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We describe the flows and morphological dynamics of topological defect lines and loops in three-
dimensional active nematics and show, using theory and numerical modeling, that they are governed by the
local profile of the orientational order surrounding the defects. Analyzing a continuous span of defect loop
profiles, ranging from radial and tangential twist to wedge �1=2 profiles, we show that the distinct
geometries can drive material flow perpendicular or along the local defect loop segment, whose variation
around a closed loop can lead to net loop motion, elongation, or compression of shape, or buckling of the
loops. We demonstrate a correlation between local curvature and the local orientational profile of the defect
loop, indicating dynamic coupling between geometry and topology. To address the general formation of
defect loops in three dimensions, we show their creation via bend instability from different initial elastic
distortions.
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Active matter is a class of materials in which the
individual constituents continually consume energy to
generate work or motion, maintaining the system in
dynamic, self-organized, nonequilibrium states [1,2].
Examples derive readily from the study of living systems,
ranging from intracellular organization to swarming bac-
teria and flocks of birds, but they can equally be realized
synthetically in self-propelled colloids or microtubule
mixtures. The formalism of active liquid crystals [3] has
emphasized the key role of topology in active matter,
showing the significance of active topological defects to
“turbulence” in bacterial suspensions [4], cell populations
[5], cultures [6], and tissues [7], as well as synthetic active
nematics [8,9]. Central to much of the phenomenology in
(quasi-) two-dimensional systems is that defects with a
þ1=2 profile actively self-propel, while those with −1=2
profile do not [10].
The major focus to date has been on topological defects

in two-dimensional active systems [11–14], including in
curved geometries [9,15–17]; however, recently results
have begun to emerge also in three dimensions. Three-
dimensional active nematics are governed by the presence
of topological defect lines and loops, which exhibit com-
plex structure and topology-affected dynamics. These have

been studied numerically in thin slabs [18], establishing the
crossover from two-dimensional behavior and the signifi-
cance of twist distortions, and in the confined geometry of a
spherical droplet [19], showing the significance of defect
loops in the turbulent regime. Recent experiments in a bulk
extensile nematic [20] confirm the importance of defect loops,
particularly those of zero topological charge, and provide
insights into their structure, formation, and dynamics.
Active nematics are described by a local orientation n,

called the director, which is a unit line field satisfying the
symmetry n ∼ −n, and active stresses −ζnn along this
orientation [1], where ζ is a phenomenological constant
that is positive in extensile materials and negative in
contractile ones. Defects are regions where the local
orientation of the active nematic is broken due to frustration
and in three dimensions are, usually, in the form of lines,
which can close into loops. The geometric structure of a
defect line is encoded in its profile, the variation of the
director field in a perpendicular cross section. In the two-
dimensional �1=2 profiles the director lies in this cross-
sectional plane; however, in three dimensions a far greater
range of geometric profiles is possible [19–26]. The
topological classification of nematic defect loops is also
rich, particularly the interplay between topological charge
and orientability [21–23].
In this Letter, we describe the three-dimensional flows

generated by active defect lines and zero topological charge
defect loops, applicable to systems such as microtubule-
based active nematics [8,20]. Using analytic calculations
and mesoscopic continuum numerical modeling, we show
that the nonlinear dynamics of three-dimensional active
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nematic defects can be understood in terms of their local
director profile and associated “self-propulsion velocity.”
We then give a statistical analysis of the geometries of
defect loops in three-dimensional active turbulence in the
confinement of a sphere, showing that the most common
profiles are of twist type and that �1=2 profiles occur
preferentially at places of high curvature. Finally, we
describe the process of defect loop formation from the
uniform state via the fundamental bend instability of
extensile nematics.
If we plot the variation of the director around any cross

section of a defect line as a path on the unit sphere it traces
out a curve connecting antipodal points, Fig. 1(a). We
restrict to those profiles for which this curve is half of a
great circle; the rotation of the director around the defect
line is then as efficient as possible, which minimizes the
total elastic distortion. Since any (oriented) great circle can
be identified with the vector Ω normal to it, the space of
these minimal distortion profiles is S2; defect loops of this
type, described by the rotation vector Ω, were first
introduced by Friedel and de Gennes [24]. We parametrize
this space as follows: Let t denote the unit tangent to the
defect line. Any great circle is orthogonal to t either at
exactly two points, �m, or at every point; the latter are the
�1=2 profiles of defects in two-dimensional active nem-
atics. We take the defect profile to be the half great circle
starting at m and ending at −m with director

n ¼ cos
1

2
ϕmþ sin

1

2
ϕðcos βt ×mþ sin βtÞ; ð1Þ

where ϕ is the azimuthal angle about the defect line and β is
the “twist angle” between t and Ω. The profile is called

“wedge type” (�1=2) if β ¼ 0, π and “twist type” if
β ¼ π=2 [20]; we caution that the word twist here does not
hold direct correspondence with a specific type of elastic
distortion. We denote by α the “phase offset” between m
and the direction e1 of the radial line ϕ ¼ 0, and write
m ¼ cos αe1 þ sin αe2, where e2 ¼ t × e1. Distinct exam-
ples of how the phase offset affects the local geometry
of twist profiles are given by the cases α ¼ 0, π (radial
twist) and α ¼ �π=2 (tangential twist), as shown in
Fig. 1(b). We remark that this parametrization is not unique;
e.g., under the nematic symmetry n → −n we have
ðα; βÞ → ðαþ π;−βÞ.
To determine the nature of the active flows generated by

three-dimensional defect lines we adapt the approach of
Giomi et al. [10] for defects in two dimensions. The idea is
to solve a Stokes flow problem for an incompressible fluid

−∇pþ μ∇2u − ζ∇ · ðnnÞ ¼ 0; ∇ · u ¼ 0; ð2Þ

with an active forcing term −ζ∇ · ðnnÞ and prescribed
director field Eq. (1). The solution is obtained by taking a
Helmholtz decomposition of the active force [27]; we
present this in the Supplemental Material [28] and show
examples in Fig. 1(c), focusing on a family interpolating
between profiles of radial and tangential twist. By evalu-
ating the flow at the location of the defect itself we obtain a
self-propulsion velocity,

uSP ¼ −
ζR⊥ð1þ cos βÞ2

16μ
ðcos 2αe1 þ sin 2αe2Þ

−
ζRk sin βð1þ cos βÞ

4μ
sin αt; ð3Þ

Radial twist
profile

Tangential twist
profile

(b)

(c)

Phase offset

(a) Twist angle
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FIG. 1. Three-dimensional local profiles of defect lines and their flows. (a) A local director profile (green cylinders) corresponds to a
path on the unit sphere connecting antipodal points. We consider minimal distortion profiles corresponding to half a great circle
(thickened green line)—these are specified by a twist angle β and a phase offset angle α. (b) Selected examples of defect profiles of
þ1=2 and “pure twist” type. (c) The active flows (blue arrows) generated by the corresponding nematic defect profiles. We show the case
of extensile activity (ζ > 0); for contractile activity the direction of the flows reverses.
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where R⊥, Rk are length scales roughly corresponding to
the typical defect spacing, or the (local) radius of curvature
of the defect loop. More formally, they are constants of
integration arising from the choice of boundary conditions
in exactly the same way as in the calculation for defects in
two dimensions [10]. This result has several immediate
interesting aspects. First, the magnitude of the transverse
velocity depends only on β while its direction is determined
bym and rotates relative to the radial direction ϕ ¼ 0 at the
rate 2α. Second, generically there is also a component of
motion (and flow) directed along the defect line; it has
maximum strength when α ¼ �π=2 and β ¼ �π=3 and
vanishes only at profiles with α ¼ 0; π, or β ¼ π. These
tangential flows locally stretch the defect line creating
elongated sections of loops with such profiles. Third, the
self-propulsion velocity vanishes entirely only when β ¼ π,
corresponding to the −1=2 profile.
This calculation qualitatively predicts the behavior of

three-dimensional active defect loops by assigning, at each
point, a local profile given by Eq. (1) and the corresponding
self-propulsion velocity Eq. (3). In doing this we neglect
contributions coming from the curvature of the defect
loop but capture the important leading behavior of self-
propulsion. Figure 2 shows analytical results (top panels)
and full numerical simulations (middle and bottom panels)
of active flows and dynamics for three distinct types
of defect loop with zero topological charge, initiated as

surrounding cylindrical domains of either a splay, bend, or
twist elastic distortion; these loop types directly correspond
to those identified in recent experiments [20]. In each case,
we consider a slab geometry, confined along z and periodic
in x, y, and initialize a circular defect loop in the cell
midplane, working in the regime of weak activity below
the threshold for onset of spontaneous flows [29,30]. The
director field around a defect loop with arbitrary geometry
(and topology) can be created using Maxwell’s solid angle
function; as this function is harmonic, this creates director
fields that satisfy the (one-elastic-constant) Euler-Lagrange
equations [24,31,32]. Details of numerical methods and
parameter values are given in the Supplemental Material
[28], which includes Refs. [30,33].
We show in Fig. 2(a) a defect loop surrounding a splay

domain, with the director uniformly along z outside the
loop and matching to normal anchoring at both boundaries.
Inside the defect loop the director rotates to point along x in
the cell midplane, giving a splay distortion there. A full
mapping of the local profiles along the defect loop to
Eq. (1) is given in the Supplemental Material [28], but it
suffices to focus on only a few points. In the xz-plane the
local profile is þ1=2 at positive x and −1=2 at negative x;
the associated active flows cause the þ1=2 point to propel
along positive x, while the −1=2 point does not intrinsically
self-propel. In the yz-plane the profile is of tangential twist
type with β ¼ π=2, α ¼ �π=2 and at both points the

(a) (b) (c)

FIG. 2. Flows and dynamics of different active nematic defect loops with zero topological charge. (a) Defect loop surrounding a
cylindrical splay domain (director shown in green). The top panel shows a schematic with the analytically predicted self-propulsion
velocity (blue arrows), the middle panel shows the numerically calculated flows in the cell midplane, and the bottom panel shows the
dynamics of the defect loop position and shape. (b) Defect loop surrounding a cylindrical bend domain with the same comparison
between analytic predictions and full simulation as in (a). (c) Defect loop surrounding a cylindrical twist domain. Here the profile is of
twist type (β ¼ π=2) everywhere and α makes two full rotations around the loop. The self-propulsion velocities contract the loop along
x, expand it along y, and buckle it on its diagonals. Color on the middle panel velocity gives its z component (þz red, −z blue). Time in
all panels is given in units of the active timescale τζ (see Supplemental Material [28]).

PHYSICAL REVIEW LETTERS 124, 088001 (2020)

088001-3



tangential component of the flow is along positive x,
stretching these sections. Putting these local pieces together,
the defect loop self-propels along positive x and expands
into a prolate shape as it does so. This prediction is in
remarkably close qualitative agreement with numerical
solutions for the velocity field and loop evolution from
the full active nematic equations for the velocity.
Switching to planar alignment along the x-direction with

the director vertical inside the defect loop generates a loop
surrounding a bend domain, shown in Fig. 2(b). Here, in the
xz-plane, we have a þ1=2 defect at negative x, a −1=2
defect at positive x, and tangential twist profiles with
β ¼ π=2, α ¼ �π=2 in the yz-plane. This leads to the loop
self-propelling along positive x, this time shrinking and
adopting an oblate shape.
The behavior is different for a defect loop surrounding

a (right-handed) twist domain, shown in Fig. 2(c). The
director rotates within the xy-plane of the cell so that every
cross-sectional profile is of pure twist type, with β ¼ π=2 in
Eq. (1). For such a defect loop, the transverse component of
the self-propulsion velocity has constant magnitude and
winds around the defect loop with linking number −2 (see
Supplemental Material [28]); its direction is such as to
compress the loop along the x-axis and expand it along y,
to push it down at points lying along the x ¼ y diagonal and
up at points on the x ¼ −y diagonal. The net effect is to
cause the defect loop to buckle into a nonplanar shape (the
sense of buckling reverses upon reversal of the twist
domain handedness).
We investigate what the local profile structure along an

active defect loop typically is, using simulations of the
turbulent state in a spherical droplet where loops are
continually produced, annihilated, and rewired [19]. The
local profiles of all defect loops are extracted and tracked
dynamically over the simulation time (see Supplemental
Material [28] for details of the extraction algorithm, which
includes Refs. [34,35]). Figure 3(a) shows a typical
simulation snapshot in which there are three defect loops
and the profiles of each. Because of the spherical confine-
ment, one of the loops has þ1 topological charge while the
others have zero charge; in the following we consider only
the zero topological charge loops.
In Fig. 3(b) we plot the distribution of local profiles

found over the entire simulation using an equal-area
projection of the (α, β) sphere [Fig. 1(a)]. The distribution
shows a bias towards profiles of twist type (β ≈ π=2) with
tangential twist (α ≈�π=2) more common than radial twist
(α ≈ 0, π). We speculate that this bias is caused by the flows
about tangential twist profiles locally stretching the defect
line, as discussed for Fig. 2(a), increasing the length of
the loop with this local profile. We also note a symmetry
between (α, β) and ð−α; βÞ, a consequence of invariance
under t → −t coming from the fact that the defect loops are
not naturally oriented, but a slight asymmetry between

(α, β) and (αþ π, β). This asymmetry is detecting the
global structure of flows confined to a droplet, which
spontaneously pick an axis and sense of rotation, as
detailed in [19]. Finally, in Fig. 3(c) we plot the twist
angle β against the local defect line curvature, which shows
that the twist profiles (cos β ≈ 0) coincide with the places
of lowest curvature, while the wedge-type �1=2 profiles
reside at “apex points” where the curvature is highest.
This correlation is consistent with the dynamics of the
highly idealized loop encircling a splay domain, shown in
Fig. 2(a), and the formation of hairpins under the combi-
nation of transverse self-propulsion ofþ1=2 points and line
stretching of tangential twist profiles.
Defect loops in three-dimensional active nematics can

nucleate directly from bend instability, in direct analogy
with the nucleation of �1=2 point defect pairs in two
dimensions [8,36]. To study this important nucleation
process, we initialize a localized bend distortion in a
homogeneous far field director; see Fig. 4(a). The bend
distortion grows until it nucleates a defect loop in the
cell midplane, whose structure is exactly that of the defect

(a)

(b) (c)

FIG. 3. Statistics of defect loop profiles. (a) Typical snapshot of
a spherical droplet in the turbulent regime, showing three defect
loops with cross sections colored by twist angle β. Insets show the
variation of profiles for each loop in an equal-area projection of
the (α, β) sphere. (b) Cumulative statistics of defect loop profiles
(zero topological charge loops only). The majority are of twist
type (β ≈ π=2), with a maximum at tangential twist profiles
(α ≈�π=2). (c) Correlation between local defect line curvature
and twist angle β (units are inverse active length scale ξ−1ζ ; see
Supplemental Material [28]).
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loop surrounding a splay domain shown in Fig. 2(a). The
nucleated loop then self-propels with its þ1=2 section
leading and adopts a prolate shape, with greatest curvature
at the points with �1=2 profiles. Changing the type of
seeded elastic distortion, Fig. 4(b), leads to essentially the
same nucleation process, with the sites of nucleation being
the regions of maximal bend and the defect loops created
having the same structure.
Our results can provide the basis for the analysis and

interpretation of three-dimensional active nematic liquid
crystals. Especially, it is important to realize that defect
lines and loops in three-dimensional active nematics can
exhibit a full span of different local orientational profiles—
of �1=2 wedge, twist, and mixed type—which results in
profoundly different local self-propulsion velocities, both
in the directions perpendicular and along the defect loop
segment. There are many natural directions for extension of
our work, including a detailed comparison of topologically
charged and uncharged loops [19], the coupling between
loop geometry and active dynamics, biaxiality in defect
cores [37], and defects in active cholesterics [38,39]. The
significance of two-dimensional topological defects to
biological systems such as cell cultures and tissues has
been well-established in recent years [5–7]; active defect
loops may provide similar insights to fully three-
dimensional biological tissues, fluids, and processes.
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