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Conformations of partially or fully adsorbed semiflexible polymer chains are studied varying both
contour length L, chain stiffness, κ, and the strength of the adsorption potential over a wide range.
Molecular Dynamics simulations show that partially adsorbed chains (with “tails”, surface attached
“trains” and “loops”) are not described by the Kratky-Porod wormlike chain model. The crossover of
the persistence length from its three-dimensional value (ℓp) to the enhanced value in two dimensions
(2ℓp) is analyzed, and excluded volume effects are identified for L ≫ ℓp. Consequences for the
interpretation of experiments are suggested. We verify the prediction that the adsorption threshold

scales as ℓ
−1/3
p .

PACS numbers:

Introduction Adsorbed stiff macromolecules on sub-
strates are of key interest to understand properties and
function of various nanomaterials, and also play an im-
portant role in biological context [1–7]. While adsorp-
tion of flexible polymers has been extensively studied [8–
12], the adsorption transition of semiflexible polymers
is much less understood [13–23]. For flexible polymers,
the salient features of this transition are well captured
[10–12] by the simple selfavoiding walk lattice model of
polymers [24]. However, extending the model to semiflex-
ible polymers [13, 20] misses important degrees of free-
dom, namely, chain bending [25] by small bending an-
gle θ. Consequently, most work uses the Kratky-Porod
(KP)[26] wormlike chain (WLC) model: in the contin-
uum limit the chain is described by a curve ~r(s) in space,
the only energy parameter κ considered relates to the
local curvature of the polymer. The Hamiltonian

H

kBT
=

κ

2

∫ L

0

ds

(

d2~r(s)

ds2

)2

(1)

yields for the tangent - tangent correlation function an
exponential decay with the distance n between two bond
vectors (n = s− s′) along the chain backbone,

C(n) = 〈cos θ(n)〉 = e−n/ℓp(d = 3), or e−n/2ℓp (d = 2),
(2)

with ℓp = κ/kBT the persistence length. There are two
problems: (i) while in d = 3 dimensions excluded vol-
ume interactions between the effective monomer units
of the polymer come into play only for extremely long
chains when ℓp ≫ 1 (measuring lengths in units of the
distance ℓb = 1 between the subsequent monomers along
the chain) [27], in d = 2 deviations from Eq.(2) start
when s−s′ exceeds 2ℓp distinctly, and a gradual crossover
to a power-law decay, 〈cos θ(s − s′)〉 ∝ (s − s′)−β with
β = 2(1− ν) = 1/2 [28] begins. Strictly in d = 2, chains
cannot intersect, and for L ≫ ℓp excluded volume mat-
ters. (ii) in fact, adsorbed chains exist to some extent
“in between” the dimensions (remember the well-known
[11] description in terms of trains, tails and loops, cf.

Fig.1a: tails and loops exists in d = 3, trains reside (al-
most) in d = 2). If the adsorption potential, U(z), with
z being the distance from the (planar) adsorbing sub-
strate, is very strong, tails and loops will be essentially
eliminated but in real systems the adsorption then must
be expected to be irreversible[29]. While single-stranded
(ss)-DNA on graphite [7] and double-stranded (ds)-DNA
on lipid membranes [6] have been shown to equilibrate by
diffusion in the adsorbed state, no diffusion is observed
for more bulky polymers such as dendronized polymers
(DP) [30]. Adsorbed bottlebrush polymers [31] or DPs
are intriguing since ℓp for such polymers can be system-
atically varied by choosing different side chain lengths
(for bottlebrushes [32]), or different generations (for DPs
[30, 33, 34]). However, experiments reveal subtle effects
of surface roughness [30] and electrostatic interactions
[30] making thus the interpretation of the observed per-
sistence lengths difficult.
Model In the present work we elucidate the mean-

ing of ℓp for experimentally observed semiflexible poly-
mers by means of Molecular Dynamics simulations using
a bead-spring model as studied previously in both d = 2
[35] and in d = 3 [36], assuming dilute solutions under
good solvent conditions. All beads interact with a trun-
cated and shifted Lennard-Jones potential,

ULJ (r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6

+
1

4

]

, (3)

where ULJ = 0 for distances r > 21/6σ, ǫ being cho-
sen as unity, ǫ = kBT = 1, and the range σ = 1.
Eq.(3) therefore means that excluded volume effects are
fully accounted for. Chain connectivity is ensured by
the finitely extensible nonlinear elastic (FENE) poten-
tial [37], UFENE(r) = −(1/2)kR2

0 ln(1 − r2/R2
0), with

R0 = 1.5σ, k = 30 (the average bond length ℓb is then
roughly 0.976). The bond bending potential is taken as
Ub = κ(1 − cos θ) ≈ 1

2
κθ2, compatible with Eq.(1), θ

being the angle between subsequent bonds.
A popular measure of ℓp then is [32] ℓb/ℓp =

− ln〈cos θ〉 ≈ 1

2
〈θ2〉, for κ ≫ 1. This relationship yields
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the results displayed in Fig.1b, i.e., ℓp/ℓb ≈ κ, irrespec-
tive of the chosen substrate potential

Uwall(z) = ǫwall

(
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)(
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)
2
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[
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)10

−
(σ

z

)4
]

, (4)

which has a minimum Uwall(zmin) = −ǫwall at zmin/σ =
(

5

2

)1/6
. In the simulations below, varying ǫwall and the

chain length N , we have carefully monitored that on the
available time scale (of the order of up to 10 million MD
time units) equilibrium is reached. In each case 50 runs
(carried out in parallel using GPUs) were averaged over.
ResultsWhile for small ǫwall the chains are essentially

non-adsorbed mushrooms (one chain end being fixed at
the surface), for ǫwall ≈ 1.0 all monomers are bound to

FIG. 1: (a) Snapshot of an adsorbed chain with N = 500 for
κ = 16, ǫwall = 0.65. Loops and a tail are shown in green,
trains are in darkblue. (b) Decay length ℓeffp /ℓb vs stiffness κ
for N = 250 and several choices of ǫwall. Here n = 1 means an
angle between nearest bonds, n = 2 stands for next-nearest
bonds. Data for n = 1, 2 indicate that ℓeffp increases rather
gradually with κ for adsorbed chains. The inset illustrates
the geometry of the x, z-coordinates of two subsequent bonds
where the X-axis is chosen such that the bond from ~rj−1 to
~rj lies in the X,Z plane. The angles αj = π

2
− ϑj are the

complements to the polar angles ϑj of the bonds with the
Z-axis.
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FIG. 2: (a) Semilog plot of C(n) = 〈cos θ(n)〉, vs n in semi-log
coordinates for κ = 8 (main panel) and κ = 16 (inset). Several
choices of ǫwall are shown, as indicated. All data are for N =
250. (b) The same as in (a) but for strongly adsorbed (ǫwall =
0.80, 1.00) chains with stiffness κ = 5, 8, 16, 25 without EV
interactions. The inset indicates the gradual crossover in the
decay of C(n) with n for κ = 8 and n = 1, 2 from ℓeffp ≈ 8

to ℓeffp = 12.3 for large n.

the wall, i.e., a quasi-twodimensional conformation oc-
curs. Surprisingly, for neighboring bonds, s− s′ = 1, the
expected change of the effective decay length ℓeffp of ori-
entational correlations from ℓp to 2ℓp (2ℓp is readily seen
for strictly d = 2 chains [35]) is not observed.

This finding is rationalized by considering two sub-
sequent bonds, the first bond from ~rj−1 to ~rj , the
second from ~rj to ~rj+1, (cf. inset to Fig.1b).
Choosing polar coordinates to describe the bonds
~rj − ~rj−1 = ℓb(− cosαj , 0, sinαj) and ~rj+1 − ~rj =
ℓb(cosαj+1 cosφ, cosαj+1 sinφ, sinαj+1), for small an-
gles θ between the bonds one has θ2 = φ2+(αj −αj+1)

2,
therefore, also for an adsorbed polymer the bond angle
θ is composed from two transverse degrees of freedom.
Only if the wall potential would constrain all positions
{zj} strictly to zmin , one would get αj −αj+1 ≡ 0, that
is, a single transverse degree of freedom. There are slight
deviations from the result ℓp/ℓb = κ in Fig.1b. How-
ever, when one follows 〈cos θ(n)〉 for large distances n
along the contour, Fig.2a, one reproduces Eq.(2) strictly
only for the non-adsorbed mushrooms, for all the weakly
adsorbed chains, instead, the strong curvature of the
semilog plot shows that an interpretation by Eq.(2) with
a single decay length is inadequate. While quantitative
details in Figs.1, 2 depend on the specific chain model and
the wall potential, the fact that 〈cos θ(n)〉 is not compat-
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ible with Eq.(2) for weakly adsorbed chains even at large
n, and for strongly adsorbed chains applies only if both
ℓp and n are large, is a generic feature. For strongly ad-
sorbed chains a crossover of the effective decay length ℓp
to about 2ℓp occurs when n is significantly larger than 1.
The further crossover for n ≫ 2ℓp to the power law [28]

C(n) ∝ n−1/2 in Fig. 2a sets in slowly, the fully devel-
oped power law is not seen here, it would require to study
by far longer chains. To separate the EV effect from the
crossover ℓp → 2ℓp caused by adsorption, we simulate
chains where Eq.(3) between non-bonded monomers was
omitted, Fig.2b. One sees that ℓeffp reaches the value 2ℓp
only for large κ.
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FIG. 3: Mean-square lateral gyration radius for N = 250
vs ǫwall for 7 choices of κ - with (full symbols) and without
(open symbols) excluded volume (EV) interactions. EV is
more important for small κ (κ = 5, 8). Horizontal straight
lines show KP predictions for d = 3 (for small ǫwall) and
d = 2 (for larger ǫwall). The shaded transition region from
non-adsorbed to adsorbed chains narrows down with growing
κ.

The gradual crossover from e−n/ℓp to e−n/2ℓp with
increasing ǫwall, and the precise range of ǫwall where
this occurs, reflect the region over which the adsorp-
tion transition is rounded (owing to the finite chain
length N) and depend on κ as well. The rounded tran-
sition is monitored by studying the lateral chain lin-
ear dimensions, Fig.3, or local order parameters, the
fraction f of adsorbed monomers, defined by f =
∫

ρ(z)Uwall(z)dz/
∫

Uwall(z)dz, Fig.4a, or the orienta-

tional order parameter of the bonds η = 3

2
〈cos2 ϑ〉− 1

2
, ϑ

being the angle of a bond with the surface normal, Fig.4b.
For the shown medium chain lengths, EV effects for non-
adsorbed chains are negligible for all κ. They are, how-
ever, present for N = 100 for adsorbed chains with κ = 5
and 8 whereas for N = 250 also data for adsorbed chains
with κ = 16 and κ = 25 are already slightly affected by
excluded volume. These findings are certainly compati-
ble with experiment: for ss-DNA with ℓp ≈ 4.6 to 9.1nm,
depending on the ion concentration in the solution, evi-
dence for 〈R2(s)〉 ∝ s2ν with ν = 0.73 was presented [7],
in contrast to the KP prediction 〈R2(s)〉 ∝ ℓps. Even
for long enough ds-DNA with ℓp = 50nm (with effective

diameter σ = 2nm, this would correspond to κ = 25 in
our model), the d = 2 SAW-type behavior was observed
clearly [6]. Thus, the suggestion [4] to estimate ℓp from
the KP expression by means of AFM measurement on
DNA in the limit L ≫ ℓp must be taken with due care
since significant systematic errors may occur when both
L and ℓp are used as adjustable parameters.

Fig.3 also includes a rough estimate of the lateral
part of the mean-square gyration radius of non-adsorbed
mushrooms (〈R2

gxy〉 ≡ 〈R2
gx〉+〈R2

gy〉 ≈ 2/3〈R2
g〉

KP
d=3

(with

〈R2
g〉

KP
d=3

being the result of the KP model in d = 3). For
large ǫwall, the data roughly converge towards the corre-
sponding predictions in d = 2 dimensions 〈R2

g〉
KP
d=2

(pro-
vided κ is large enough too). Denoting np ≡ N/ℓp (where
ℓp is the d = 3 persistence length), one has in d = 2:

3〈R2
g〉

2ℓpL
= 1−

6

np

{

1−
4

np

[

1−
4

np

(

1−
1− exp(−np/2)

np/2

)]}

,

(5)
whereas in d = 3 the same expression holds yet with ℓp
being replaced by ℓp/2 (also in np).

It is clear from Fig.3 that the KP model, Eq.(5), is in-
applicable in the broad (shaded) transition region from
weakly to strongly adsorbed chains. The chain confor-
mations contain here large loops (whereby ℓp appropri-
ate for d = 3 applies) as well as some trains (where
ℓeffp ≈ 2ℓp). But even if the chains are so strongly ad-

sorbed that loops no longer occur, ℓeffp is less than 2ℓp
for intermediate values of κ, as Fig.2b shows: A decay
law C(n) = A exp(−n/ℓeffp ) is observed, with A < 1 and

ℓeffp < 2ℓp. Using these results to modify Eq.(5), we can

account for the actual values of 〈R2
g〉 in the strongly ad-

sorbed regime shown in Fig.3 for those chains where EV
is switched off. Thus, e.g., for κ = 8, ǫwall = 1, N = 250,
Eq.(5) would yield a 〈R2

g〉 of 1039 while the observation

is about 847 only. Taking into account that neff
p = 36.55

instead of np = 31.125, and the reduction by A = 0.93
(see Fig.2b), we predict 845, in very good agreement with
the simulation. Of course, for such not very stiff and
rather long chains the complete neglect of excluded vol-
ume is not warranted, as R2

g = 1167 for the chain with
EV shows. As seen in Fig.2a, EV also causes onset of
curvature in the semilog plot of C(n). Thus Gaussian
statistics as implicit in the KP model for L ≫ lp is clearly
inadequate. Only for all the data without EV, the mod-
ified KP model (with ℓeffp rather than 2ℓp) can account
for the results qualitatively.

Since the adsorption transition becomes a well-defined
(sharp) phase transition only for N → ∞, and then the
theory predicts[17] that f ∝ (ǫwall − ǫcrwall) for ǫcrwall <
ǫwall < ǫsatwall for semiflexible polymers, we plot f vs ǫwall

in Fig.4a for N extending from N = 50 to N = 500.
Indeed, the data are qualitatively compatible with this
prediction, and the estimates, ǫcrwall, thus obtained com-
ply within error bars with the predicted[17] behavior
ǫcrwall/kBT ∝ (ℓp/ℓb)

−1/3 = κ−1/3, cf. Fig.4c. This is
understood qualitatively by decomposing the adsorbed
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FIG. 4: (a) Fraction f of adsorbed monomers vs ǫwall for
κ = 16 (left panel) and κ = 25 (right panel), for the 4 chain
lengths N = 50, 100, 250 and 500, respectively. Tentative
linear extrapolations indicate the estimated location of the
adsorption transition, ǫcrwall, (nonzero f for ǫwall < ǫcrwall is a
finite-size effect). Also the estimation of ǫsatwall, where f crosses
over to saturation value f = 1, is indicated. (b) Adsorbed
fraction f plotted vs ǫwall for N = 250 and 4 choices of κ
(left), and orientational order parameter of the bonds η =
3

2
〈cos2 ϑ〉 − 1

2
vs ǫwall (right). Data with no EV interaction

(open symbols) are also included. (c) Variation of the critical
adsorption potential ǫcrwall with chain stiffness κ for N = 250.

chain into straight pieces of length λ ∝ ℓ
1/3
p ∆2/3, ∆ be-

ing the range of the adsorption potential while λ is the
“deflection length“ [25]. The transition occurs when the
energy won by one such piece is of order kBT . Fig.4a
also shows estimates of ǫsat where f gradually reaches
saturation, f → 1. However, while with increasing κ the
curves f vs ǫwall do become steeper, we are still far from
the 1st-order-like behavior, predicted [17] for κ → ∞.

Conclusions In summary, using a bead-spring model
with a bond-angle potential where the nonbonded part
of the excluded volume potential between monomers is
either included or switched off, a test of the KP de-
scription of the adsorption of semiflexible polymers is
presented. Unlike previous lattice model work (predict-
ing ǫcrwall ∝ 1/ℓp), we verify Semenov’s [17] prediction

ǫcrwall ∝ 1/ℓ
1/3
p . Ref.[17] presents a precise description

of the adsorption of ideal wormlike (KP) chains and ex-
plains why previous attempts (apart from considerations
based on the unbinding transitions [16]) failed. While
near the transition (for very stiff chains) excluded vol-
ume is unimportant, it matters for strongly adsorbed
quasi-2d chains. We show that the concept of persistence
length is not useful for weakly adsorbed chains, and for
the strongly adsorbed chains we demonstrate that the
ℓp → 2ℓp change, predicted by the KP model, only holds
for very large ℓp. We expect that these findings will help
the proper interpretation of experiments on adsorbed ss-
DNA and ds-DNA.
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G. Dietler, A. D. Schlüter, M. Ullnerd, and M. Borkovec,
Nanoscale 8, 13498 (2016)

[31] H.-P. Hsu, W. Paul, and K. Binder, J. Chem. Phys. 133,
134902 (2010)

[32] H.-P. Hsu, W. Paul, and K. Binder, Macromolecules 43,
3094 (2010)

[33] D. Messner, Christoph Böttcher, H. Yu, A. Halperin,
Kurt Binder, Martin Kröger, and A. D. Schlüter,
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