
involving intra- or inter-chain crossings.

The latter are, of course, possible in in vivo systems thanks
to the action of topoisomerase enzymes. An important open
question regards the extent to which these active mechanisms are
involved in the shaping the overall intra- and inter-chromosome
architecture. This point, we believe, can be significantly advanced
in future studies with a tight synergy of experiments and models
(Goloborodko et al., 2016; Jost et al., 2017; Valdés et al., 2019).
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