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Abstract. We extend the Framization of the Temperley-Lieb algebra to Coxeter systems of type B.

We first define a natural extension of the classical Temperley-Lieb algebra to Coxeter systems of type B

and prove that such an extension supports a unique linear Markov trace function. We then introduce
the Framization of the Temperley-Lieb algebra of type B as a quotient of the Yokonuma-Hecke algebra

of type B. The main theorem provides necessary and sufficient conditions for the Markov trace defined

on the Yokonuma-Hecke algebra of type B to pass to the quotient algebra. Using the main theorem, we
construct invariants for framed links and classical links inside the solid torus.

1. Introduction

The Temperley-Lieb algebra appeared originally in the study of the Potts model in statistical me-
chanics and in the ice-type model in two dimensions [30]. In the 1980’s the Temperley-Lieb algebra was
rediscovered by Jones in the context of von Neumann algebras [18] and later as a quotient of the Hecke
algebra [19]. The Hecke algebra supports a unique inductive linear trace that can be rescaled according to
the Markov equivalence for braids and under certain conditions it passes to the Temperley-Lieb algebra.
This procedure leads to the definition of the Jones polynomial. For these reasons, the Hecke algebra and
the Temperley-Lieb algebra are often considered as knot algebras. Another notable example of a knot
algebra is the BMW algebra [1, 29].

Framization is a technique introduced by Juyumaya and Lambropoulou that produces new knot al-
gebras associated to framed knots and links [26]. Framization adds new generators, called the framing
generators, to the generating set of a known knot algebra and defines relations between the original and
the framing generators of the algebra. From an algebraic point of view, a knot algebra might have multi-
ple candidates that are valid. However, since the motivation of the technique is to obtain new polynomial
invariants for (framed) links, candidates that produce new, non-trivial link invariants are preferred. In
particular, when multiple framization candidates for a knot algebra are considered, the framization of
the algebra that is most natural from a topological point of view is chosen [14].

A basic example of framization is the Yokonuma-Hecke algebra of type A, denoted Yd,n(u). It was
introduced in the context of Chevalley groups in [32] and can be regarded as the framization of the
Hecke algebra. Juyumaya fine-tuned the presentation of Yd,n(u) by giving a natural description in terms
of the framed braid group [20]. In recent years, framizations of several knot algebras have appeared
[22, 26, 23, 25, 13] that led to Jones-type invariants for framed [26], classical [26, 5], and singular links
[24].

The Framization of the Temperley-Lieb algebra FTLd,n(q) was introduced in [14] as a quotient of
Yd,n(u). From this, a family of one-variable invariants for classical links in S3, denoted θd(q), was de-
rived by finding the necessary and sufficient conditions for the trace of Yd,n(u) to pass to the quotient
algebra. For d = 1, the invariant θ1 coincides with the Jones polynomial while for d 6= 1, θd is not
topologically equivalent to the Jones polynomial on links [14]. More recently, Goundaroulis and Lam-
bropoulou generalized the invariants θd(q) to a new two-variable invariant that is stronger than the Jones
polynomial on links and that can also detect the Thistlethwaite link [15].

All the results that are mentioned above are related to the Coxeter group of type A. However, there
is a growing interest in framizations of algebras that are related to Coxeter systems of type B. Indeed,
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2 M. FLORES AND D. GOUNDAROULIS

the affine and cyclotomic Yokonuma-Hecke algebras were introduced in [4], while in [10] Flores and
collaborators introduced YB

d,n(u, v), the Yokonuma-Hecke algebra of type B.
In this paper we extend the Framization of the Temperley-Lieb algebra of type A to Coxeter groups of

type B by implementing the methods of [10]. We first consider the generalized Temperley-Lieb algebra
that is associated to an arbitrary Coxeter system [16], and specialize it to the case of Coxeter systems
of type B. We denote this algebra by TLB

n(u, v) and show that it emerges naturally as a quotient of the
Hecke algebra of type B, denoted Hn(u, v). We then compute the necessary and sufficient conditions for
the Markov trace of Hn(u, v) [27] to pass to the quotient algebra. The Framization of the Temperley-Lieb
algebra of type B, which is denoted FTLB

d,n(u, v), is defined as a quotient of the algebra YB
d,n(u, v). For

d = 1, the algebra FTLB
d,n(u, v) coincides with TLB

n(u, v). The main theorem determines the necessary and

sufficient conditions such that the trace of YB
d,n(u, v) [10] passes to FTLB

d,n(u, v). Finally, we investigate
the conditions of the main theorem which generate topologically non-trivial invariants for framed and
classical links and we define those invariants.

The outline of the paper is as follows. In Section 2 we introduce the notation and we present the
classical braid group, the framed braid group, the algebra Hn(u, v), its framization YB

d,n(u, v), and the
Framization of the Temperley-Lieb algebra of type A. In Section 3 we introduce the Temperley-Lieb
algebra associated to the Coxeter group of type B, denoted TLB

n(u, v). We also determine the necessary
and sufficient conditions such that the trace on Hn(u, v) passes to the algebra TLB

n(u, v) and construct the
corresponding link invariants. In Section 4 we present the algebra FTLB

d,n(u, v) as a quotient of the algebra

YB
d,n(u, v) modulo an appropriate two-sided ideal and determine the necessary and sufficient conditions

so that the Markov trace defined on the algebra YB
d,n(u, v) passes to the quotient algebra. In Section 5

we use the trace on FTLB
d,n(u, v) to define invariants for framed and classical links and provide a set of

skein relations for both cases. Finally, we show that the invariants for classical links from FTLB
d,n(u, v)

are stronger than the Jones polynomial in the solid torus since they distinguish more pairs of affine links.

2. Preliminaries

Let u, v be indeterminates. With the term algebra we mean an associative algebra with unity over
K := C(u, v).

2.1. Groups of type Bn. For n ≥ 2, we define the Coxeter group of type Bn, denoted by Wn, as the finite
Coxeter group associated to the following Dynkin diagram:

r1 s1 sn−2 sn−1c c q q q c c
Let rk = sk−1 . . . s1r1s1 . . . sk−1 for 2 ≤ k ≤ n. Every element w ∈ Wn can be written uniquely in a
reduced expression as follows [11]: w = w1 . . . wn with wk ∈ Nk, 1 ≤ k ≤ n, where

(2.1) Nk := {1, rk, sk−1 · · · si, sk−1 · · · siri ; 1 ≤ i ≤ k − 1} .

The braid group of type Bn associated to Wn, is defined as the group W̃n generated by ρ1, σ1, . . . , σn−1
subject to the following relations

(2.2)

σiσj = σjσi for |i− j| > 1,
σiσjσi = σjσiσj for |i− j| = 1,
ρ1σi = σiρ1 for i > 1,

ρ1σ1ρ1σ1 = σ1ρ1σ1ρ1.

Geometrically, braids of type Bn can be viewed as classical braids of type An+1 with n + 1 strands,
where the first strand is identically fixed and is called ‘the fixed strand’. The 2nd, . . . , (n+ 1)st strands
are renamed from 1 to n and they are called ‘the moving strands’. The ‘loop’ generator ρ1 corresponds
to the looping of the first moving strand around the fixed strand in the right-handed sense (see Fig. 2).

The d-modular framed braid group of type Bn is defined as follows:

FB
d,n := (Cd)

n o W̃n,
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where Cd := 〈t | td = 1〉, is the cyclic group of order d, and the action of W̃n on Cd is given by:
tjσi = σitsi(j) and tiρ1 = ρ1ti, for 1 ≤ i ≤ n. In both cases ti is the element of (Cd)

n that has t in the ith

position and 1 everywhere else. For 1 ≤ i, j ≤ n and m ∈ {0, . . . , d− 1}, we define the following elements
on CFB

d,n:

(2.3) e
(m)
i,j =

1

d

d−1∑
s=0

tm+s
i t−sj and fi =

1

d

d−1∑
k=0

tki .

For j = i+ 1, we denote e
(m)
i := e

(m)
i,i+1 and ei,j := e

(0)
i,j . Note that e

(m)
i,j and fi are idempotent elements.

2.2. The Hecke algebra of type B. The Hecke algebra of type B, denoted by Hn(u, v), can be considered

as the quotient of K[W̃n] modulo the two-sided ideal that is generated by the following elements:

σ2
i − (u− u−1)σi − 1 and ρ21 − (v − v−1)ρ1 − 1.

In terms of generators and relations, Hn(u, v) is the algebra that is generated by the elements b1, g1, . . . , gn−1
which are subject to the following relations:

gigj = gjgi for all |i− j| > 1,
gigi+1gi = gi+1gigi+1 for all i = 1, . . . , n− 2,
g1b1g1b1 = b1g1b1g1,

g2i = 1 + (u− u−1)gi for all i,
b21 = 1 + (v − v−1)b1.

The dimension of Hn(u, v) is 2nn! and for u = v = 1 it coincides with K[Wn]. Consider now the following
subsets of Hn(u, v):

M1 = {1, b1}, M2 = {1, b2, g1, g1b1}, . . . , Mn = {1, bn, gn−1x | x ∈ Mn−1}.

where bk := gk−1 . . . g1b1g
−1
1 . . . g−1k−1, for all 2 ≤ k ≤ n. The following set is a linear basis for the algebra

Hn(u, v):

(2.4) Cn = {m1m2 . . .mn | mi ∈ Mi} .

There exists a natural epimorphism W̃n → Hn(u, v) sending σi 7→ gi and ρ1 7→ b1. Additionally, the
Hecke algebra of type B supports a unique Markov trace function [11]. Indeed, for any indeterminate z, y
there exists a linear trace:

τ : ∪∞n=1Hn(u, v)→ K[z, y]

that is defined inductively by the following four rules:

(1) τ(1n+1) = 1, for all n
(2) τ(ab) = τ(ba), a, b ∈ Hn(q) (Conjugation property)
(3) τ(agn) = z τ(a), a ∈ Hn(q) (Markov property for braiding generators)
(4) τ(abn+1) = y τ(a), a ∈ Hn(q) (Markov property for looping generator),

Remark 1. A different presentation is often used for the algebra Hn(u, v) that involves parameters q
and Q, as well as different quadratic relations. More precisely, the quadratic relations are the following:

(gi)
2 = (q − 1)gi + q and (b1)2 = (Q− 1)b1 +Q.

One can switch between the two presentations by taking gi = ugi, b1 = vb1, q = u2 and Q = v2.

By introducing the term λ = z−(u−u−1)
z , one can re-scale τ so that it satisfies the braid equivalence

in the solid torus [27, Theorem 3]. By normalizing τ , link invariants in the solid torus can be defined.
Indeed, we have [27, Definition 1]:

(2.5) P B(u, v, z, y)(α̂) =

(
1− λ√

λ(u− u−1)

)n−1 (√
λ
)ε(α)

τ (π(α)) ,
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where α̂ is the closure of the braid α inside the solid torus, π is the natural epimorphism W̃n → Hn(u, v),
and ε(α) is the algebraic sum of the exponents of the braiding generators in α. Furthermore, the invariant
P B can be defined completely by the following two skein relations:

1√
λ
P B(L+)−

√
λ P B(L−) =

(
u− u−1

)
P B(L0)(2.6)

P B(M+)− P B(M−) =
(
v − v−1

)
P B(M0),(2.7)

where L+, L−, L0, M+ , M− and M0 are as shown in Fig. 1.

L+ L− L0

M+ M− M0

Figure 1. The elements L+, L−, L0 constitute a Conway triple. The elements M+ ,
M− and M0 involve the fixed strand (shown in bold).

2.3. The framization of the Hecke algebra of type B. The framization of the Hecke algebra of type B

[10], denoted by YB
d,n := YB

d,n(u, v), is defined as the algebra over K generated by the framing genera-
tors t1, . . . , tn, the braiding generators g1, . . . , gn−1 and the loop generator b1, subject to the following
relations:

gigj = gjgi for |i− j| > 1,(2.8)

gigjgi = gjgigj for |i− j| = 1,(2.9)

b1gi = gib1 for all i 6= 1,(2.10)

b1g1b1g1 = g1b1g1b1,(2.11)

titj = tjti for all i, j,(2.12)

tjgi = gitsi(j) for all i, j,(2.13)

tib1 = b1ti for all i,(2.14)

tdi = 1 for all i,(2.15)

g2i = 1 + (u− u−1)eigi for all i,(2.16)

b21 = 1 + (v − v−1)f1b1.(2.17)

where ei and f1 are as in (2.3). In Figure 2 we illustrate the generators of the algebra YB
d,n.

σi = . . .. . .

  i+1)-th strand(

,

i-th strand

00 0 0 0 0

ρ1 = . . . ,

j-th strand

0 0 0 0 0 1 0 0

. . . . . .=tj

Figure 2. The generators of YB
d,n(u, v).
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Note. For d = 1, the algebra YB
1,n coincides with Hn(u, v). By mapping gi 7→ gi and ti 7→ 1, we obtain

an epimorphism from YB
d,n to Hn(u, v). Moreover, if we map the ti’s to a fixed non-trivial d-th root of

the unity, we have an epimorphism from YB
d,n to Hn(u, 1).

In [10] two different linear bases for YB
d,n are given, denoted by Dn and Cn respectively. We only recall

the second one, since it is the one that is used in the definition of the Markov trace of YB
d,n. For all

1 ≤ k ≤ n, we define inductively the sets Md,k by:

Md,1 = {tm1 , tm1 b1 ; 0 ≤ m ≤ d− 1}

and

Md,k = {tmk , tmk bk, gk−1x ; x ∈Md,k−1, 0 ≤ m ≤ d− 1} for all 2 ≤ k ≤ n.

where the elements bk’s are as in Section 2.2. Define now Cn as the subset of YB
d,n formed by the elements

m1m2 · · ·mn, with mi ∈Md,i. Moreover, every element of Md,k has the form m+
k,j,m or m−k,j,m with j ≤ k

and 0 ≤ m ≤ d− 1, where

m+
k,k,m := tmk , m+

k,j,m := gk−1 · · · gjtmj for j < k,

and

m−k,k,m := tmk bk, m−k,j,m := gk−1 · · · gjbjtmj for j < k.

From the above, one can deduce that the basis Cn for YB
d,n may be rewritten as follows [10, Proposition

5]):

(2.18) Cn = {ta11 t
a2
2 . . . tann m | m ∈ Cn, ai ∈ {0, . . . , d− 1}}.

In [10] Flores et al. proved that YB
d,n supports a unique Markov trace. In brief, they construct a

certain family of linear maps trn : YB
d,n −→ YB

d,n−1, called relative traces, that build step by step the

desired Markov properties (see also [4]). Finally, the Markov trace on YB
d,n is defined by:

Trn := tr1 ◦ · · · ◦ trn.

Theorem 1 (cf. Theorem 3 [10]). Let z, x1, . . . , xd−1, y0, . . . , yd−1 be indeterminates in K(z, x1, . . . , xd−1,
y0, . . . , yd−1) and let x0 := 1. Then the linear map Tr is a Markov trace on {YB

d,n}n≥1. That is, for every

n ≥ 1, the linear map Trn : YB
d,n −→ K(z, x1, . . . , xd−1, y0, . . . , yd−1) satisfies the following rules:

(i) Trn(1) = 1,
(ii) Trn+1(Xgn) = zTrn(X),

(iii) Trn+1(Xbn+1t
m
n+1) = ymTrn(X),

(iv) Trn+1(Xtmn+1) = xmTrn(X),
(v) Trn(XY ) = Trn(Y X),

where X,Y ∈ YB
d,n.

Recall that the method of Jones for obtaining link invariants requires a rescaled and normalized Markov
trace function. An interesting property of the trace Tr is that it does not rescale directly according to the
framed braid equivalence for the solid torus. Indeed, the trace Tr can be rescaled only if the parameters
xi, 1 ≤ i ≤ d − 1, are solutions of a non-linear system of equations that is called the E-system [26,
Appendix], while the parameters yj , 0 ≤ j ≤ d − 1, are solutions of an analogous non-linear system
called the F-system [10]. Consequently, new invariants for framed knots and links in the solid torus can
be constructed, denoted by X B

S , that are parametrized by S ⊆ Cd (for more details see [10, Section 7]).
The invariants X B

S when restricted to framed links with all framings equal to zero, give rise to invariants
of oriented classical links in the solid torus. Since classical knot theory embeds in the knot theory of
the solid torus and by using the results of [5], we deduce that the X B

S invariants are different than the
invariant P B(u, v, x, y) on links [11, 27].
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2.4. The Framization of the Temperley-Lieb algebra of type A. The framization of the Temperley-Lieb
algebra of type A and the derived invariants for framed and classical links were studied extensively by
Goundaroulis and collaborators [12, 13, 14]. As mentioned earlier, it is a well known fact that the
Temperley-Lieb algebra of type A can be obtained as the quotient of the algebra Hn(u) modulo the
two-sided ideal that is generated by the following elements:

gi,i+1 :=
∑

w∈〈si,si+1〉
gw.

Similarly, the framization of the Temperley-Lieb algebra of type A is defined as a quotient of the
Yokonuma-Hecke algebra of type A, which is denoted by Yd,n(u) [21]. However, such a quotient is not
unique in the case of framization. As mentioned in the introduction, the quotient algebra that eventually
is chosen is the most natural with respect to the construction of new, non-trivial invariants for framed
and classical knot and links.

The first quotient algebra that was studied is the Yokonuma-Temperley-Lieb algebra [13], denoted
YTLd,n(u), and proved to be too restrictive. As a consequence, basic pairs of framed links were not
distinguished. For this reason this algebra was discarded as a potential candidate for the framization
of the Temperley-Lieb algebra however, the Jones polynomial was recovered from this construction.
The second candidate was the Complex Reflection Temperley-Lieb algebra, denoted CTLd,n(u) [14]. In
contrast to the case of YTLd,n(u), the invariants that are derived from CTLd,n(u) proved to coincide
either with those from the algebra Yd,n(u) or with those that are derived from the actual framization of
the Temperley-Lieb algebra [14, Proposition 10]. This result is consistent with the fact that the algebra
CTLd,n(u) is isomorphic to a direct sum of matrix algebras over tensor products of Temperley-Lieb
and Iwahori-Hecke algebras [6]. Thus, the quotient algebra CTLd,n(u) is also discarded as a potential
candidate for the framization of the Temperley-Lieb algebra.

The framization of the Temperley-Lieb algebra is an intermediate algebra between the algebras YTLd,n(u)
and CTLd,n(u). It is denoted by FTLd,n(u), and it is defined as the quotient of the algebra Yd,n(u) modulo
the two-sided ideal that is generated by the element:

r1,2 := e1e2(1 + g1 + g2 + g1g2 + g2g1 + g1g2g1).

In [14, Theorem 6] necessary and sufficient conditions were determined so that the trace of Yd,n(u)
passes to FTLd,n(u). These conditions led to a family of new 1-variable invariants for classical links,
{θd}d∈N, that are topologically not equivalent to the Jones polynomial on links, while they are topolog-
ically equivalent to the Jones polynomial on knots [14, Theorem 9]. Finally, the invariants θd(q) can be
generalized to a 2-variable invariant for classical links, θ(q, E). More precisely, we have the following:

Theorem 2 ([15, Theorem 1.1]). Let q, E be indeterminates and let L be the set of all oriented links.
There exists a unique ambient isotopy invariant of classical oriented links

θ : L → C[q±1, E±1]

defined by the following rules:

(1) On crossings involving different components the following skein relation holds:

q−2 θ(L+)− q2 θ(L−) = (q − q−1) θ(L0),

where L+, L− and L0 constitute a Conway triple.
(2) For a union K = tri=1Ki of r unlinked knots, with r ≥ 1, it holds that:

θ(K) = E1−rV (K),

where V (K) is the value of the Jones polynomial on K.

The invariant θ(q, E) is topologically equivalent to the Jones polynomial on knots while it is stronger
than the Jones polynomial on links [15, Theorem 5] (see Section 5.2).
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3. The Temperley-Lieb algebra associated to the Coxeter group of type B

We begin this section by defining the Temperley-Lieb algebra of type B as a quotient of the Hecke
algebra of type B. This is derived from the definition for an arbitrary Coxeter group [16].

As mentioned earlier, the classical Temperley-Lieb algebra can be expressed as a quotient of the Hecke
algebra of type A. Based on this, Fan and Green defined the Temperley-Lieb algebras associated to any
simply laced Coxeter group [8]. This was done by first considering the Hecke algebra associated to the
respective Coxeter group and then naturally extending the defining ideal of the classical case. Using
the same procedure Green and Losonczy extended this definition to any Coxeter group [16]. Specifically,
consider (W,S) to be an arbitrary Coxeter System, and let H(W ) be the associated Hecke algebra. Then,
the algebra H(W ) has a basis consisting of elements Tw, w ∈W that satisfy:

(3.1) TsTw =

{
Tsw, if `(sw) > `(w)
asTsw + bsTw, if `(sw) < `(w)

where ` is the length function in W and as, bs are parameters that depend on s ∈ S such that as = at and
bs = bt whenever s and t are conjugate in W . For further details the reader is referred to [17, Chapter
7]. Let now J be the two-sided ideal of H(W ) that is generated by the following elements:∑

w∈〈si,sj〉
Tw

where (si, sj) runs over all pairs of S that correspond to adjacent nodes in the Dynkin diagram of W .
Then the generalized Temperley-Lieb algebra, TL(W ), is defined as the quotient H(W )/J .

We shall specialize now the algebra TL(W ) to the case of Coxeter systems of type B. From the
discussion above and by considering also the change of generators in Remark 1, we have that the defining
two-sided ideal, denoted by JB , is generated by the elements:

gi,i+1 = 1 + u(gi + gi+1) + u2(gigi+1 + gi+1gi) + u3gigi+1gi

gB := 1 + ug1 + vb1 + uv(g1b1 + b1g1) + u2vg1b1g1 + v2ub1g1b1

+(uv)2g1b1g1b1,

where 1 ≤ i ≤ n − 2. Given that the elements gi,i+1 are all conjugates of g1,2 in Hn(u, v) (see [13]), we
conclude that JB = 〈gB, g1,2〉.

Definition 1. We define TLB
n := TLB

n(u, v), the Temperley-Lieb algebra associated to the Coxeter group
of type B as the quotient Hn(u, v)/JB.

3.1. A Markov trace on the algebra TLB
n. The purpose of this section is to find the necessary and sufficient

conditions such that the trace defined in Hn(u, v) passes to TLB
n.

Let W be a Coxeter group, and H(W ) the Hecke algebra associated to W . Now consider bs = as − 1
in (3.1) and set x =

∑
w∈W Tw. Observe that [28, Lemma 3.2] is valid for every finite Coxeter group,

that is:

(3.2) xTs = asx, for all s ∈ S
Equation (3.2) and direct computations prove the following two lemmas.

Lemma 1. The following holds in Hn(u, v):

i) g1g1,2 = g1,2g1 = ug1,2
ii) g2g1,2 = g1,2g2 = ug1,2

Lemma 2. In Hn(u, v) the following equations holds

i) b1gB = gBb1 = vgB
ii) g1gB = gBg1 = ugB

In analogy to TLn(u), the trace τ passes to the quotient TLB
n if and only if τ annihilates the defining

ideal 〈g1,2, gB〉 of TLB
n:

(3.3) τ(mgB) + τ(ng1,2) = 0,
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where m,n are in the linear basis of Hn(u, v). We shall determine now the necessary and sufficient
conditions so that (3.3) holds. We will use induction on n. We start with the following lemma:

Lemma 3. The following hold in Hn(u, v):

τ(g1,2) = (u2 + 1)(uz)2 + (u2 + 2)uz + 1

τ(gB) = u2v2y2 + (uv + u3v3)zy + (v + u2v)y + (u + u3v2)z + 1

Proof. The proof follows immediately from the defining rules of τ . �

We shall treat each summand of (3.3) separately. For the first summand we have the following:

Proposition 1. For all m ∈ Hn(u, v) we have that

τ(mgB) = p(u, v, z, y)τ(gB), for all n ≥ 2

where p(u, v, z, y) is a monomial in the variables u, v, z, y.

Proof. By linearity of the trace, it is enough to prove the statement for an element m in the inductive basis
Cn. We will proceed by induction. For n = 2 the result follows directly by Lemma 2. Suppose now that
the argument holds for any w ∈ Hn(u, v), and let m ∈ Hn+1(u, v), where m = wbn+1 or m = wgn . . . gib

a
i ,

with a = 0, 1 and w ∈ Hn(u, v). We have that

τ(wbn+1) = yτ(w)

τ(wgn . . . gib
a
i ) = zτ(α)

where α = wgn−1 . . . gibai ∈ Hn(u, v) and so the result follows by the induction hypothesis. �

Lemma 4. For i ≥ 1 we have that

τ(big1,2) = yτ(g1,2)

Proof. First note that τ(b1g1,2) = yτ(g1,2) follows easily by the trace rules, since b1 ∈ H1(u, v). For i = 2
we have that

τ(b2g1,2) = τ(g1b1g
−1
1 g1,2).

From Lemma 1 we obtain

τ(g1b1g
−1
1 g1,2) = u−1τ(g1b1g1,2) = u−1τ(b1g1,2g1) = τ(b1g1,2) = yτ(g1,2).

The case i = 3 is completely analogous, while for i ≥ 4 the result follows immediately by the trace
rules. �

The following proposition deals with the second term of (3.3).

Proposition 2. Let n ≥ 3. For all m ∈ Hn(u, v) we have that

(3.4) τ(mg1,2) =

 p(u, v, z, y)τ(g1,2)
p(u, v, z, y)τ(b1g1b1g1,2)
p(u, v, z, y)τ(b1g1b1g2g1b1g1,2)

where p(u, v, z, y) is a monomial in the variables u, v, z, y.

Proof. Since τ is linear, it’s enough to prove (3.4) for any m in the basis Cn from Hn(u, v). Again, we
will use induction on n. We start by proving that the argument holds for n = 3. First note that

C2 = {1, b2, g1, g1b1, b1, b1b2, b1g1, b1g1b1}

From Lemmas 4 and 1 we have that

τ(b2g1,2) = yτ(g1,2); τ(g1g1,2) = uτ(g1,2)
τ(g1b1g1,2) = uyτ(g1,2); τ(b1g1,2) = yτ(g1,2)
τ(b1g1g1,2) = uyτ(g1,2); τ(b1b2g1,2) = u−1τ(b1g1b1g1,2)
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Suppose now thatm ∈ C3. This means thatm = wm3 for some w ∈ C2 andm3 ∈ {g2g1b1, g2b2, b3, g2g1, g2, 1}.
From the previous results and Lemma 1 we obtain that

τ(wg2b2g1,2) = u−1τ(wg2g1b1g1,2); τ(wb3g1,2) = u−2τ(wg2g1b1g1,2)
τ(wg2g1g1,2) = u2τ(wg1,2); τ(wg2g1,2) = uτ(wg1,2)

Therefore, we only have to study τ(wg2g1b1g1,2). Replacing w and by applying previous lemmas and
using the trace rules on each element in C2, we have:

τ(g2g1b1g1,2) = u2yτ(g1,2); τ(b2g2g1b1g1,2) = uτ(b1g1b1g1,2)
τ(g1g2g1b1g1,2) = u3yτ(g1,2); τ(g1b1g2g1b1g1,2) = u2τ(b1g1b1g1,2)
τ(b1g2g1b1g1,2) = uτ(b1g1b1g1,2); τ(b1g1g2g1b1g1,2) = u2τ(b1g1b1g1,2)

τ(b1b2g2g1b1g1,2) = u−1τ(b1g1b1g2g1b1g1,2)

From the above, the result follows for n = 3. Finally, suppose that the argument holds for m ∈ Hn(u, v)
and let m ∈ Hn+1(u, v). We have that m = wbn+1 or m = wgn . . . gib

a
i , with a = 0, 1 and w ∈ Hn(u, v).

Since we have that

τ(wbn+1) = yτ(w)

τ(wgn . . . gib
a
i ) = zτ(α), where α = wgn−1 . . . gib

a
i ∈ Hn(u, v)

then result follows by the induction hypothesis. �

The discussion above suggests that (3.3) reduces to a homogenous system of four equations of the
trace parameters z and y, namely:

Theorem 3. The following statements are equivalent

i) τ(mg1,2) + τ(ngB) = 0 for all m,n ∈ Hn(u, v)
ii) τ(gB) = τ(g1,2) = τ(b1g1b1g1,2) = τ(b1g1b1g2g1b1g1,2) = 0

Proof. Since (i) holds for all m,n ∈ Hn(u, v), then it must also hold for m = 1 and n = 0. Thus, we
deduce argument (ii). The converse is a direct consequence of Propositions 1 and 2. �

The following lemma will be used in the proof of Theorem 4 below. We have that:

Lemma 5. The following equations hold:

(i) τ(b1g1b1g1,2) = v−1
(
u(1 + uz + u3z)(vy2 + u(v + (v2 − 1)y)z)

)
(ii) τ(b1g1b1g2g1b1g1,2) = v−2

(
u3(v2y3 + u(2 + u2)vy(v + (v2 − 1)y)z

+u2(1 + u2)(y + v(v2 − 1)(1 + vy))z2
)

Proof. The proof is a long straightforward computation using the rules of τ . �

We are now able to give the necessary and sufficient conditions for τ to pass to TLB
n(u, v). Indeed, we

have:

Theorem 4. The trace τ passes to the quotient algebra TLB
n(u, v) if and only if the trace parameters z

and y take one of the following values.

(i) z = − 1
u and y = − 1

v , (ii) z = − 1
u and y = v,

(iii) z = − 1
u(1+u2) and y = − 1

v , (iv) z = − 1
u(1+u2) and y = −1+v2

(1+u2)v .

Proof. From Theorem 3 we have that τ annihilates the ideal J if and only if the following system of
equations has solutions for z and y:

(Σ) :=


τ(gB) = 0

τ(g1,2) = 0

τ(b1g1b1g1,2) = 0

τ(b1g1b1g2g1b1g1,2) = 0

Using Lemmas 3 and 5 one can derive the four sets of solutions for (Σ) and, therefore, the necessary and
sufficient conditions for the passing of τ to TLB

n. �
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3.2. Link invariants from TLB
n(u, v). Following Jones [19], we can now define link invariants in the solid

torus. Starting from (2.5), we specialize the parameters z, y to the necessary and sufficient conditions of
Theorem 4. Note that the values z = −1/u, y = −1/v and y = −v are discarded since they are of no

topological interest [19, Section 11]. From the remaining pair of values z = − 1
u(1+u2) and y = v2−1

(1+u2)v we

deduce that λ = u4 and thus we have:

Definition 2. The following is an invariant for links inside the solid torus

(3.5) V B(u, v) :=

(
−1 + u2

u

)n−1
u2ε(α)τ(π(α)),

where α, α̂, ε(α) are as in (2.5) and π is the natural epimorphism W̃n → TLB
n(u, v) sending σi 7→ gi and

r1 7→ b1.

Remark 2. By substituting λ = u4 in (2.6) and (2.7) we derive that V B can be defined completely by
the following skein relations:

u−2 V B(L+)− u2 V B(L−) =
(
u− u−1

)
V B(L0)(3.6)

V B(M+)− V B(M−) =
(
v − v−1

)
V B(M0),(3.7)

where L+, L−, L0, M+ , M− and M0 are as shown in Fig. 1.

4. Framization of the Temperley-Lieb algebra associated to the Coxeter group of
type B

In this section we introduce FTLB
d,n, the framization of the Temperley-Lieb algebra associated to the

Coxeter group of type B. This extends naturally the work done for the type A case in [14]. In more detail,
the framization will be defined as a quotient of the algebra YB

d,n modulo an appropriate two-sided ideal.

Since the algebra Yd,n(u) is contained in YB
d,n, following Section 2.4 we consider the following element in

YB
d,n(u, v):

r1,2 := e1e2g1,2.(4.1)

The element r1,2 is the generator of the type A part of the quotient algebra FTLB
d,n. Accordingly, we

consider also the generator of the type B part, which is the element:

rB := f1e1gB

Definition 3. The framization of the Temperley-Lieb algebra associated to the Coxeter group of type B

is defined as follows:

FTLB
d,n(u, v) := YB

d,n(u, v)/〈rB, r1,2〉(4.2)

We give below the framed analogues of Lemmas 1 and 2 that will be used extensively later.

Lemma 6. The following holds in YB
d,n(u, v):

i) g1r1,2 = r1,2g1 = ur1,2
ii) g2r1,2 = r1,2g2 = ur1,2

Proof. The proof follows from a straightforward computation. For demonstrative reasons, we only prove
the case r1,2g1. Observe that the element e1e2 commutes with g1 and g2. On the other hand, we also
have that

(4.3) eig
2
i = ei(1 + (u− u−1)eigi) = ei(1 + (u− u−1)gi).

The result follows from (4.3) and by using Lemma 1. �

We will prove now that an analogous result holds for the generator of the B-type case.

Lemma 7. In YB
d,n(u, v) the following equations holds

i) b1rB = rBb1 = vrB
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ii) g1rB = rBg1 = urB

Proof. We only prove the left multiplication for the first case. The proof for the second case is analogous.
Similarly to the previous case, we have that the element f1f2 commutes with b1 and g1. Note now that
the following equation holds in YB

d,n(u, v):

f1b
2
1 = f1(1 + (v − v−1)f1b1) = f1(1 + (v − v−1)b1).

The result follows by using Lemma 2. �

4.1. Technical lemmas. Our next goal is to determine the necessary and sufficient conditions so that the
trace Tr of YB

d,n(u, v) in [10] passes to FTLB
d,n. Our approach will be analogous to [14]. However, we need

to postpone this discussion until the next subsection in order to present here a series of technical results
that are required for the proof of our main theorem.

Lemma 8. The following holds in YB
d,n(u, v).

1. Tr(rB) =
1

d2

∑
r,s

xrxs + u2v2
1

d2

∑
r,s

yrys + v(u2 + 1)
1

d2

∑
r,s

xsyr.(4.4)

+ zu[1 + u2v2]
1

d

∑
r

xr + z[u3v3 + uv]
1

d

∑
r

yr

2. Tr(r1,2) = (u+ 1)z2xm + (u+ 2)z E(m) + tr(e
(m)
1 e2).(4.5)

Proof. For the first argument we have that:

Tr(rB) =
1

d2

∑
r,s

xrxs + v
1

d2

∑
r,s

xsyr + zu
1

d

∑
r

xr + 2zuv
1

d

∑
r

yr + zv2u
1

d

∑
r

xr

+ zv2u(v − v−1)
1

d

∑
r

yr + u2v
1

d2

∑
r,s

xrys + zu2v(u− u−1)
1

d

∑
r

yr

+ u2v2
1

d2

∑
r,s

yrys + zu2v2(u− u−1)
1

d

∑
r

xr + zu2v2(u− u−1)(v − v−1)
1

d

∑
r

yr

=
1

d2

∑
r,s

xrxs + u2v2
1

d2

∑
r,s

yrys + (u2v + v)
1

d2

∑
r,s

xsyr+

z
[
u + v2u + v2u2(u− u−1)

] 1

d

∑
r

xr + z
[
2uv + u2v(u− u−1) + uv2(v − v−1)

+ u2v2(u− u−1)(v − v−1)
] 1

d

∑
r

yr.

=
1

d2

∑
r,s

xrxs + u2v2
1

d2

∑
r,s

yrys + v(u2 + 1)
1

d2

∑
r,s

xsyr + zu[1 + u2v2]
1

d

∑
r

xr

+ z[u3v3 + uv]
1

d

∑
r

yr.

For the second part of the proof the reader is referred to [14, Lemma 7]. �

The following two propositions show how Tr behaves on the elements of the defining ideal of FTLB(u, v).
We start by exploring the case of the elements that involve the B-type part of the algebra.

Proposition 3. For all m ∈ YB
d,n we have that

Tr(mrB) = p(u, v, z, ya, xb)Tr(rB), for all n ≥ 2,

where p(u, v, z, ya, xb) is a monomial in the variables u, v, z, ya and xb, with 0 ≤ a, b ≤ d− 1.
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Proof. By the linearity of the trace, it is enough to prove the statement for an element m in the inductive
basis Cn. We will proceed by induction. For n = 2 the result follows from Lemma 7, and the fact that
element f1f2 absorbs the framing part of m. For instance, if m = ta1t

b
2b1g1b1 we have

Tr(mrB) = Tr(ta1t
b
2b1g1b1f1f2gB) = v2uTr(ta1t

b
2f1f2gB) = v2uTr(f1f2gB).

Suppose now that the argument holds for any w ∈ YB
d,n−1, and let m ∈ YB

d,n. Then, the element m
can be written as follows:

m = wtbnb
a
n or m = wgn−1 . . . gib

a
i t
b
i ,

with w ∈ YB
d,n−1, a = 0, 1 and 0 ≤ b ≤ d− 1 . Since we have that

Tr(wtanbn) = yaTr(w)

Tr(wtan) = xaTr(w)

Tr(wgn−1 . . . gib
a
i t
b
i ) = zTr(α), where α = wgn−2 . . . gib

a
i t
b
i ∈ Hn(u, v)

the result follows by the induction hypothesis. �

The next proposition deals with the A-type part of the algebra.

Proposition 4. Let n ≥ 3. For all m ∈ YB
d,n we have that

(4.6) Tr(mr1,2) =


p(u, v, z, ya, xb)Tr(ta1t

b
2t
c
3r1,2)

p(u, v, z, ya, xb)Tr(ta1t
b
2t
c
3b1r1,2)

p(u, v, z, ya, xb)Tr(ta1t
b
2t
c
3b1g1b1r1,2)

p(u, v, z, ya, xb)Tr(ta1t
b
2t
c
3b1g1b1g2g1b1r1,2)

where p(u, v, z, ya, xb) is a monomial in the variables u, v, z, ya and xb, with 0 ≤ a, b ≤ d− 1.

Proof. The trace Tr is linear so it suffices to prove (4.6) for any m in the basis Cn of YB
d,n. We will use

again induction on n. We start by proving that the argument holds for n = 3. Note that from Lemmas 7
and 6 we have:

Tr(ta1t
b
2t
c
3b2r1,2) = Tr(ta1t

b
2t
c
3b1r1,2); Tr(ta1t

b
2t
c
3b1b2r1,2) = u−1Tr(ta1t

b
2t
c
3b1g1b1r1,2)

Tr(ta1t
b
2t
c
3g1b1r1,2) = uyTr(ta1t

b
2t
c
3b1r1,2); Tr(ta1t

b
2t
c
3b1g1r1,2) = uyTr(ta1t

b
2t
c
3b1r1,2)

Tr(ta1t
b
2t
c
3g1r1,2) = uTr(ta1t

b
2t
c
3r1,2)

Next, suppose thatm ∈ C3. This means thatm = ta1t
b
2t
c
3wm3 for some w ∈ C2 andm3 ∈ {g2g1b1, g2b2, b3, g2g1, g2, 1}.

From the previous results and from Lemma 6 we obtain the following:

Tr(ta1t
b
2t
c
3wg2b2r1,2) = u−1Tr(ta1t

b
2t
c
3wg2g1b1r1,2)

Tr(ta1t
b
2t
c
3wg2g1r1,2) = u2Tr(ta1t

b
2t
c
3wr1,2)

Tr(ta1t
b
2t
c
3wb3r1,2) = u−2Tr(ta1t

b
2t
c
3wg2g1b1r1,2)

Tr(ta1t
b
2t
c
3wg2r1,2) = uTr(ta1t

b
2t
c
3wr1,2)

Therefore, we only have to study the term Tr(ta1t
b
2t
c
3wg2g1b1r1,2). Replacing w for each element in C2

and by using previous lemmas and results, we obtain the following:
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Tr(ta1t
b
2t
c
3g2g1b1r1,2) = u2yTr(ta1t

b
2t
c
3b1r1,2)

Tr(ta1t
b
2t
c
3b2g2g1b1r1,2) = uTr(ta1t

b
2t
c
3b1g1b1r1,2)

Tr(ta1t
b
2t
c
3g1g2g1b1r1,2) = u3yTr(ta1t

b
2t
c
3b1r1,2)

Tr(ta1t
b
2t
c
3g1b1g2g1b1r1,2) = u2Tr(ta1t

b
2t
c
3b1g1b1r1,2)

Tr(ta1t
b
2t
c
3b1g2g1b1r1,2) = uTr(ta1t

b
2t
c
3b1g1b1r1,2)

Tr(ta1t
b
2t
c
3b1g1g2g1b1r1,2) = u2Tr(ta1t

b
2t
c
3b1g1b1r1,2)

Tr(ta1t
b
2t
c
3b1b2g2g1b1r1,2) = u−1Tr(ta1t

b
2t
c
3b1g1b1g2g1b1r1,2)

The result for n = 3 follows immediately. Finally, we suppose that the argument holds for w ∈ Cn−1,
and let m ∈ Cn. We have that m(a) = ta11 . . . tann wban or m′ = ta11 . . . tann wgn−1 . . . gibai , with w ∈ YB

d,n−1,
a = 0, 1 and 0 ≤ a1, . . . , an ≤ d− 1. Since we have that

Tr(m(0)) = Tr(ta11 . . . tann w) = xanTr(w)

Tr(m(1)) = Tr(ta11 . . . tann wbn) = yanTr(w)

Tr(m′) = Tr(ta11 . . . tann wgn−1 . . . gib
a
i ) = zTr(α),

where α = ta11 . . . t
an−1

n−1 wgn−2 . . . git
an
i bai ∈ YB

d,n−1, the result follows by the induction hypothesis. �

From the above proposition it is clear that it would be useful to compute the traces of the following
elements: ta1t

b
2t
c
3b1r1,2, ta1t

b
2t
c
3b1g1b1r1,2 and ta1t

b
2t
c
3b1g1b1g2g1b1r1,2. We shall treat each case as a separate

lemma. For the first term we have:

ta1t
b
2t
c
3b1r1,2 = ta1t

b
2t
c
3b1e1e2g1,2 = e

(m)
1 e2b1g1,2.

Lemma 9. The following holds in YB
d,n(u, v):

Tr(e
(m)
1 e2b1g1,2) =

1

d2

d−1∑
s,r=0

x−rx−s+rym+s + (u2 + 2)
uz

d

d−1∑
r=0

x−rym+r + (u2 + 1)u2z2ym.

Proof. We start by expanding the term g1,2.

Tr(e
(m)
1 e2b1g1,2) =Tr(e

(m)
1 e2b1) + u

(
Tr(e

(m)
1 e2b1g1) + Tr(e

(m)
1 e2b1g2)

)
+ u2

(
Tr(e

(m)
1 e2b1g1g2) + Tr(e

(m)
1 e2b1g2g1)

)
+ u3Tr(e

(m)
1 e2b1g1g2g1)

=
1

d2

d−1∑
s,r=0

x−rx−s+rym+s + u
2z

d

d−1∑
r=0

x−rym+r + 2u2z2ym

+ u3
z

d2

d−1∑
s,r=0

xm+s−ry−s+r + u3(u− u−1)z2ym

=
1

d2

d−1∑
s,r=0

x−rx−s+rym+s + (u2 + 2)
uz

d

d−1∑
r=0

x−rym+r + (u2 + 1)u2z2ym.

�

For the term ta1t
b
2t
c
3b1g1b1r1,2 we have that:

ta1t
b
2t
c
3b1g1b1r1,2 = ta1t

b
2t
c
3b1g1b1e1e2g1,2 = e

(m)
1 e2b1g1b1g1,2.

Denote now A := Tr(e
(m)
1 e2b1g1b1g1,2), where m = a+ b+ c. By expanding g1,2 we obtain that

A = A1 + u(A2 +A3) + u2(A4 +A5) + u3A6.
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with:

A1 = Tr(e
(m)
1 e2b1g1b1) A4 = Tr(e

(m)
1 e2b1g1b1g1g2)

A2 = Tr(e
(m)
1 e2b1g1b1g1) A5 = Tr(e

(m)
1 e2b1g1b1g2g1)

A3 = Tr(e
(m)
1 e2b1g1b1g2) A6 = Tr(e

(m)
1 e2b1g1b1g1g2g1)

For the term ta1t
b
2t
c
3b1g1b1g2g1b1r1,2 we work in an analogous way. Denote the following

B := Tr(e
(m)
1 e2b1g1b1g2g1b1g1,2) = Tr(ta1t

b
2t
c
3b1g1b1g2g1b1e1e2g1,2)

= Tr(ta1t
b
2t
c
3b1g1b1g2g1b1r1,2),

where m = a+ b+ c. By expanding the term g1,2 we obtain:

B = B1 + u(B2 +B3) + u2(B4 +B5) + u3B6

with

B1 = Tr(e
(m)
1 e2b1g1b1g2g1b1) B4 = Tr(e

(m)
1 e2b1g1b1g2g1b1g1g2)

B2 = Tr(e
(m)
1 e2b1g1b1g2g1b1g1) B5 = Tr(e

(m)
1 e2b1g1b1g2g1b1g2g1)

B3 = Tr(e
(m)
1 e2b1g1b1g2g1b1g2) B6 = Tr(e

(m)
1 e2b1g1b1g2g1b1g1g2g1)

We then have the following lemma:

Lemma 10. The following holds in YB
d,n(u, v):

A =
z

d

d−1∑
r=0

x−rxm+r + (v + v−1)
z

d

d−1∑
r=0

x−rym+r +
1

d2

∑
r,s

x−rym+syr−s + (u− u−1)A1

+ z2xm + (v − v−1)
z2

d

∑
r

yr + 2

(
z

d

∑
s

ym+sy−s + (u− u−1)A3

)
+A3 + (u− u−1)A4.

B =
z

d

d−1∑
r=0

x−rym+r + (u− u−1)z2ym + (v − v−1)
z

d2

∑
k,r

y−kym+k+r

+ (v − v−1)(u− u−1)
z2

d

∑
r

xm+r + (v − v−1)2(u− u−1)
z2

d

∑
r

ym+r

+ 2

(
z2ym + z2(v − v−1)

1

d

∑
r

xr + z2(v − v−1)2
1

d

∑
r

yr + (u− u−1)B1

)

+ 2(B1 + (u− u−1)B2) +
1

d2

∑
s,k

y−ky−s+kym+s + (u− u−1)
z

d

+
∑
k

y−kxm+k + (u− u−1)(v − v−1)
z

d2

∑
r,k

y−kym+r+k + (u− u−1)(B1 +B5).

Proof. The proof is a long straightforward computation. For instance, for the expressions A1, A2 and B1

we have:
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A1 =
1

d2

∑
r,s

Tr(tm+s
1 tr−s2 t−r3 b1g1b1) =

z

d

∑
s

Tr(tm+s
1 t−s2 b21)

=
z

d

∑
s

[Tr(tm+s
1 t−s2 ) + (v − v−1)Tr(tm+s

1 t−s2 b1f1)]

=
z

d

∑
s

[Tr(tm+s
1 t−s2 ) + (v − v−1)

1

d

∑
r

Tr(tm+s+r
1 t−s2 b1)]

=
z

d

∑
s

[xm+sx−s + (v − v−1)
1

d2

∑
r

x−sym+s+r]

A3 =
1

d2

∑
r,s

Tr(tm+s
1 tr−s2 t−r3 b1g1b1g2) =

z

d

∑
k

Tr(tm+k
1 t−k2 b1g1b1) = z2Tr(tm1 b

2
1)

= z2[Tr(tm1 ) + (v − v−1)Tr(tm1 b1f1)] = z2xm + (v − v−1)
z2

d

∑
r

ym+r

= z2xm + (v − v−1)
z2

d

∑
r

yr.

B1 =
1

d2

∑
r,s

Tr(tm+s
1 tr−s2 t−r3 b1g1b1g2g1b1) =

1

d2

∑
r,s

Tr(tm+s
1 tr−s2 b1g1b1g2t

−r
2 g1b1)

=
z

d2

∑
r,s

Tr(tm+s−r
1 tr−s2 b1g1b1g1b1) =

z

d

∑
k

Tr(tm+k
1 t−k2 b21g1b1g1)

=
z

d

∑
k

[Tr(tm+k
1 t−k2 g1b1g1) + (v − v−1)Tr(tm+k

1 t−k2 b1f1g1b1g1)]

=
z

d

∑
k

[Tr(tm+k
1 t−k2 g1b1g

−1
1 ) + (u− u−1)Tr(tm+k

1 t−k2 g1b1)+

(v − v−1)Tr(tm+k
1 t−k2 f1b1g1b1g

−1
1 ) + (v − v−1)(u− u−1)Tr(tm+k

1 t−k2 f1b1g1b1)]

=
z

d

∑
k

[y−kxm+k + (u− u−1)zym + (v − v−1)
1

d

∑
r

y−kym+k+r

+ z(v − v−1)(u− u−1)Tr(tm1 f1b
2
1)]

=
z

d

∑
k

y−kxm+k + (u− u−1)z2ym + (v − v−1)
z

d2

∑
k,r

y−kym+k+r

+ (v − v−1)(u− u−1)
z2

d

∑
r

xm+r + (v − v−1)2(u− u−1)
z2

d

∑
r

ym+r.

In a similar way, we obtain the following equations for the remaining expressions.

A2 =
1

d2

∑
r,s

x−rym+syr−s + (u− u−1)A1.

A4 =
z

d

∑
s

ym+sy−s + (u− u−1)A3, A5 = A4.

A6 = A3 + (u− u−1)A4.
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and
B2 = z2ym + z2(v − v−1) 1

d

∑
r xr + z2(v − v−1)2 1

d

∑
r yr + (u− u−1)B1,

B4 = z
d

∑
r Tr(tm+r

1 t−r2 b21g1b1g1) + z
d (u− u−1)

∑
r Tr(tm+r

1 t−r2 b1g1b1g1b1g1).
B3 = B2, B5 = B4.
B6 = 1

d2

∑
s,k y−ky−s+kym+s + (u− u−1) zd

∑
k y−kxm+k

+(u− u−1)(v − v−1) zd2
∑
r,k y−kym+r+k + (u− u−1)(B1 +B5),

which implies the result. �

4.2. A Markov trace on the algebra FTLB
d,n. In order to find the necessary and sufficient conditions so

that Tr passes to FTLB
d,n(u, v), one has to make sure that Tr annihilates the defining ideal 〈r1,2, rB〉 of

FTLB
d,n(u, v). For this reason, we have to solve the following system of equations:

(4.7) (Σ) =


A = 0
B = 0

Tr(rB) = 0

Tr(e
(m)
1 e2r1,2) = 0

Tr(e
(m)
1 e2b1r1,2) = 0

The above system may initially seem intimidating, however, using harmonic analysis on the underlying
finite group simplifies things considerably. We shall follow the method of P. Gerard́ın [22, Appendix]. We
will first write the above system in its functional notation and then apply the Fourier transform, which
is a standard tool in the theory of framization of knot algebras [13, 14, 10]. We shall treat separately the
first two equations because of their length.

Before solving (4.7), we will make a short digression on the Fourier transform of a complex function
on a finite cyclic group. Let L(Cd) := C[Cd] be the group algebra formed by all complex functions on
Cd. The convolution product in this algebra is defined by:

(f ∗ g)(x) =
∑
y∈Cd

f(y)g(x− y) wheref, g ∈ C[Cd].

We also define the product by coordinates in L(Cd) as follows:

fg : x→ f(x)g(x) wheref, g ∈ Cd.

The set {δa | a ∈ Cd}, where δa ∈ L(Cd) is the function with support {a}, is a linear basis for L(Cd)
with respect to the convolution product. From now on we will consider Cd as an additive group, that is,

Cd = Z/dZ. The Fourier transform F is the linear automorphism on L(Cd) defined by f 7→ f̂ , with

f̂(k) := (f ∗ χk)(0) =
∑
y∈Cd

f(y)χk(−y),

where χk : a 7→ cos
(
2πka
d

)
+ i sin

(
2πka
d

)
denote the characters of Cd for k ∈ {0, . . . , d − 1}. Note that

ˆ̂
f(x) = df(−x). Finally, note that the elements in the group algebra L(Cd) can also be identified with

the set of formal sums {
∑d−1
s=0 αst

s |αs ∈ C} as follows:

(f : Cd → C)←→
d−1∑
s=0

f(ts)ts

We will often use this identification, since it makes some computations easier. For details regarding the
properties of the convolution product and the Fourier transform the reader is referred to [31, 26, 14, 10].

We are now ready to solve (4.7). We start with equation A = 0. Denote its functional form by FA = 0
and consider the function 1 : Cd → C defined by 1(m) = 1 for all m ∈ Cd. We then have:

FA = FA1 + u(FA2 + FA3) + u2(FA4 + FA5) + u3FA6,
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where

FA1 =
z

d
x ∗ x+ (v − v−1)

z

d2
x ∗ y ∗ 1; FA2 =

1

d2
x ∗ y ∗ y + (u− u−1)A1

FA3 = z2x+ (v − v−1)
z2

d
y ∗ 1; FA4 =

z

d
y ∗ y + (u− u−1)A3 = FA5

FA6 = A3 + (u− u−1)A4

The case of equation B = 0 is analogous.

FB = FB1 + u(FB2 + FB3) + u2(FB4 + FB5) + u3FB6,

where:

FB1 =
z

d
x ∗ y + (u− u−1)z2y + (v − v−1)

z

d2
y ∗ y ∗ 1 +

z2

d
(v − v−1)(u− u−1)x ∗ 1

+
z2

d
(v − v−1)2(u− u−1)y ∗ 1

FB2 = z2y +
z2

d
(v − v−1)x ∗ 1 +

z2

d
(v − v−1)2y ∗ 1 + (u− u−1)B1 = FB3

FB4 = B1 + (u− u−1)B2 = FB5

FB6 =
1

d2
y ∗ y ∗ y +

z

d
(u− u−1)x ∗ y + (u− u−1)(v − v−1)

z

d2
y ∗ y ∗ 1 + (u− u−1)(B1 +B5).

From the above, the system (Σ) becomes:

FA = 0(4.8)

FB = 0(4.9)

x ∗ (x ∗ 1) + u2v2y ∗ (y ∗ 1) + v(u2 + 1)x ∗ (y ∗ 1)+

+ dzu(1 + u2v2)x ∗ 1+ dz(u3v3 + uv)y ∗ 1 = 0(4.10)

x ∗ (x ∗ x) + dzu(u+ 2)x ∗ x+ d2zu2(u2 + 1)x = 0(4.11)

x ∗ (x ∗ y) + dzu(u+ 2)x ∗ y + d2zu2(u2 + 1)y = 0(4.12)

Let x0, . . . , xd−1 and y0, . . . , yd−1 be the parameters of Tr. Let also x : Cd → C the function such that
x(0) = 1 and x(k) = xk, 1 ≤ k ≤ d − 1, and let y : Cd → C be the function such that y(k) = yk,
0 ≤ k ≤ d− 1.

We will solve the system of equations (4.8)-(4.12). We start with (4.11), apply the Fourier transform,
and reproduce the proof of [14, Theorem 6 and Section 7]. We obtain the following values for x̂:

(4.13) x̂ = −

duz ∑
m∈Sup1

tm + du(u2 + 1)z
∑

m∈Sup2

tm

 .

Using the properties of the Fourier transform, we obtain the expression for the xk’s:

(4.14) xk = −z

u
∑

m∈Sup1

χm(k) + u(u2 + 1)
∑

m∈Sup2

χm(k)

 .

Next, we use (4.12) to detemine Sup(ŷ). By applying the Fourier transform once again we obtain:

(x̂2 + dzu(u + 2)x̂+ d2zu2(u2 + 1))︸ ︷︷ ︸
D

ŷ = 0.

We know that D = 0 for all m ∈ Sup(x̂), therefore, ŷ can be free in Sup(x̂). On the other hand, if
n 6∈ Sup(x̂) we obtain:

d2zu2(u2 + 1)ŷ(n) = 0,
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which implies that ŷ(n) = 0 and therefore, supposing that d2zu2(u2 + 1) 6= 0), we deduce that Sup(ŷ) ⊆
Sup(x̂).

We will use the expressions for x and for Sup(ŷ) to solve the remaining equations. Let 1 =
∑d−1
k=0 1(m)tm

and observe that the Fourier transform of the function 1 : Cd → C is:

1̂ =

d−1∑
s=0

(1 ∗ is(0))ts =

d−1∑
s=0

[
d−1∑
r=0

1(r)χs(−r)

]
ts =

d−1∑
s=0

[
d−1∑
r=0

χs(−r)

]
ts.

Thus we have that:

1̂(k) =

{
d, k = 0
0, k 6= 0

.

This means that in order to obtain the full set of solutions for (Σ) we will have to solve (4.8)-(4.10) for
both zero and non-zero values of k. Moreover, from (4.13) and depending on which subset of Sup(x̂) the
element k lies in, we have the following possibilities for x̂(k):

x̂(k) =

{
−duz, k ∈ Sup1

−du(u2 + 1)z, k ∈ Sup2
, k ∈ Cd.

For k ∈ Cd and k 6= 0, the equation (4.10) vanishes and we obtain the following solutions for ŷ(k):

(4.15) ŷ(k) =

{
−duz or duz, if k ∈ Sup1, k 6= 0
0 or − duz(u2 + 1) or duz(u2 + 1), if k ∈ Sup2, k 6= 0

.

On the other hand, for k = 0 we obtain the following values for ŷ(0):

(4.16) ŷ(0) =

{
duz
v or − duvz, if 0 ∈ Sup1
duz(u2+1)

v or duz(1−v2)
v , if 0 ∈ Sup2

.

Combining (4.15) and (4.16), we deduce the following four solutions for ŷ:

ŷ1 = −duz

−1

v
+

∑
m∈Sup

y
1

tm −
∑

m∈Sup
y
2

tm + (u2 + 1)
∑

m∈Sup
y
3

tm − (u2 + 1)
∑

m∈Sup
y
4

tm


ŷ2 = −duz

v +
∑

m∈Sup
y
1

tm −
∑

m∈Sup
y
2

tm + (u2 + 1)
∑

m∈Sup
y
3

tm − (u2 + 1)
∑

m∈Sup
y
4

tm


ŷ3 = −duz

− (u2 + 1)

v
+

∑
m∈Sup

y
1

tm −
∑

m∈Sup
y
2

tm + (u2 + 1)
∑

m∈Sup
y
3

tm − (u2 + 1)
∑

m∈Sup
y
4

tm


ŷ4 = −duz

v2 − 1

v
+

∑
m∈Sup

y
1

tm −
∑

m∈Sup
y
2

tm + (u2 + 1)
∑

m∈Sup
y
3

tm − (u2 + 1)
∑

m∈Sup
y
4

tm

 ,

where Supyi = {a ∈ Cd | ŷ(a) = f(i) for 0 ≤ i ≤ 4} and f : {1, . . . , 4} → C is the function that is defined
by f = −duzδ1 + duzδ2 − duz(u2 + 1)δ3 + duz(u2 + 1)δ4. Moreover, from the above definitions for Supyi
together with (4.15) and (4.16) we deduce the inclusions:

Supy1 t Supy2 t {0} = Sup1 and Supy3 t Supy4 ⊆ Sup2, if 0 ∈ Sup1.

Supy1 t Supy2 = Sup1 and Supy3 t Supy4 t {0} ⊆ Sup2, if 0 ∈ Sup2.

Using now the properties of the Fourier transform we are able to determine the expression for yrk’s,
k ∈ Cd and r ∈ {1, . . . 4}:
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y1k = −uz

−1

v
χ0(k) +

∑
m∈Supy

1

χm(k)−
∑

m∈Supy
2

χm(k) + (u2 + 1)
∑

m∈Supy
3

χm(k)− (u2 + 1)
∑

m∈Supy
4

χm(k)


y2k = −uz

vχ0(k) +
∑

m∈Supy
1

χm(k)−
∑

m∈Supy
2

χm(k) + (u2 + 1)
∑

m∈Supy
3

χm(k)− (u2 + 1)
∑

m∈Supy
4

χm(k)


y3k = −uz

− (u2 + 1)

v
χ0(k) +

∑
m∈Supy

1

χm(k)−
∑

m∈Supy
2

χm(k) + (u2 + 1)
∑

m∈Supy
3

χm(k)− (u2 + 1)
∑

m∈Supy
4

χm(k)


y4k = −uz

v2 − 1

v
χ0(k) +

∑
m∈Supy

1

χm(k)−
∑

m∈Supy
2

χm(k) + (u2 + 1)
∑

m∈Supy
3

χm(k)− (u2 + 1)
∑

m∈Supy
4

χm(k)

 .

Finally, we return to (4.14) in order to determine the values of the trace parameter z. Recall that
x0 = 1 and thus we have:

(4.17) 1 = x0 = −z
(
u|Sup1|+ u(u2 + 1)|Sup2|

)
,

or, equivalenlty:

z = − 1

u|Sup1|+ u(u2 + 1)|Sup2|
.

We thus have proven the main theorem of this paper, which is the following:

Theorem 5. Let x : Cd → C such that x(0) = 1 and x(k) = xk, 1 ≤ k ≤ d− 1 and let also y : Cd → C
such that y(k) = yk, 0 ≤ k ≤ d − 1. The trace Tr defined on YB

d,n(u, v) passes to the quotient algebra

FTLB
d,n(u, v) if and only if the parameters of the trace satisfy the following conditions:

xk = −z

u
∑

m∈Sup1

χm(k) + u(u2 + 1)
∑

m∈Sup2

χm(k)

 , and

z = − 1

u|Sup1|+ u(u2 + 1)|Sup2|
,

where Sup1 t Sup2 is the support of the Fourier transform of x, x̂. Moreover, we have that:

Sup(ŷ) ⊆ Sup(x̂),

where ŷ is the Fourier transform of y and one of the two cases holds:

1. If 0 ∈ Sup1, the parameters yk have the following form:

yk =− uz

−1

v
χ0(k) +

∑
m∈Supy

1

χm(k)−
∑

m∈Supy
2

χm(k) + (u2 + 1)
∑

m∈Supy
3

χm(k)− (u2 + 1)
∑

m∈Supy
4

χm(k)


yk =− uz

vχ0(k) +
∑

m∈Supy
1

χm(k)−
∑

m∈Supy
2

χm(k) + (u2 + 1)
∑

m∈Supy
3

χm(k)− (u2 + 1)
∑

m∈Supy
4

χm(k)

 .

2. If 0 ∈ Sup2, the parameters yk have the following form:
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yk =− uz

− (u2 + 1)

v
χ0(k) +

∑
m∈Supy

1

χm(k)−
∑

m∈Supy
2

χm(k) + (u2 + 1)
∑

m∈Supy
3

χm(k)− (u2 + 1)
∑

m∈Supy
4

χm(k)


yk =− uz

v2 − 1

v
χ0(k) +

∑
m∈Supy

1

χm(k)−
∑

m∈Supy
2

χm(k) + (u2 + 1)
∑

m∈Supy
3

χm(k)− (u2 + 1)
∑

m∈Supy
4

χm(k)

 .

where t4i=0Supyi = Sup(ŷ). Finally, the following holds:

Supy1 t Supy2 t {0} = Sup1 and Supy3 t Supy4 ⊆ Sup2, if 0 ∈ Sup1

Supy1 t Supy2 = Sup1 and Supy3 t Supy4 t {0} ⊆ Sup2, if 0 ∈ Sup2.

Corollary 1. In the case where one of Sup1 or Sup2 is the empty set, the values of the xk’s are solutions
of the E-system, while the the yk’s are solutions of the F-system. More precisely we have that:

1. If Sup1 = ∅, then:

0 ∈ Sup2, xk =
1

|Sup2|
∑

m∈Sup2

χm(k), z = − 1

u(u2 + 1)|Sup2|

and the yk’s are one of the following solutions of the F-system:

(i) yk = − 1

v|Sup2|
χ0(k) +

1

|Sup2|

 ∑
m∈Supy

3

χm(k)−
∑

m∈Supy
4

χm(k)


or

(ii) yk =
v2 − 1

v(u2 + 1)|Sup2|
χ0(k) +

1

|Sup2|

 ∑
m∈Supy

3

χm(k)−
∑

m∈Supy
4

χm(k)

 .

2. If Sup2 = ∅, then:

0 ∈ Sup1, xk =
1

|Sup1|
∑

m∈Sup1

χm(k), z = − 1

u|Sup1|

and the yk’s are one of the following solutions of the F-system:

(i) yk = − 1

v|Sup1|
χ0(k) +

1

|Sup1|

 ∑
m∈Supy

1

χm(k)−
∑

m∈Supy
2

χm(k)


or

(ii) yk =
v

|Sup1|
χ0(k) +

1

|Sup1|

 ∑
m∈Supy

1

χm(k)−
∑

m∈Supy
2

χm(k)

 .

Remark 3. The conditions for the trace parameters z and xm, 0 ≤ m ≤ d−1, are in total agreement with
the corresponding necessary and sufficient conditions for the type A case [14, Theorem 6 and Section 7].
This is something that is expected since classical knot theory embeds in the knot theory of the solid
torus. Further, for d = 1 these conditions are also coherent with the solutions found for the classical case
in Section 3.1.
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5. Link Invariants from FTLB
d,n(u, v)

In this section we introduce the framed and classical link invariants that are derived from FTLB
d,n(u, v).

In analogy to the type A case [14], these invariants will be specializations of the invariants X B
S , where

S ⊂ Cd, that were constructed on the level of YB
d,n(u, v) in [10]. We shall first discuss briefly the invariants

X B
S and then we will proceed with the specialization.

5.1. Invariants for framed links in the solid torus. The closure of a framed or classical braid of
type B corresponds to a knot or a link in the solid torus. Therefore, as mentioned earlier, in order to
define link invariants on the level of YB

d,n, one has to make sure that the Markov trace Tr satisfies the
Markov equivalence for modular framed braids in the solid torus. To be more precise, two elements in⋃
n FB

d,n are equivalent if and only if they differ by a finite sequence of conjugations in the groups FB
d,n

and stabilization moves FB
d,n 3 α ∼ ασ±1n ∈ FB

d,n+1. Let X = (x1, . . . , xd−1) a solution of the E-system,

Y = (y0, . . . , yd−1) a solution of the F-system and S ⊂ Cd that parametrizes said solutions. Then Tr can
be rescaled and normalized as follows:

Definition 4. The following map is an invariant of framed links inside the solid torus:

X B
S(λ, u, v)(α̂) =

(
1− λS√

λS(u− u−1)ES

)n−1 (√
λS

)ε(α)
Tr(π(α)),

where λS = z−(u−u−1)ES

z is the rescaling factor, ES = 1
|S| for all i [26, 23] , ε(α) is the algebraic sum

of the exponents of the σi’s in α and π is the natural epimorphism π : FB
d,n → YB

d,n. Restricting π to
classical braids, which can be seen as framed braids with all framings zero, one obtains an invariant for
classical links YB

S(λ, u, v)(α̂).

In analogy to the classical case, we can prove that the invariants X B
S satisfy a set of skein relations.

Indeed we have:

Proposition 5. The invariants X B
S(λ, u, v) satisfy the following two skein relations:

1√
λS
X B
S(L+)−

√
λSX B

S(L−) =
u− u−1

d

d−1∑
s=0

X B
S(Ls),

where L+ = β̂gi, L− = β̂g−1i and Ls = β̂tsi t
d−s
i+1 with β = π(α), α ∈ Ŵn and π : Ŵn → YB

d,n.

X B
S(M+)−X B

S(M−) =
v − v−1

d

d−1∑
s=0

X B
S(Ms),

where M+ = β̂bi, M− = β̂b−1i and Ms = β̂tsi with β ∈ Ŵn.

Proof. Both skein relations are easily derived from the quadratic relations of YB
d,n(u, v). Denote now

ΛS := 1−λS√
λS(u−u−1)ES

. For the first skein relation we have:

X B
S(β̂g−1i ) = Λn−1S

(√
λS

)ε(β−1)
Tr(βg−1i )

= Λn−1S

(√
λS

)ε(β−1)
Tr(βgi) + (u− u−1)Λn−1S

(√
λS

)ε(β−1)
Tr(βei)

=
1

λS
Λn−1S

(√
λS

)ε(β+1)

Tr(βgi) +
(u− u−1)√

λS
Λn−1S

(√
λS

)ε(β)
Tr(βei)

=
1

λS
X B
S(β̂gi) +

(u− u−1)

d
√
λ

d−1∑
s=0

X B
S(βtsi t

d−s
i+1 )
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L+ L− Ls

s d   s−

s

00 0 00 0 0

00000

M+ M− Ms

β β β

βββ

Figure 3. The elements L+, L−, Ls, M+, M− and Ms in open braid form.

which leads to

1√
λS
X B
S(L+)−

√
λSX B

S(L−) =
u− u−1

d

d−1∑
s=0

X B
S(Ls).

In an analogous way, we prove the second skein relation.

X B
S(β̂b−1i ) = Λn−1S

(√
λS

)ε(β)
Tr(βb−1i )

= Λn−1S

(√
λS

)ε(β)
Tr(βbi) + (v − v−1)Λn−1S

(√
λS

)ε(β)
Tr(βfi)

= Λn−1S

(√
λS

)ε(β)
Tr(βbi) + (v − v−1)Λn−1S

(√
λS

)ε(β)
Tr(βfi)

= X B
S(β̂bi) +

(v − v−1)

d

d−1∑
s=0

X B
S(βtsi )

which is equivalent to:

X B
S(M+)−X B

S(M−) =
v − v−1

d

d−1∑
s=0

X B
S(Ms),

�

The link invariants on the level of FTLB
d,n(u, v) will be specializations of the invariants X B

S(λ, u, v) for
specific values of the trace parameters xi, yj and z. Theorem 5 provides the conditions so that these new
invariants are well-defined. Of course, not all values for xi, yj and z furnish topologically interesting link
invariants and so we shall use Corollary 1 to filter out such values.

In this context, we discard the cases 1(i), 2(i) and 2(ii) of Corollary 1. The reason behind this is that
if we specialize the trace parameters in the expression of X B

S to any of the cases mentioned just above,
we will obtain an invariant that fails to distinguish basic pairs of links. In more detail, for d = 1 we have
that xk = 1 and so the parameters z and yk correspond to values that were discarded in the classical
case. From the surviving values of Corollary 1, we deduce that the rescaling factor λS = u4 and so we
have:

Definition 5. Let X = (x1, . . . , xd−1) a solution of the E-system, S ⊂ Cd that parametrizes said solution.
Let also the trace parameters yk to be as in case 1(ii) of Corollary 1 and let z = − 1

u(u2+1)|S| . Then, the
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following map is an invariant of framed links inside the solid torus:

ρBS(u, v)(α̂) :=

(
−1 + u2

ESu

)n−1
u2ε(α)Tr(π̄(α)) = X B

S(u4, u, v),

where ES, ε(α) and π̄ : FB
d,n → FTLB

d,n(u, v) that sends σi 7→ gi and ti 7→ ti.

Since the invariants ρBS are specializations of X B
S , they should satisfy also a specialized version of the

skein relations of Proposition 5. Indeed, by substituting λS = u4 in Proposition 5 we obtain:

Proposition 6. The invariants ρBS(u, v) satisfy the following two skein relations:

u−2ρBS(L+)− u2ρBS(L−) =
u− u−1

d

d−1∑
s=0

ρBS(Ls),

where L+ = β̂gi, L− = β̂g−1i ,Ls = β̂tsi t
d−s
i+1 , β = π(α), α ∈ Ŵn and π : Ŵn → YB

d,n.

ρBS(M+)− ρBS(M−) =
v − v−1

d

d−1∑
s=0

ρBS(Ms),

where M+ = β̂bi, M− = β̂b−1i and Ms = β̂tsi and β ∈ Ŵn.

Remark 4. Notice that for d = 1, ρBS(u, v) coincides with the case of classical links in (3.5). Moreover,
for d = 1 the skein relations of Proposition 5 coincide with the skein relations (3.6) and (3.7).

5.2. Classical link invariants in the solid torus. Restricting π to classical braids, seen as framed
braids with all framings equal zero, one obtains from ρBS(u, v) an invariant for classical links, which is
denoted by η := ηBS(u, v). The invariant η satisfies the same skein relations as ρBS(u, v). Notice that the
algebra FTLd,n(u) can be seen as a subalgerba of FTLB

d,n. Indeed, the image of the map

φ : FTLd,n(u) −→ FTLB
d,n,

that sends gi 7→ gi and ti 7→ ti, is isomorphic to FTLd,n(u). Therefore, the trace Tr, when restricted to
φ(FTLd,n(u)), coincides with the trace tr of FTLd,n(u).

A link L inside the solid torus T is called affine if it lies inside a 3-ball B ⊂ T . Any link in S3 can be
seen as an embedded affine link in the solid torus. From the above, we can deduce that the invariant η
contains the invariant θd and so it distinguishes at least the same number of non-isotopic links as θd.

More precisely, the invariant θd distinguishes six pairs of non-isotopic links that are not distinguished
by the Jones polynomial [15]. Moreover, θd generalizes to the two-variable link invariant θ(q, E) that is
topologically equivalent to the Jones polynomial on knots but stronger than the Jones polynomial on links
[15, Theorem 5]. Consequently, it is different than the Homflypt and the Kauffman polynomials. It has
been shown as well [15, 3] that θ(q, E) distinguishes two links from the Eliahou-Kaufmann-Thistlethwaite
infinite family of links [7] that have the same Jones polynomial as the k-component unknot. By special-
izing E = 1/d, one can confirm that θd also distinguishes these two links. Figure 4 collects all pairs of
affine links that are known to be distinguished by the invariant η.

5.3. Future work. The observation that the invariant η contains θd suggests that η is stronger than the
Jones polynomial in the solid torus, at least on affine links, and that it is different than the Homflypt

polynomial in the solid torus. Consider the map δ : KW̃n −→ YB
d,n that sends σi 7→ gi. In analogy to

[5] we have that δ(KW̃n) is isotopic to YB
(br), the subalgebra of YB

d,n generated only by the braiding and

the looping generators. Note that in YB
(br) the generators ti appear only in the idempotents ei and fj

and only after the application of one of the quadratic relations. However, they still have an impact on
the skein relation, as they introduce terms with summations (recall Proposition 6). Unfortunately, this
makes difficult to compare η to other invariants in the solid torus on non-affine links.

In order to overcome this obstacle, we follow the method of [5, 15]. Let EBn be the algebra of braids and
ties of type B [9] that is generated by the braiding generators Ti (i = 1 . . . n − 1) the looping generator
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L11n418{0,0} L10n76{1,1}

L10n79{1,1}

LLL(0)

H(-3, -2.2)

3-unlink

L10n95{10}

L11n425{1,0}L11n358{0,0}

L11a467{0,0}

L11n325{1,1}

L11a404{1,1} L11a428{0,1}

L11n424{0,0}

L11a527{0,0}7{0,0} 7{0,

L11n425{1,

{1,1}

2-unlink

A E

G

H

I

B

C

D

Figure 4. Pairs of affine links that are distinguished by the invariant η and not by
the Jones polynomial. Note that pairs H and I and unoriented. Pairs A-G follow the
Thistelthwaite notation [2]. Pairs H and I follow the Eliahou-Kauffman-Thistelthwaite
notation [7].

B1, and the idempotents Ei (i = 1 . . . n− 1) and Fj (j = 1, . . . n). For d > n+ 1, the map EBn −→ YB
d,n is

an embedding [9], which, again in analogy to [5], implies that EBn ∼= YB
(br).

This means that in the context of classical links in the solid torus, seen as closures of framed braids
in the solid torus with all framings equal zero, we can work directly with EBn. The advantage is that
the framing generators are not involved in the definition of EBn, which simplifies the corresponding skein
relations. For the purpose of our comparison we aim to generalize the invariant η to a three-variable
invariant. One could achieve this by defining the partition Temperley-Lieb algebra of type B, PTLB

n, as
an appropriate quotient of EBn and determine the necessary and sufficient conditions so that the trace trn
of EBn passes to PTLB

n. Under these conditions, we will obtain the desired generalized invariant. This is
a work in progress and it will be the subject of a sequel paper.
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