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Active nematics contain topological defects that (under sufficient activity) move, create, and annihilate
in a chaotic quasi-steady state, called active turbulence. However, understanding active defects under
confinement is an open challenge, especially in three dimensions. Here, we demonstrate the topology of
three-dimensional active nematic turbulence under the spherical confinement, using numerical modeling.
In such spherical droplets, we show the three-dimensional structure of the topological defects, which,
because of closed confinement, emerge in the form of closed loops or surface-to-surface spanning line
segments. In the turbulent regime, the defects are shown to be strongly spatially and time varying, with
ongoing transformations between positive winding, negative winding, and twisted profiles, and with defect
loops of zero and nonzero topological charge. The timeline of the active turbulence is characterized by four
types of bulk topology-linked events—breakup, annihilation, coalescence, and crossover of the defects—
which we note could be used for the analysis of the active turbulence in different three-dimensional
geometries. The turbulent regime is separated by a first-order structural transition from a low activity
regime of a steady-state vortex structure and an offset single point defect. We also demonstrate coupling of
surface and bulk topological defect dynamics by changing from strong perpendicular to in-plane surface
alignment. More generally, this work aims to provide insight into three-dimensional active turbulence,
distinctly from the perspective of the topology of the emergent three-dimensional topological defects.
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I. INTRODUCTION

The ability of the material to employ externally or
internally stored energy to spontaneously organize, flow,
move, or change shape—i.e., be active—is found in a
variety of materials [1]. A major class of active materials
includes active nematics [2], which exhibit strong collective
behavior and self-organization, emerging as local orienta-
tional order of material building blocks in material systems
such as bacteria [3] and microtubule-kinesin mixtures [4,5].
Active nematic formalism could also be applied to describe
other biological systems, such as cytoskeleton [6,7] and
biofilm dynamics [8,9]. A recurring behavior in active
nematics is the formation of topological defects, i.e.,
regions of broken orientational order, which are subject
to topological-invariant conservation [10]. Because of
strong localized deformation of the orientational order,
some active nematic defects can perform as strong effective
sources of material flow, dependent on the symmetry of the

defects [11,12]. A recurring property of topological defects
in different active nematic systems is that at larger
activities, they enter a regime of irregular and chaotic
motion at low Reynolds numbers—called active turbu-
lence. In the turbulent regime, generally, the topological
defects are constantly created and annihilated [3,4], which
can be characterized by using statistical tools from classical
turbulence [13,14]. The threshold between regular and
irregular dynamics is strongly dependent on the confine-
ment [15,16], higher-order force multipoles [17], and
friction, which can even lead to stabilization of ordered
defect phases in active nematics [12,18].
Today, geometrical confinements are seen as one of the

prime mechanisms for controlling the dynamics of active
nematics [19–22], notably also in the context of possible
energy harvesting [23]. Active nematics interact with their
confinement through hydrodynamic boundary conditions,
such as slip, no-slip, and friction, as well as through
boundary conditions on the surface-imposed orientational
ordering, also called surface anchoring. Active nematic
droplets based on the mixture of microtubules and molecu-
lar motors were shown to periodically morph their shape
[24]. Active nematic layers organized at the surface of
spherical droplets are also explored from the perspective of
topological defect trajectories and their mutual interactions
[15,24–26]. When interfacing an ordered passive nematic
fluid, active nematics can also exhibit directional streaming
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along the passive nematic director [27] and actuate the
defects in the passive nematic host [28]. Fluid flow inside a
droplet can produce net propulsion of the droplet, which
itself acts as an individual active swimmer particle [29–31].
Realizing and controlling three-dimensional active nem-

atic materials is an open emergent challenge in experiments
[32–36] and numerical simulations [14,37–39], where one
of the standing major complexities is how to characterise
the complex 3D spatially and time varying flow and
orientational fields that moreover have embedded topo-
logical defect regions [14]. Analogous systems exist that
are dominated by topological defects in three dimensions,
distinctly passive (nonactive) liquid crystal colloids
[40,41], and chiral ferromagnets [42,43], where structures
are controlled and characterized by using topological
approaches. Indeed, because of the apolar nature of the
nematic director, the nematic (passive or active) in three
dimensions can form not only point defects (as in 2D) but
also defect lines and loops, which can be characterized with
different topological invariants, including winding number,
topological charge, and self-linking number [10,44]. In
passive nematics, coarsening structures during relaxation of
a quenched state from isotropic to nematic also show a
notable analogy in view of defect loop topology to 3D
active turbulent defect profiles [45]. To generalize, the idea
of this paper is to apply concepts of topology to character-
ize structural events in 3D active nematic turbulence.
In this paper, we explore the topological defect regimes of

three-dimensional active nematics under the spherical con-
finement and no-slip surface, specifically focusing on the
topology-affecting events in the active turbulence. We show
that for moderate activities, the active nematic assumes an
oriented state with an off-center shifted single point defect in
the form of a small loop, and vortex flow with direction-set
angular momentum. Upon increasing activity, we observe
the onset of topological turbulence, characterized by a first-
order structural transition and hysteresis between the offset
point defect and the turbulent regime, also showing the
corresponding phase diagram as dependent on activity and
droplet size. In the turbulent regime, we show that the active
turbulent dynamics can be interpreted as a time series of
topological defect affecting events: defect splitting, annihi-
lation, merging, and crossovers. Depending on surface
anchoring conditions, the defects are in the form of closed
loops (perpendicular anchoring) or surface-to-surface lines
that effectively wet the confining surface (in-plane anchor-
ing), resulting in interesting surface-to-bulk conditioned
turbulent dynamics. More generally, the results demonstrate
dynamics of a strongly confined active nematic and point
towards using concepts of topology for controlling the three-
dimensional active nematic turbulence.

II. RESULTS

The defect phenomena of the active nematic are explored
in an elementary confinement of a droplet with fixed
spherical shape by using mesoscopic numerical modeling

of active nematodynamics [2,11,28,46], which was shown
to give good agreement with experiments on dense
active nematic systems [2,13,47]. The approach relies on
the dynamic coupling between the material flow and the
mesoscopic order parameter tensor Qij that covers the
orientational ordering of active nematic. The activity is
described by dipolarlike forcing via the active stress
contribution. The confining spherical surface is set to
impose strong perpendicular (homeotropic; in Figs. 1–3)
or in-plane (degenerate planar; in Fig. 4) alignment of the
active nematic at the surface, which, experimentally, would
correspond to different surface functionalities [48]. Using
strong anchoring and fixed spherical shape allows us to
discern the effects of shape from the effects of topology that
are otherwise inherently intertwined. Generally, such a
fixed-shape regime corresponds to having materials with
large surface tension or a background medium that is rigid
enough to support the shape of the active nematic droplet
(e.g., gel-like [49]). We use a no-slip boundary condition
at the surfaces to simulate the host medium that resists
flow. All distances are measured in units of the nematic
correlation length ξN , time is measured in units of the
intrinsic nematic timescale τN, and activity ζ is measured in
units of L=ξ2N , where L is the single elastic constant of the
material. Equally, activity can also be described with the
active length ξζ ¼

ffiffiffiffiffiffiffiffi
L=ζ

p
. Note that the nematic correlation

length measures the effective size (thickness) of the defects
and is given as a relative strength of the nematic elasticity
vs variations in nematic order, which are—besides the
activity and confinement—the key energetic mechanisms
that affect the formation, structure, and dynamics of
topological defects. For more on the approach, see the
Appendix. Finally, note that this work focuses on the defect
phenomena in a three-dimensional active nematic, i.e., the
active nematic in the whole bulk of the spherical droplet,
which is different from many current works that consider a
thin layer of active nematic material, for example, at the
surface of a droplet [26,28].

A. Active regimes in spherical droplet

Depending on the activity of the material, two active
regimes with distinct behavior of topological defects are
found for the three-dimensional bulk active nematic in the
confinement of a spherical droplet with perpendicular align-
ment: For low activity, structure with an offset stationary
point defect is observed [Fig. 1(a) and Supplemental Video 1
[50] ], whereas for higher activities, a regime of three-
dimensional active turbulence with spatially varying and
time-varying defect loops is observed [Fig. 1(c) and
Supplemental Video 2 [50] ]. These two regimes are sepa-
rated by a (hysteretic) structural transition [Fig. 1(b) and
Supplemental Video 3 [50] ]. In the limit of no activity
(i.e., also nomaterial flow), the considered spherical confine-
ment would exhibit a radial nematic director structure with
a single þ1 radial hedgehog point defect at the center, as
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imposed by the confining surface conditions; indeed, such
a profile is observed for activities below the activity
ζonset ¼ 1.6 × 10−3L=ξ2n (see also Fig. 2). Note that the
hedgehog point defect appears in the form of a small ring of
local winding number þ1=2, with diameter of the order of
nematic correlation length, and is topologically equivalent
to a point [51]; the exact small-scale structure will, in
practice, depend on the microscopic building blocks of
the material. Therefore, in view of our work, loops with
radius of the order of the nematic correlation length will
be called point defects. Above the activity ζonset, a self-
sustained structure of a twisted director profile and a vortex
flow appears, characterized by the orientation and magni-
tude of the angular-momentum vector [Fig. 1(a)]. Similar
to (passive) cholesteric nematic droplets [52], the twisted

director field pushes the point defect away from the droplet
center. Since our system has no preferred chirality, the shift
of the point defect can be both along and against the
angular-momentum vector. Additionally, there is a velocity
field component of roughly 2.5 times smaller magnitude
than the circular vortex flow, which goes along the center
of the droplet towards the point defect and then near the
surface back to the opposite end of the spherical droplet
confinement. For increasing activity, the magnitude of the
vortex flow increases, and the defect shifts more and more
toward the surface of the droplet; as a critical activity is
reached, the small defect ring opens into a larger loop [see
Fig. 1(b)]. At this value of the activity, the activity-induced
flow can overcome the elastic barrier of the nematic field to
transform the point defect into a topologically equivalent

(a) (b)

(c)

(d)

FIG. 1. Active nematic regimes in spherical droplet confinement with perpendicular surface alignment. Snapshots of dynamics for
different activities, showing time evolution, velocity streamlines, and director field. (a) Active nematic regime at low activities with a
single point defect (in red, in the form of a small ring) displaced from the droplet center and flow vortex (gray streamlines) with the
angular-momentum vector Γ. Note that the flow velocity component in the direction of −Γ is about 2.5 times smaller than the flow in-
plane component in the xy plane. The right panel shows director profiles in the plane of the vortex and perpendicular to the vortex. Red
corresponds to the director along the x axis, green along the y axis, and blue along Γ. The bottom panel shows how, with increasing
activity, the point defect (in red) moves further away from the droplet center and flow magnitude (blue arrows) increases. (b) Transition
of the point-defect regime into the turbulent regime upon an increase of activity from 0.035L=ξ2N to 0.036L=ξ2N; note the stretching and
deformation of the defect loop and the disintegration of the regular velocity profile. (c) Turbulent active nematic regime. Defect loops are
shown as isosurfaces of reduced degree of order (in red) and flow field with gray streamlines. The right panel shows the corresponding
director in the given plane; the local variability of the defect cross section is illustrated with a splay-bend parameter (yellow and blue
isosurfaces; see the Appendix). (d) Selected timeline of active turbulence in the active nematic droplet. The red isosurface of the scalar
order parameter is drawn at S ¼ 0.45; blue arrows and bright green isosurfaces represent the velocity field above selected cutoff
magnitudes (see the Appendix).
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large defect loop. This process involves contributions of
defect core line tension, nematic elasticity, advection,
backflow, shear active flow, as well as coupling to con-
fining geometry and actual local and global defect top-
ology. Above the critical activity, the active nematic
transitions into a chaotic irregular behavior—i.e., the active
turbulence regime. There can be strong material flow due
to large elastic deformation around the core of the loop,
and overall, strong dynamic deformations of the loop
are observed, including topology-modifying events, such
as the breakup of a loop into multiple loops, as shown in
Figs. 1(c) and 1(d).
Performing a more quantitative study of the active

nematic regimes in the spherical droplet confinement,
several distinct material characteristics are analyzed (as
shown in Fig. 2) that can assess the three-dimensional
nematic orientational ordering and material flow, as well
as the topology of the defects. For each simulation, we
changed the activity between two neighboring data points
in Fig. 2(a); we let the system evolve for 4500τN to reach
a dynamic steady state and then over a time interval of

18500τN collected data on total defect length, (average)
defect position, total angular momentum, and probability
for observing N number of defect loops [Fig. 2(a)]. Note
that, in the analysis, we employ direct 3D tracking of defect
line cores based on variations in the nematic degree of
order, as further explained in the Appendix. The defect
length inside the droplets quantifies that, at low activities,
there is a regime of a single point defect, but upon increasing
activity, a structural transition occurs in the active turbulent
regime, in which the single defect loop or multiple loops
dynamically transform and vary in time, with the total defect
line length changing in time for the order of multiple 10%
from the average value. The position of the center of the
point defect changes with increasing activity and shifts
from the droplet center towards the surface of the droplet.
As the active nematic transitions to the turbulent regime, the
active defect loops explore and transverse the available
volume irrespective of actual activity. The average radial
position of defect segments from the droplet center settles
in the turbulent regime to approximately 0.3R, as at high
activities the defect segments become more uniformly

(a) (b)

FIG. 2. Analysis of active nematic regimes in the confinement of a spherical droplet. (a) Multiple material characteristics of the three-
dimensional active nematic in spherical droplet confinement of radius R ¼ 136ξN, with perpendicular surface alignment dependent on
the activity. The calculations are performed for increasing or decreasing activity, clearly showing a pronounced hysteresis. At each
activity change, previous structure is taken as the initial condition, and simulation is run for 23 000τN for each data point. The top panel
shows the total length of defect loop cores at a given activity, with the bars indicating the standard deviation of the natural oscillation of
the defect length over time. The second panel in (a) shows the average radial distance of the defect core regions from the droplet center.
The third panel gives the total angular momentum set by the flow and its standard deviation in time. The bottom panel gives the
probability for finding the given number of defect loops within the droplet. Note three active regimes—point defect, hysteretic regime,
and developed active turbulence—each with a different response of the active material characteristics. The linear fit of the angular-
momentum dependence on the activity, in the point-defect regime, is used to set the onset activity below which the vortex flow profile
has negligible magnitude and the point defect remains at the droplet center. Graphs of angular momentum and probability are shown
only for hysteresis behavior at decreasing activity. The hysteretic region is delimited by activity numbers Ac ≈ 22.1 and Ac ≈ 25.5, for
the considered droplet size. (b) Phase diagram of active regimes in spherical droplets with perpendicular surface alignment, as given by
droplet radius R and activity ζ.

ČOPAR, APLINC, KOS, ŽUMER, and RAVNIK PHYS. REV. X 9, 031051 (2019)

031051-4



distributed. The average defect position also shows hyster-
etic behavior. The average defect core position from the
droplet center measures well the point-defect position in the
low activity state, but in the turbulent regime, it is more
meaningful to observe the probability density of defect line
segments per unit volume, with respect to relative distance
from the center of the droplet, as shown in Fig. 1 in Ref. [50].
The angular momentum grows within the point-defect
regime continuously with activity, according to a linear
dependence ðζ − ζonsetÞ. Note that ζonset is the activity for the
onset of vortex flow, which we determine numerically by a
linear fit of the angular-momentum dependence on activity.
Note that such emergence of active flows in confined and
defect systems is known to depend on the symmetry and
profile of the equilibrium (no-activity) structure [53–55].
When the active nematic passes to the active turbulence
regime, the average magnitude of the angular momentum
gradually saturates with activity, which again signifies the

breakup of the regular defect dynamics. At this transition
between the point-defect and active turbulence regimes, the
process of defect loop breakup (i.e., creation of new loops)
and annihilation of emerging loops also begins, resulting in a
growing fraction of time when there is more than one loop
present in the spherical droplet.
Activity is the main control parameter for the transition

between the point-defect regime and the active turbulence;
however, this transition could also be driven, for example,
by changing the active nematic elastic constant or the size
of the confining cavity. Figure 2(b) presents a phase
diagram of active regimes with respect to activity and
droplet size, showing that larger droplets transition into the
active turbulent regime at lower activities, whereas smaller
droplets require larger activities to undergo structural
transition from regular to irregular dynamics. Indeed, such
behavior can be well understood by considering the
dimensionless activity number Ac ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζR2=L

p
, which

f
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FIG. 3. Topological events in turbulent regime. (a) Graphically depicted topological flow diagram for the active nematic defect loops
in a selected time interval. Note that the diagram time axis is to scale (black line) and is given in units of the intrinsic nematic timescale
τN. At all times, one of the loops carries topological chargeþ1, and the others have zero charge. (b) A snapshot of active turbulence with
three loops. The color coding of the disks for the selected defect loop shows the type of local profile of the defect line, where blue refers
to þ1=2, red to −1=2 winding number, and purple to the local twist defect line profile. The variation of the defect line cross section is
also illustrated more qualitatively with the splay-bend parameter (yellow and blue isosurfaces). (c)–(f) Time sequences of selected loop
topology-changing events: splitting, annihilation, merging, and crossover. Panel (c) shows splitting of a neutral loop (upper) from a loop
with a þ1 topological charge (lower). The neutral loop soon annihilates in panel (d). The droplet radius is R ¼ 136ξN , and the activity
is ζ ¼ 0.04L=ξ2N.
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gives the ratio between the confinement size R and active
length ξζ. In Fig. 2(b), the transition from the point defect to
active turbulence is observed roughly at Ac ∼ 20.
The structural transition between the point-defect struc-

ture and the active turbulence exhibits a clear hysteresis,
which is a signature of the discontinuous (first-order)
transition between the two structures [Fig. 2(a)]. The
ordered phase with the offset point defect can be “over-
activated” (i.e., with activity above the transition value),
which we simulate by gradually increasing activity in small
steps from the low activity state until the turbulence
appears, assuring, for each step in the activity change, that
the system reaches the dynamic steady state. Alternatively,

the turbulent state can be “underactivated” (i.e., with
activity below the transition value) before the turbulent
defect loop collapses into a point defect, which we simulate
by gradually decreasing activity in small steps. The
turbulent state can only appear when the flow is strong
enough to overcome the elastic tension force of the defect
line. Once the defect line is extended, it can remain
extended even at lower activities. In the turbulent regime,
the system behaves chaotically, where changes in the shape
of defects can lead to a very different future evolution of the
system. The system has no static equilibrium, but it reaches
a dynamical steady state in which macroscopic variables—
such as the defect length, angular momentum, and average

(b)(a)

(c)

(d) (e)

FIG. 4. Surface and bulk active nematic topological defect transitions in spherical droplets with planar degenerate surface alignment.
(a) Snapshot of an active nematic droplet showing two bulk defect lines, which terminate at the surface (ends of one are encircled with
magenta), and a boojum defect (encircled in cyan). The in-plane director field at the spherical droplet surface is represented by grayscale
streaks. The bottom panel shows the Peirce quincuncial projection map of the surface director and defects from the entire sphere onto a
square; the sphere can be reproduced by folding four corners of the square back together into one point, where the yellow square
represents the equator of the sphere. Note the pointed out defects encircled in magenta and cyan, as shown in the sphere and the
projection square. (b) Annihilation sequence of a selected �1=2 defect pair at the surface of the active nematic droplet shown using the
Peirce projection map. During the sequence, a surface profile with five þ1=2 defects and one −1=2 defect is transformed into a four
þ1=2 defect profile, conserving theþ2 surface topological charge set by the Euler characteristic of the sphere. In the bulk of the droplet,
the sequence corresponds to a line segment being annihilated on the surface, as shown in (d). The annihilating surface defect pair is
encircled in orange. (c) At the droplet surface,þ1 surface boojum breaks into twoþ1=2 defect profiles (encircled in green). In the bulk,
this surface process corresponds to a defect line segment interacting with the surface boojum, resulting in two bulk defect lines, as shown
in (e). (d) Full view of the changes in the bulk defect structure (in red, drawn as isosurfaces of S ¼ 0.51) that corresponds to the defect
annihilation shown in (b). (e) Full view of the changes in the bulk defect structure (in red, drawn as isosurfaces of S ¼ 0.523) that
corresponds to the breaking of a boojum shown in (c).
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number of loops—settle to fluctuate around an average
value.

B. Topology of defect loops in active turbulence

Topology is a natural tool for studying topological
defects that goes beyond exact detailed material char-
acteristics and focuses on the overall structure; we use
topological analysis for the characterization of the active
turbulent regime under the confinement of the active
nematic into spherical droplets. We focus on topological
properties of the actual defect loops—their number, how
they are connected to each other, and their topological
charge—as well as on the local variation of the nematic
director surrounding the defect loops, i.e., considering
defect loops not only as lines but also as objects with
internal structure. Figure 3 shows the dynamics of active
nematic turbulence in the spherical droplet, analyzed from
the perspective of the topology of three-dimensional active
defect loops. In Fig. 3(a), a time series of defect topology-
affecting events is presented—importantly, with the time
axis in scale—for a selected time interval of the active
turbulence in an active nematic droplet (R ¼ 136ξN and
ζ ¼ 0.04L=ξ2N). Four different topological events are
observed to occur stochastically in time, with the average
event rate set by (and increasing with) the activity. New
loops of zero topological charge are observed to detach
(pinch off) from a preexisting loop (the existence of at
least one loop is topologically enforced by the droplet’s
perpendicular surface conditions); extra loops annihilate or
merge back into the loop with nonzero charge, which by
itself cannot disappear. Crossovers of the defect loop with
itself can rewire the loop, reversing the path orientation of
one part relative to the other. More generally, the visualized
map reflects the conservation laws that would formally be
described with a Morse theory, where topological events are
critical points (saddles, endpoints) of the manifold com-
prised of the defect loci over time (the world sheet) [56].
Examples of loop splitting, annihilation of a single loop,
merger of two loops, and a crossover (i.e., self-intersection)
are shown in snapshots in Figs. 3(c)–3(f) and in more detail
in Fig. 2 in Ref. [50].
The director cross section of defect loops in the regime of

active turbulence varies along the defect loop in a complex
way and also changes in time, as shown in Fig. 3(b) and
in Fig. 3 in Ref. [50]. The defect loops in the three-
dimensional active turbulent regime exhibit sections of
local director symmetries of þ1=2 and −1=2 winding
number and twisted profile, which has a profound effect
also on the local dynamics and local active flow. It is well
known from 2D active nematic systems that þ1=2 defect
profiles are generally strong generators of flow and that
they strongly propel this type of (in 2D) point defects,
whereas −1=2 defect profiles do not generate flow and are
less motile [11]. Indeed, it is this variability of the director
field that we now observe in the local cross sections of the

three-dimensional defect loops (see Fig. 3 in Ref. [50]),
which then affects the dynamics of not only itself but all
defect loops, through both nematic elasticity and hydro-
dynamics. The role of local cross sections is known to affect
the dynamics of reconnection events between defect line
segments [57,58]. In our system, immediately before and
after topological reconnection events, the director orienta-
tions of both defect line segments generally lie in the same
plane and rewire in away thatmakes the director between the
defect lines uniform (without introducing topological soli-
tons). For example, two defect line segments with a locally
twisted profile may reconnect into another pair of twisted
profiles, a pair of þ1=2 and −1=2 local profiles, or other
intermediate profiles with a net neutral winding number (see
Fig. 2 in Ref. [50]). Finally, the fact that the defect lines in
spherical droplet confinement with perpendicular conditions
are closed into loops imposes that this local director profile
(þ1=2, −1=2, or twisted) must come back to the same
orientationwhen encircling the loop, which encodes the total
topological charge carried by the loop [44].
At the level of the topology of the loop as a whole with

the surrounding director, we observe that one of the loops
always carries a þ1 topological charge—set by the þ1
topological charge imposed by the perpendicular (homeo-
tropic) surfaces—whereas the rest are topologically neutral
(i.e., charge zero) and can annihilate without contacting
another loop [see Fig. 3(d)] or, alternatively, merge back
with another loop. From a purely topological perspective,
pairs of oppositely charged loops could also be formed (not
observed in our simulations), especially in larger systems
and with larger activities, while still preserving the net
charge conservation set by confinement. However, the
formation of oppositely charged pairs is—at least in the
considered material regime—energetically even more unfav-
orable as than the formation of zero-charged defect
loops. Finally, a possible further approach to classify the
active defect loops topologically could involve the quater-
nionic approach [44] or construction of Pontryagin-Thom
surfaces [59].

C. Surface-contacting topological defects
in active turbulence of spherical droplets

with in-plane alignment

Active turbulence in active droplets of fixed spherical
geometry with strong surface degenerate in-plane alignment
(i.e., planar degenerate anchoring) is explored, showing a
system of interesting surface-to-bulk coupled defect dynam-
ics. Under degenerate planar anchoring, the defect lines
within the bulk are not necessarily closed into loops but
can also terminate at the surface, as shown in Fig. 4 and
Supplemental Video 4 [50]. Indeed, in addition to closed
defect loops observed for droplets with perpendicular surface
alignment, defect lines with surface-to-surface spanning
ends and surface boojum defects are observed, resulting
in the turbulent defect dynamics; in the bulk, this dynamics is
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generally similar to the dynamics in homeotropic droplets,
but it is additionally coupled to the topological events at the
droplet surface. Figure 4 shows two such surface events
using the Peirce quincuncial projection of the surface
director and defects from the sphere onto a square: In
Figs. 4(b) and 4(d), a pair of�1=2 defects within the surface
director field is annihilated, and in Figs. 4(c) and 4(e), a
surface boojum is split into a pair of þ1=2 defects. During
the pair surface annihilation event, a structure with four
þ1=2 defects and a �1=2 defect pair is transformed into a
structure with only four þ1=2 defects. In the bulk, such an
event corresponds to either (i) the annihilation of a defect
surface-to-surface line segment on the surface of the droplet
[which was the actual case in the presented simulation, as
shown in Fig. 4(d)] or (ii) a merger of two ends of defect line
segments into one segment and the following detachment of
the defect segment from the surface. In Fig. 4(c), a þ1
surface boojum interacts (and merges) with a section of the
bulk defect, which results in splitting of the boojum into two
þ1=2 defects, transforming the surface director profile with
two þ1=2 defects and the þ1 boojum into a surface field
with fourþ1=2 defects. In the bulk of the droplet, the defect
line that merged with the boojum splits into two parts, each
of them terminating at one of the newly created þ1=2
defects at the surface, as shown in Fig. 4(e). Additionally, not
shown here, we observe creation of surface defect pairs
when an existing bulk defect loop segment is pushed from
the bulk to the surface, where it is split into two ends (seen
at the surface as a pair of �1=2 defects) or, alternatively,
a reconfiguration of the surface charges by merging of
combinations of −1=2 defects and þ1 boojums.
Topologically, the observed active turbulent defect

dynamics in droplets with in-plane alignment is determined
by the director on the surface where the total winding
number (2D topological charge) must be equal to the Euler
characteristic of the confining surface χ. Specifically, in our
droplets, the net surface topological surface charge must
equal χ ¼ 2, which in the limit of zero activity, is realized
by a pair ofþ1 boojums at the opposite poles of the droplet.
However, for nonzero activity, as shown if Fig. 4, the
surface boojums are only rarely observed, and the surface
charge is distributed between four þ1=2 defects and
additional pairs of �1=2 defects, which are actually ends
of the bulk þ1=2 or −1=2 defect lines touching the droplet
surface. More generally, the topological dynamics of the
defect lines (and loops) in the 3D bulk of the active nematic
induces a lower-dimensional active defect dynamics at the
confining surfaces.
The turbulent defect dynamics at the surface of the

droplet shares similarities with the 2D active nematic
turbulence (e.g., in films or shells); however, it is different
because it is actually coupled to the active flow and defect
reconfiguration of the entire bulk. The no-slip boundary
condition for the material flow, used in this work, effec-
tively prevents surface defects from being driven by the

activity directly on the droplet surface, but it is the active
dynamics of bulk defects that cause apparent active motion,
creation, and annihilation of surface defects in the turbulent
regime as provided via effective elastic line tension and
splitting of bulk defect lines at the surface. Nevertheless, in
different realizations, we very much envisage that the
velocity boundary condition could be different—from no
slip, to partial slip or (full) slip—in which case, one would
expect similar defect dynamics but now also propelled
through the surface. Alternatively, the defect dynamics might
also be affected by different surface and bulk rotational
viscosities, effectively causing the defects in the bulk and at
the surface to move at different timescales. Finally, such
combined actively driven surface and bulk dynamics might
lead to the emergence of effectively coupled or decoupled
dynamics of defects at the surface and in the bulk.

III. DISCUSSION

Today, confinement is seen as one of the major routes for
controlling active matter—including active nematics—with
multiple geometries explored [19–21,24]. From the per-
spective of this work, we should emphasize that we
purposely chose the regime where the droplet radius R
is generally comparable to but larger than the active length
ξζ ¼

ffiffiffiffiffiffiffiffi
L=ζ

p
, i.e., R=ξζ ≲ 35, and the surface interactions

(surface anchoring) are strong, such that the confinement
has a profound role. The main effect of confinement with
the strong homeotropic boundary condition is that it
enforces the existence of at least one bulk topological
defect (loop) by imposing non-net-zero topological charge
in the bulk of the droplet, and similarly, strong planar
anchoring imposes nonzero surface topological charge,
thus enforcing the existence of surface defects. This
confinement-imposed existence of defects in the limit of
low activity has a notable effect on the onset of active
turbulence as it circumvents the need for spontaneous
creation of defect pairs. Instead of a spontaneous defect
creation, existing defects get transformed—e.g., existing
defects split into defect pairs. As a result of this lower-
energy barrier mechanism, in this work, we do not observe
events where new defects would emerge from an instability
of the homogeneous nematic field or would involve the
spontaneous appearance of a single loop with zero topo-
logical charge; defect loops are instead created by a
breakup from an existing defect loop. In a similar manner,
one could envisage that some surface anchoring profiles or
structures with sharp edges, which would cause strong local
distortions of nematics, could perform as nucleating regions
for the emergence of the active nematic defects. Finally, the
topology and geometry of the confining surfaces thus can
play an important part in generating distinct active regimes.
The major body of current work in active nematics is

for two-dimensional or quasi-two-dimensional regimes
and geometries [3,4]. From the perspective of topological
defects, the key difference between 2D and 3D active
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nematics is that the defects change from defect points in
plane to defect lines and loops in three-dimensional space,
which introduces a notable increase in the complexity of
tracking and monitoring approaches for the defects.
Topologically, the key difference is that, in 2D nematic
fields, only þ1=2 and −1=2 defects are possible, whereas
in 3D nematics, the defects can be in the from of points,
loops, or walls, and even lines if they can terminate
appropriately, like on surfaces. Also, solitonic solutions
are starting to be seen in objects like active skyrmions [60].
These three-dimensional nematic defect structures can be
characterized with different topological invariants (in 2D
nematics, there is only 2D topological charge) that account
for the topology of the defects as a whole, such as the 3D
topological charge, linking, and self-linking numbers.
Defects can also be characterized locally through their
cross section, for example, with the winding number. At the
level of orientational order fields, active nematics are
topologically equivalent to the passive (i.e., not active)
nematics, in which 3D defect structures as complex as knots
and links were demonstrated [40,41]. It is an interesting
question whether similarly complex three-dimensional topo-
logical defect structures could also emerge in active nematics
and, moreover, if they could have some role in real living
matter.
In conclusion, using numerical modeling, we demon-

strate the topology of three-dimensional active turbulence
in droplets with fixed spherical shape of active nematics,
considering both droplets with perpendicular and in-plane
imposed surface orientation. Structural transition with
developed hysteresis between the bulk regular offset
point-defect regime and the irregular regime of active
turbulence is shown for homeotropic droplets. Defect
length, defect position, angular momentum, and number
of defect loops are used as bulk material characteristics
that can account for the coupled material flow, orientation,
and topological variability of the three-dimensional active
nematic in the turbulent and nonturbulent regimes. The
bulk active defect lines and loops are shown to exhibit
local profiles with spatially and in-time varying cross
sections, with winding numbers of þ1=2, −1=2, and
twisted profile. Individually, defect loops are generally
topological-charge neutral, except for compensating for
the charge imposed by the confining surface. The topo-
logical flow diagram is shown as a strong tool for
topological characterization of active turbulence, identi-
fying a distinct set of topology-affecting or changing
events—defect splitting, annihilation, merging, and cross-
overs—with their conservation laws drawing on an
analogy with Morse theory. For droplets with degenerate
in-plane surface alignment, we show that active defects
can touch (wet) the surface, creating active defect line
segments that span between different surface regions,
topologically coupling the surface and bulk defect
dynamics. More generally, the aim of this work is to

approach—in full three dimensions—the complex temporal
and spatial variability of active matter using a topological
toolbox and, moreover, to explain the observed continual
dynamics in view of distinct transitions between selected
well-characterized topological structures.
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APPENDIX: METHODS

1. Modeling of active nematics

We apply a mesoscopic continuum description of (dense)
active nematic, which is based on coupled dynamic
equations for orientational order and the material flow
field [2,28,46]. Roughly speaking, this approach is based
on the material flow generation via the active forces caused
by the distortions in the orientational ordering of the active
nematic, and the back-coupled response of the active
nematic orientation to the generated flow. The nematic
ordering is described by a traceless tensor order parameter
Qij whose largest eigenvalue is the degree of order S (also
called a scalar order parameter), and the corresponding
eigenvector gives the main ordering axis, called the director
n. The dynamics of the Q-tensor is given by the adapted
Beris-Edwards equation [61]

ð∂t þ uk∂kÞQij − Sij ¼ ΓbulkHij; ðA1Þ

where ∂t is a derivative over time t, ∂k is a derivative over
the kth spatial coordinate, u is the fluid velocity, and Γbulk

is the rotational viscosity coefficient. The molecular field
Hij drives the system towards the equilibrium of Qij and
can be interpreted from the free energy F (alternatively,
see Ref. [2]):

Hij ¼ −
δF
δQij

þ δij
3
Tr

δF
δQkl

; ðA2Þ
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where F is written in the Landau-de Gennes form as

F ¼
Z
V

�
A
2
QijQji þ

B
3
QijQjkQki þ

C
4
ðQijQjiÞ2

þ L
2

∂Qij

∂xk
∂Qij

∂xk
�
dV: ðA3Þ

Derivatives ofQij in Eq. (A3) describe the effective elastic
behavior of the director field, where L is the elastic
constant. Summation over the repeated indices is implied.
Note that A, B, and C are parameters that can be used to
tune the nematic phase behavior.
The advection term Sij couples the velocity and nematic

ordering:

Sij ¼ ðχDik −ΩikÞ
�
Qkj þ

δkj
3

�

þ
�
Qik þ

δik
3

�
ðχDkj þΩkjÞ

− 2χ

�
Qij þ

δij
3

�
QklWlk; ðA4Þ

where Dij is the symmetric and Ωij the antisymmetric part
of the velocity gradient tensor Wij ¼ ∂iuj. The alignment
parameter χ depends on the molecular shape and defines
the flow-aligning or flow-tumbling regime.
Surface alignment is modeled as follows. For droplets

with perpendicular surface alignment (homeotropic anchor-
ing), strong anchoring with fixed radial director at the
droplet surface is assumed. Droplets with in-plane degen-
erate planar alignment (degenerate planar anchoring) are
modeled by the surface free energy density:

fdeg ¼ WdegðQ̃ij − Q̃⊥
ijÞ2; ðA5Þ

where Q̃ij¼QijþSδij=2, Q̃⊥
ij¼ðδik−νiνkÞQ̃klðδkj−νkνjÞ,

and ν is the surface normal. The surface Q-tensor field
follows the dynamics

_Qij ¼ Γsurf

�
Hsurf

ij −
δij
3
TrHsurf

kl

�
; ðA6Þ

where

Hsurf
ij ¼ −

∂fvol
∂ð∂kQijÞ

νk −
∂fdeg
∂Qij

ðA7Þ

and fvol is the free energy density expressed in Eq. (A3).
The fluid velocity obeys the incompressibility condition

and the Navier-Stokes equation,

∇ · u ¼ 0; ðA8Þ
ρð∂t þ uk∂kÞui ¼ ∂jΠij; ðA9Þ

where ρ is the fluid density and Πij the stress tensor, which
consists of a passive and an active part Πij ¼ Πpassive

ij þ
Πactive

ij , where

Πpassive
ij ¼ −Pδij þ 2χ

�
Qij þ

δij
3

�
QklHkl

− χHik

�
Qkj þ

δkj
3

�
− χ

�
Qik þ

δik
3

�
Hkj

− ∂iQkl
δF

δ∂jQkl
þQikHkj −HikQkj þ 2ηDij;

ðA10Þ

Πactive
ij ¼ −ζQij: ðA11Þ

Here, P is fluid pressure, η the isotropic viscosity con-
tribution, and ζ is the activity parameter characterizing the
strength of force dipoles of contractile (ζ < 0) and extensile
(ζ > 0) objects.
Coupled equations for the fluid velocity ui and the

nematic order Qij are solved numerically by the hybrid
lattice-Boltzmann algorithm [16,28]. The hybrid algorithm
consists of an explicit finite-difference method for the
Q-tensor evolution [Eq. (A1)], and the D3Q19 lattice
Boltzmann model for the Navier-Stokes equation and
the compressibility condition [Eqs. (A8) and (A9)]. The
nematic stress tensor is implemented in the lattice
Boltzmann algorithm as a force contribution with the
half-force correction [62]. The spherical droplet cavity is
allocated on a rectangular grid, and a no-slip boundary
condition is implemented by the bounce-back rule. A radial
surface normal is allocated on the surface nodes, and it is
used for the calculation of the surface Q-tensor field either
for homeotropic or for planar degenerate anchoring. We
performed multiple tests to verify that results are not
affected by spurious velocities and numerical-method-
induced symmetry or symmetry breaking. For example,
in Fig. 1(a), for different random initial conditions, the
defect is displaced from the center in different (arbitrary)
directions that are typically not along the (rectangular)
simulation grid axes. The results of the simulations are
expressed in units of elastic constant L, nematic correlation

length ξN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L=ðAþ BSeq þ 9

2
CS2eqÞ

q
. where Seq is the

equilibrium nematic degree of order, and nematic intrinsic
timescale τN ¼ ξ2N=ΓbulkL. The phase parameters are set to
A ¼ −0.190L=ξ2N, B ¼ −2.34L=ξ2N, and C ¼ 1.91L=ξ2N;
the nematic is in the aligining regime with χ ¼ 1; the
isotropic viscosity contribution equals η ¼ 1.38ξ2N=LτN;
and the strength of the planar degenerate anchoring is
Wdeg ¼ 6.6 × 10−4L=ξN, with surface rotational viscosity
parameter Γsurf ¼ 0.67Γbulk=ξN. The grid resolution is set to
Δx ¼ 1.5ξN and time resolution to Δt ¼ 0.057τN. The
velocity field of the active nematic can be analyzed also by
calculating the total angular momentum Γ ¼ R

ρr × udV,
where r is the distance from the droplet center and
integration is performed over the whole volume of the
active nematic droplet.
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The parameters of the considered 3D active nematic
system can be summarized by introducing two selected
dimensionless numbers [according to Eqs. (A1) and (A9)]:
the Ericksen number Er ¼ uR=ΓbulkL, comparing the
viscous terms to the elastic terms, and the activity number
Ac ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ζR2=L

p
, characterizing the relative strength of

activity vs confinement, where u is the maximum velocity
in droplets of radius R and activity ζ. In our simulations, we
take activities of up to ζ ≲ 0.06L=ξ2N and droplet radius of
R ¼ 136ξN, which corresponds to Er ≲ 100 and Ac≲ 35.

2. Tracing and visualization of defects

Modeling of active nematics gives a continuous three-
dimensional Q-tensor field and a velocity field on a discrete
grid at each time step. To perform the topological analysis,
geometry of defect lines is extracted from the Q field.
Defects are detected by first finding the point in the sample
that has the lowest degree of order S. A small nearby sphere
with three data points in radius is searched for the lowest
S, and the line is propagated until it closes the defect loop
by meeting the initial point. Visited points are removed
from the search space, and the algorithm is repeated until
no regions with sufficiently low order are found. This
procedure produces polygonal lines that approximate the
defect loops, and an associated coordinate frame is con-
structed, consisting of the tangent t̂ and two perpendicular
vectors t̂1 and t̂2. The choice of these two vectors is, in
principle, arbitrary, as long as they vary continuously around
the loop. For each defect loop segment, the surrounding
director field is analyzed on a small circle spanned by the
perpendicular vectors t̂1 and t̂2. Two mutually perpendicular
normalized vectors n̂1 and n̂2 are found, which are used to
parametrize the circle on the unit sphere of all directions,
visited by the director as traversing the circle. These
directions n̂1 and n̂2 are flipped head to tail if needed so
that they vary continuously along the loop. Keeping the signs
and orientation of the local coordinate frame consistent
with respect to the initial reference point, we overcome the
ambiguities inherent in the line field topology. Note that we
trace two coordinate frames over the entire loop. The first
frame consists of t̂, t̂1, and t̂2, and the second frame consists
of n̂1, n̂2, and n̂1 × n̂2. The orientations of these frames are
represented with quaternions instead of rotational matrices,
to retain the full topological information in a closed loop
[44]. The n̂1 and n̂2 pair defines the discs, drawn in Fig. 3(b)
to represent the cross section, while the color represents the
quantity t̂ ⋅ ðn̂1 × n̂2Þ that distinguishes the winding number
from the pure −1=2 profile in red to the pure þ1=2 in blue.
A splay-bend parameter is used to visualize the local director
around the active defect loops [45].
The velocity field in Fig. 1 is shown by blue arrows above

the selected cutoff magnitudes of v ¼ 0.0320ξN=τN in (a) at
ζ ¼ 0.003L=ξ2N, v ¼ 0.127ξN=τN in (a) at ζ ¼ 0.013L=ξ2N,
v ¼ 0.195ξN=τN in (a) at ζ ¼ 0.022L=ξ2N, v ¼ 0.304ξN=τN

in (b), and v ¼ 0.326ξN=τN in (d). The velocitymagnitude is
additionally represented by a bright green isosurface at
similar cutoff values of v ¼ 0.0305ξN=τN in (a) at ζ ¼
0.003L=ξ2N, v ¼ 0.125ξN=τN in (a) at ζ ¼ 0.013L=ξ2N, v ¼
0.0320ξN=τN in (a) at ζ ¼ 0.192L=ξ2N, v ¼ 0.297ξN=τN
in (b), and v ¼ 0.316ξN=τN in (d).
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