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topological indices of proteins
Dmitry Melnikov1,2, Antti J. niemi3,4,5,6 & Ara Sedrakyan1,7

Protein molecules can be approximated by discrete polygonal chains of amino acids. Standard 
topological tools can be applied to the smoothening of the polygons to introduce a topological 
classification of folded states of proteins, for example, using the self-linking number of the 
corresponding framed curves. In this paper we extend this classification to the discrete version, taking 
advantage of the “randomness” of such curves. Known definitions of the self-linking number apply to 
non-singular framings: for example, the Frenet framing cannot be used if the curve has inflection points. 
However, in the discrete proteins the special points are naturally resolved. Consequently, a separate 
integer topological characteristics can be introduced, which takes into account the intrinsic features 
of the special points. This works well for the proteins in our analysis, for which we compute integer 
topological indices associated with the singularities of the Frenet framing. We show how a version of 
the Calugareanu’s theorem is satisfied for the associated self-linking number of a discrete curve. Since 
the singularities of the Frenet framing correspond to the structural motifs of proteins, we propose 
topological indices as a technical tool for the description of the folding dynamics of proteins.

Up to space translations and rigid rotations, curves in three dimensions can be defined in terms of a pair of scalar 
functions of a single scalar parameter. One possible choice is curvature κ s( ) and torsion τ s( ) (here selected to be 
functions of the arc-length parameter s), which respectively provide a local measure of the given curve failing to 
be straight and planar. Curvature and torsion characterize the local rotation of a right triple of vectors (Frenet 
frame) s s sn b t{ ( ), ( ), ( )} along the curve. Here t is the tangent vector, n and b are the normal and binormal vectors 
respectively. Given functions κ s( ) and τ s( ) one can recover the frame at each point and the parameterization sx( ), 
up to space isometries, using for example, Frenet equations1.

Given curvature and torsion, Frenet equations define a framed curve, that is a ribbon defined by tangent vector 
t and a vector u transverse to t at every point on the curve. The Frenet frame corresponds to a particular choice 

=u b (or =u n). It is not always a convenient choice, since at inflection points, where κ = 0, the direction of b 
and n is not defined. These vectors experience a discrete jump by angle π across the inflection point (see the left 
panel of Fig. 1). Nevertheless, for a smooth curve, one can always introduce a different framing, well-defined at 
inflection points.

Framed curves can be endowed with a topological characteristic called self-linking number Lk, introduced by 
the Gauss integral formula
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where γ is a closed curve and γu is its framing, i.e. a curve parameterized by ε+s sx u( ) ( ), with some small ε > 0. 
The integral computes the Gauss’ linking number of γ  and γu. It is an integer number invariant under smooth 
generic deformations of the curve, or its framing. Provided the above mentioned properties of the Frenet framing, 
one should conclude that it is not a good choice for the calculation of the self-linking number of a curve with 
inflection points2. Nevertheless, the Frenet framing can be useful in detecting such points, providing an 
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additional information about the curve. As non-generic points of the three-dimensional embedding of a segment 
(or a circle), inflection points can have a physical significance.

The purpose of this paper is to show how one can use the Frenet framing and some of its extensions to detect 
and classify special points of the discretized versions of curves, the polygons. The primary motivation of this exer-
cise is to connect the special points of framed polygons with the secondary structure motifs in protein molecules 
and understand their role in the folding process as well as the biological function of the proteins.

We start from a theorem of Calugareanu3 about basic topology of closed curves. Self-linking number can be 
calculated from a two-dimensional diagram of a framed curve, obtained by its projection on a selected plane. 
Calugareanu’s theorem (Calugareanu-White-Fuller4,5) states that the self-linking number is provided by the sum,

= +Lk wr tw, (2)

of two quantities known as writhe and twist. The writhe is defined as a difference of positive and negative 
self-intersections of the projection γP( ) of the curve γ on the plane (bottom right of Fig. 1), while the twist is the 
half-difference of positive and negative intersections of γP( ) and γP( )u  (top right of the same figure). Under the 
smooth variations (isotopies) of the three-dimensional curve, or under the change of the projection plane, writhe 
and twist can only change in such a way that their sum Lk is preserved. (See6,7 for three-dimensional definitions 
of tw and wr).

Calugareanu’s formula can be applied to examples of extended quasi-one-dimensional objects in biophysics 
and soft matter, for example in the DNA supercoiling and folding of polymers and protein molecules. See5,8–15 for 
references. A common point of those studies can be put as follows: topology, to a certain extent, controls dynam-
ics of such biological systems.

In this paper we discuss a special version of the self-linking number applicable to protein molecules. This 
number arises as a result of a “resolution” of the ill-defined linking number associated with the Frenet framing. 
For proteins, which are not closed curves, the total self-linking number can be defined as a sum of a regular, but 
not integer, piece, computed with respect to a non-singular framing, and an integer piece, characterizing the 
singular points of the Frenet framing,

θ θ= + ∈ .Lk Lk
2

, (3)0

We argue that in the Frenet framing index θ has a meaning of the twist, counting large local rotations of the 
normal vector. One can locally undo the large rotations by a transformation, which do not change the curve, but 
introduces a different framing (gauge transformation). In the new framing the total self-linking number can be 
written as

ω ω= + ∈Lk Lk
2

, , (4)0

where ω has the meaning of writhe.
Similarly to the Calugareanu’s theorem, one would like to claim that for a generic framing there is an invariant 

given by the sum ω θ+ . There is however a complication related to the fact that the Frenet framing is singular at 
the inflection points. In particular, the signs of the discrete contributions to ω and θ are not uniquely defined. We 
propose that the correct choice for ω and θ is the one, which simply counts the number of singularities of the 
Frenet framing. This number is a topological invariant, satisfying a version of the Calugareanu’s theorem.

The paper is organized as follows. Sections 2 and 3 contain preparatory material necessary for the discussion 
of the main results in sections 4 and 5. In section 2 we give a definition of the self-linking number in terms of the 
matrices rotating frames along curves. The version of this definition applicable to discrete curves is discussed in 
section 3. In section 4 we introduce and compute two different sets of indices for discrete curves, which are shown 
to take almost integer values for protein molecules. We generalize previous works by showing how different types 

Figure 1. (Left) Three members of a one-parametric family of planar curves corresponding to positive 
curvature (blue), negative curvature (green) and curvature that changes sign in the middle point (orange). The 
Frenet framing of the orange curve has a discontinuous jump of the direction of the normal vector across the 
inflection point. (Right) Segments of a framed 3D curve with = −tw 1 (top left), =tw 1 (top right), = −wr 1 
(bottom left) and =wr 1 (bottom right).
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of indices can be introduced by considering different choices of discrete framing. In section 5 we explain how the 
integer indices are related to the self-linking number, as defined in section 3. We conclude that the two indices 
considered in section 4 are similar to the twist and writhe. Specifically, Frenet framing is a special framing with a 
pure twist index. We observe that the two indices, and the corresponding twist and writhe, are not equal for the 
framing choices naturally provided by the proteins. We explain how the definition of the twist and writhe must 
be rectified in order be compatible with the Calugareanu’s theorem. In section 6 we briefly discuss the continuous 
presentation of curves and the associated gauge symmetry. Loci of the indices are solitons of this continuous 
model. We conclude in section 7.

Matrix presentation
It is convenient to use a different way to compute the self-linking number, which stems from the gauge theory for-
mulation of topological invariants of knots and links16. This definition is obtained as follows. The frame 

≡ s s se n b t{ ( ), ( ), ( )}a  can be conveniently presented as a 2 × 2 matrix using Pauli matrices σ̂i, =i 1, 2, 3. In other 
words, we would like to work with spinor representation of the frame vectors. In the topological context such pres-
entation of strings was introduced in17,18. The spinor representation of Frenet equation was also considered in19.

Matrix ê  representing one of the three frame vectors can be introduced as a contraction

∑ σ≡ = .ˆ ˆ ˆ ˆ ˆe n b t e{ , , }
(5)a

i
a
i i

Consequently, three-dimensional rotations will be acting on ê  by SU(2) matrices, such that rotation about axis 
= uu { }i  by angle α is realized by a matrix

∑α σ=






 = .ˆ ˆ ˆS i u u uexp

2
,

(6)i

i i

Note that alternatively one can define vector matrices σ= ⋅ˆ ˆe ea
a. In such notations, the frames will be rotated 

by matrices acting in a different space, on indices of a different type. However, the two approaches are equivalent, 
the difference between them is such that, in the first case, one rotates the frame vectors with respect to a fixed 
choice of the basis vectors in space, while in the second case, the basis vectors are rotated with respect to a 
fixed-position frame.

The frame at point s is defined as a SU(2) rotation S s( ) of the frame at the origin:

= = .−ˆ ˆe s S s e S s a( ) ( ) (0) ( ), 1, 2, 3 (7)a a
1

We note that Frenet equations are just the infinitesimal form of the above formula, while κ s ds( )  and τ s ds( )  are 
local infinitesimal rotation angles. Given κ s( ) and τ s( ) one can recover the rotation matrix at any point s in terms 
of a path ordered exponential

∫ τ κ
κ τ
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where γs is a part of the curve parameterized by the arc-length parameter on the interval s[0, ].
If the curve is closed the frame should return to itself after completing a closed path along it. In this case 

= ±−S S L I(0) ( )1 , where L is the length of the curve. We note that in Eq. (8) the integrand is a flat SU(2) connec-
tion, characterized by an integer number of possible singular points of the non-Abelian field strength of the gauge 
field. Consequently the integral over a closed curve is proportional to an integer number times π. This integer 
number characterizing the total rotation of the frame along the curve is the self-linking Lk, π= ⋅S i Lkexp( ). It 
can also be related to homotopy classes π S( )3

2  of the Hopf map →S S3 2 17,18.
For open curves number Lk, computed by integral (8), is not an integer. In general, it describes the rotation 

between the initial and the final orientation of the frame. Since the space of such rotations is not simply con-
nected, the latter split into non-trivial equivalence classes, distinguished by integer numbers, which are equivalent 
to Lk for closed curves.

Geometry of Discrete chains
Now we would like to discuss how the above definitions work in the case of discretized curves, i.e. polyg-
onal chains. Moreover, we will focus on a nature-given set of chains, the proteins. Protein molecules are 
quasi-one-dimensional sequences of amino acids. To visualize their geometric structure and study the folding 
dynamics, a coarse grained description of the molecule is commonly used. One choice is to represent the chain by 
the positions of the Cα carbon atoms of the amino acids. For our purposes Cα chain will be a discretized version 
of a smooth three-dimensional curve. Note that proteins provide a specific class of polygonal chains: chemical 
bonds and steric (excluded volume) constraints introduce a large degree of regularity to the protein molecules, as 
will be reviewed below. In particular, this allows to describe proteins in terms of a spin-chain-like model, cf.20. We 
will discuss the consequences of the constraints for topology.

First, we introduce the discretized Frenet framing (left panel of Fig. 2). The nodes of the polygon xn are labeled 
by index n running from one to N. Tangent vectors are defined as normalized differences of the positions of the 
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Cα atoms, ∝ −+t x xn n n1 . Binormal vectors are normal to the plane of the local rotation of the tangent vectors, 
∝ × +b t tn n n 1, while nn complete the right triples (see21,22 for more details).
Using the discrete Frenet frames one can define curvature and torsion angles, κn and τn, which serve as discrete 

versions of the continuous curvature κ s( ) and torsion τ s( ). As can be deduced from the infinitesimal form of the 
rotation matrix in Eq. (8) κn is the infinitesimal rotation (bond) angle around the binormal vector bn, while τn is 
the infinitesimal rotation (twist) angle around the corresponding tangent vector. From an example on Fig. 2 (left) 
one can calculate the discrete rotation angles as follows.

κ = ⋅ = … −+ n Nt tarccos( ), 1, , 2, (9)n n n 1

τ = ⋅ = … − .+s n Nb barccos( ), 1, , 3 (10)n n n n 1

Here κ π≤ <0 n , while τn is defined with the sign = ±s 1n , which determines the direction of the rotation of the 
frame around the tangent vector. This direction can be determined using two consecutive binormal vectors bn and 

+bn 1 connected by the bond parallel to +tn 1 using equation

= × ⋅ .+ +s b b tsign([ ] ) (11)n n n n1 1

Consequently, π τ π− ≤ <n . Note that torsion angles are defined with respect to two consecutive frames, 
which are subject to the condition that binormal vectors of both frames are both perpendicular to the bond con-
necting the frames and to the respective tangent vector. The curvature angle is only defined locally, for a single 
frame. The direction of the rotation around the binormal vectors is fixed and the angle takes values in π[0, ].

An alternative “natural” framing is provided by the peptide planes of the protein chain. The peptide planes 
can be defined by the subsequent CαC and CN bonds along the backbone chain. A non-trivial fact is that also the 
oxygen of the CO bond and the hydrogen of the NH bond, as well the next Cα connected to N, all lie approxi-
mately within the same plane (there are six atoms contained in one plane). At the level of secondary structures, 
the peptide chain is traditionally visualized as a ribbon, which can be thought as a smoothening of the sequence of 
the connected peptide planes (approximately as on the right of Fig. 2). The ribbon version of the chain introduces 
a peptide framing of the protein molecule.

Instead of the natural peptide framing, in this paper we will focus on the study of the discrete Frenet framing. 
We will show that this framing has special points and that those points correspond to secondary structure motifs. 
To that end we will need to compute torsion and curvature angles and the self-linking numbers of a series of pro-
teins. Following the above discussion the self-linking number is computed by the discrete version of path ordered 
exponential (8), which is simply a product of discrete rotation matrices ordered along the chain:

= ⋅ ⋅ .− − − S N S S S S( ) (12)N N N N, 1 1, 2 3,2 2,1

According to Fig. 2 (left) there is a natural parametrization of the rotation matrices at each step: first, one 
rotates the frame around vector bn by angle κn, and next, rotates around +tn 1 by angle τn,

= ⋅ .
τ κ

+
+

ˆ ˆ
S e e (13)n n

i t i b
1, 2 2

n
n

n
n1

Figure 2. (Left) Definition of the geometric parameters. Curvature angles κn define rotation of vectors tn 
towards adjacent +tn 1 around bn. Torsion angles τn define rotations of binormal vectors bn towards the 
subsequent vector +bn 1 around +tn 1. Clocks show the magnitude of the angles for either curvature (blue) or 
torsion (purple). (Right) Illustration showing peptide framing of the protein chain. In particular, the bonds 
connecting Cα and side chains are not shown, because they do not belong to the peptide planes. The 
parallelogram illustrates a single peptide plane.

https://doi.org/10.1038/s41598-019-50809-6


5Scientific RepoRtS |         (2019) 9:14641  | https://doi.org/10.1038/s41598-019-50809-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

For a closed curve, the result should just be positive or negative identity matrix, π= ± =S I iLkexp( ), where 
an integer self-linking number appears as an ambiguously defined phase.

We also note an ambiguity in the definition of the sign of the torsion angle in Eq. (11) if = ±+b bn n1 . The case 
=+b bn n1  is a flattening point, torsion angle vanishes across the bond, but the curvature is well defined so there 

is no actually an ambiguity. The case = −+b bn n1  is analogous to an inflection, which is accompanied by a π flip 
of the direction of the normal and binormal vectors.

Our main interest will be in the latter special points, at which the binormal vector changes sign. If the flip 
is an exact reflection by π, then one cannot say, whether this gives a positive, or a negative contribution to the 
self-linking number. On the other hand, in a nature-given chain like protein, the rotation is never exactly by π, so 
modulo possible experimental error, or even larger rotations by multiples of 2π, the direction of the rotation can 
be defined unambiguously.

indices of proteins
We will now analyze the topological data of a set of proteins, whose structure was obtained with higher resolution 
and passed additional consistency checks. Technically, these are PDB structures with homology equivalence less 
than 30%, which are obtained using diffraction data with the resolution better than 1.0 Å and verified to only 
include structures, which do not have a unit cell containing more than one peptide chain, which do not have 
a missing heavy atom in the backbone, or do not have alternate positions for heavy atoms, and those, whose 
chains do not have non-contiguous residue numbers23. (We thank K. Hinsen for sharing with us the results of the 
checks.) For this set of 212 selected proteins we will construct the Frenet framing, determine the local rotation 
angles and compute topological indices. We will demonstrate the statistics of the indices for all the studied pro-
teins and consider a couple of examples in more detail.

We start with an example of the myoglobin, code 1a6m in the Protein Data Bank (PDB). Figure 3 shows the Cα 
chain of this protein and the set of all curvature and torsion angles. The angles are mapped to the phases of unit 
vectors on a complex plane.

In the case of torsion, 124 out of the total 148 plotted vectors on the clocks of Fig. 3 point to a direction 
between zero and π/2 with the average value of τ ° 50 . The remaining 24 vectors reflect few possible deviations 
of the rotation from this standard angle. Behavior of the curvature angles is even more regular. Most of the rota-
tions are concentrated close to 90° with the average value of κ ° 86 .

Similar behavior of the curvature and torsion angles can be observed for the remaining proteins. Therefore, we 
would like to work with the following simple model. We will consider a protein as a set of regular periodic struc-
tures connected by “kinks” – some irregular connections24. Regular structures are characterized by a uniform 
curvature and torsion angles κ and τ, while angles, considerably deviating from those, correspond to the kinks. 
This correlates with the common secondary structure classification of proteins, with regular structures corre-
sponding to helices, and kinks – to structural motifs connecting them. We would like to think of regular struc-
tures as of a “ground state” of the polygon chain associated with the protein molecule, and of the kinks – as of 
walls separating domains of the ground state.

Torsion and curvature indices. Basing on the simple view of proteins given above, we would like to intro-
duce a topological classification of the irregular parts of a protein, that is a characteristic that will not care that 
much about the absolute positions of the kinks, but rather about their sequence and their intrinsic features. One 
such classification can be produced by a number of full rotations that the clock vectors representing the torsion 
angle (e.g. on Fig. 3) make around the center of the circle, as one follows the polygon chain.

Given the set of torsion angles τi one computes the following quantity

∑π
τϑ = ∆ .

=

−1
(14)i

N

i
1

4

Figure 3. (Left) Chain of the Cα atoms in myoglobin molecule, 1a6m. (Right) Clocks representing torsion 
angles τn and curvature angles κn. Color coding shows the order of rotations, with more blue ones occurring 
earlier than more red ones.
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This index, first introduced in24, computes the sum of planar rotations of τn vectors on Fig. 3. The rotations are 
taken in the direction of the smaller angle between τn and τ +n 1. Using the coordinate presentation of vectors, 
τ τ τ→ = (cos , sin , 0)i i i , the change of angle is defined through

ˆτ τ τ τ τ∆ = ⋅ → × → → ⋅ →
+ +zsign( ( ))arccos( ), (15)i i i i i1 1

where =ẑ (0, 0, 1) denotes a unit vector perpendicular to the plane.
The analysis of 212 selected proteins is summarized by the histogram on Fig. 4 (left), which shows the distri-

bution of the quantity ϑ. As can be seen from the figure, it has a high propensity towards integer values. This 
quantization was first discussed in24, where ϑ was called folding index. The statistical distribution of the index 
around integer values gives an idea of the robustness of this quantization.

Note that instead of summing τ∆ i we could instead sum the angles τi themselves. Such an index would be an 
analog of the integral of the torsion in the continuous case. The latter is the twist tw, which appears in the 
Calugareanu’s theorem (2) and is not in general an integer number. Index ϑ computed here, is a discrete version 
of the integral of the derivative of the torsion, which has loci on the irregular pieces of the chain. It is integer in 
units of π.

Do the curvature angles carry any similar topological information? A calculation using definition (14), but 
with κ∆ i instead of τ∆ i would produce a trivial answer. Few reasons for that is that κn are restricted to take values 
in π[0, ] and all fluctuate close to the same value π/2. In particular, κn do not distinguish two situations shown on 
Fig. 5 (left), where the chain has two alternative opposite directions. The alternative, shown by dashed vectors, is 
an inflection, characterized by a flip of the orientation of the binormal vector (orange). In order for inflections to 
be taken into account by κn we decorate the angles with an additional sign, which is determined as follows.

For the first frame we assign κ1 to be positive. At any position +n 1 the sign is defined with respect to the 
relative orientation of the consecutive b vectors: κ κ= ⋅+ +b bsign( ) sign( )sign( )n n n n1 1 . That is the sign at +n 1 
remains the same as the sign at n, if the angle between vector bn and bn+1 is less than 90° and vice versa. Note that 
modified κn is no longer as local as the original one: it requires at least two consecutive binormal vectors. There is 
a corresponding global Z2 symmetry that distinguishes two choices of the sign. This symmetry is spontaneously 
broken forming domains of different signs of curvature angles. In the myoglobin molecule, the distribution of the 
curvature angles calculated with the sign is shown on Fig. 5 (right). In this diagram 21 out of 148 curvature angles 
have negative sign.

Given the set of oriented κi one can now calculate index

Figure 4. (Left) Distribution of the torsion index ϑ for the set of analyzed proteins ( .bin size 0 2). (Right) 
Distribution of the curvature index ϖ in the same set ( .bin size 0 1). The histograms demonstrate the 
propensity of the indices towards integer values.

Figure 5. (Left) chain without and with inflection (dashed vectors). (Right) Distribution of κn curvature angles 
in the myoglobin taken with a sign.

https://doi.org/10.1038/s41598-019-50809-6


7Scientific RepoRtS |         (2019) 9:14641  | https://doi.org/10.1038/s41598-019-50809-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

∑ϖ
π

κ= ∆
=

−1 ,
(16)i

N

i
1

4

with κ∆ i defined in a similar way to τ∆ i, cf. Eq. (15). Analyzing 212 proteins we found the distribution of index 
ϖ shown on the right panel of Fig. 4. Again, the index appears to be “quantized” in units of π.

Above we have compared index ϑ with twist tw. One can observe that the second index is similar to writhe. 
Indeed, it is clear that for a straight line, the tangent vector is parallel to itself, the normal vectors rotate in a per-
pendicular plane and a full 2π rotation adds or removes a unit of twist. Similarly, for a closed planar curve the 
binormal vector is always parallel to itself and a full 2π rotation gives a shift of the writhe by one unit. Similarly to 
ϑ, index ϖ computes the relative contribution of large inhomogeneous rotations of the κ vector around the 
origin.

Evolution of indices and kink structures. We can look a little closer at the protein data to see how indices 
ϑ and ϖ are built. We consider two characteristic examples. The first one, again, is the myoglobin (1a6m), which 
is a helical protein. The regularity of its structure can be observed from the plot of the index accumulation on 
Fig. 6. The plot shows the regions of constant index, which correspond to helical structures, and irregular connec-
tions through which the index jumps.

One might be interested in how the loci of index accumulation may look like. This is shown on the insets on 
Fig. 6, which visualize framed kinks at the selected locations along the chain. More specifically, from the left panel 
of Fig. 7 one can see how the unit of index ϑ is obtained, while the right panel of the same figure shows the locus 
of the ϖ index.

The second characteristic example is shown on Fig. 8 (left) with the xylanase protein (1i1w). This is a longer 
protein with a richer structure. In contrast to 1a6m, there is a small variation of ϖ index, while ϑ index exhibits 
cascades of significant changes.

Figure 6. Accumulation of ϑ (yellow) and ϖ (blue) indices along the chain of myoglobin (1a6m). Horizontal 
axis labels the amino acid sequence. Insets show the shapes of framed polygons at the labeled positions.

Figure 7. Jump in ϑ (left) and jump in ϖ (right). In each case clock diagrams show the sequence of τn (left) and 
κn (right).
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One can notice already from the two examples considered here that the two indices are not quite correlated. 
This can also be observed in the plot of ϖϑ( , ) pairs for many proteins on Fig. 8 (right). In the next section we will 
discuss a more precise connection of the indices with the self-linking number discussed before.

Self-Linking Number
Twist. Consider the following topological model of proteins. The protein backbone can be mapped to a chain 
(12) of elementary rotations (13). At regular positions, corresponding to helices, one inserts a rotation matrix 

+Sn n1,  with uniform rotation angles κ and τ, as in the previous section. For a small number of positions non-uni-
form rotations are inserted. In a simple model, we will assume that the non-uniform rotations introduce an addi-
tional shift of the τ angle by ±π. In other words, we will assume the following form of the rotation matrix at every 
position

πθ τ τ= ⋅ = − .θ π
+ +

+ˆ ˆS Se , (17)n n
i t

n n n n1,
/2

1,
n n 1

In the present model θn can take values 0, 1 and −1, so that at every position there is either a uniform rotation, 
or a rotation with an additional shift.

It follows from relation (7) between frames and rotation matrices that

⋅ = + ⋅ .+ +ˆ ˆS e n e n S( ) ( 1) (18)n n a a n n1, 1,

In other words, rotation matrix +Sn n1,  transports the frame at position n to the frame at position +n 1. We can 
view the extra rotation around +tn 1 in Eq. (17) as a component of a frame following

π π

±



 =



±



 = .π π± ±ˆ ˆ ˆ ˆi t t i b bexp

2
e , exp

2
e

(19)n
i

n n
i

n
/2 /2

Hence we can apply Eq. (18) replacing ê  by ̂t : matrices +Sn n1,  will then transport tn at position n to −tn 1 at position 
−N 1 and vice versa.
In the string of discrete rotations (12), one can commute the large π rotations through the chain of regular 

rotations and collect them in the beginning of the chain, arriving at a string

= ⋅ ⋅ ⋅
π θ θ

− − 
ˆS N S S S t( ) e , (20)i

N N2 2, 3 3,2 2,1 1

where

θ θ θ= + + .− (21)N2 2

In Eq. (20) the full rotation matrix splits into three factors. The last factor is an overall θπ rotation of the first 
frame ê (1)a  around the tangent vector. It comes from commuting all the extra rotation matrices through the uni-
form rotations +Sn n1, . Since =t̂ 11

2 , it is enough to consider θ modulo two in this factor.
The rotation of ê (1)a  comes with a phase – the first factor in Eq. (20). We understand the phase θ as a (half of 

the) discrete self-linking number associated with the large π rotations of the Frenet frame. It is an integer number 
and being associated with rotations around a tangent vector it is a discrete contribution to “twist” tw. While a π 
rotation of a frame as vectors is ambiguous, the spinor representation distinguishes the direction of such a 
rotation.

Finally, there is a factor corresponding to a chain of uniform rotations that computes the self-linking number 
of a helix,

⋅ = = π
− − −

′


ˆS S S S e , (22)N N N
iLk t

2, 3 3,2 2,1 2,1
0

where t′ is the “instantaneous” axis of rotation of the first frame to the last frame.

Figure 8. (Left) Evolution of index ϑ (yellow) along the chain of xylanase (1i1w). The same for the ϖ index 
(blue). (Right) Statistics of pairs ϖϑ( , ) for 212 analyzed proteins. This plot shows the absense of obvious 
correlations between the two indices.
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Let us consider the case of a closed chain. For example, we can assume identifying initial and final points 
∼N 1. In this case there will be −N 1 tangent vectors and −N 1 frames. An additional factor − − −

ˆ ˆS SN N N1, 1 1, 2 
will be added to the chain of rotations (12), for example, by left multiplication. Periodic boundary conditions will 
then require that the total product in Eq. (20) combines into a trivial rotation, that is a plus or minus identity in 
the spinor representation. The two possibilities are that either rotations around t1 and around t′ are both trivial, 
producing phases πei Lk0 and π θei /2 , for even θ, or they are both π rotations around t1 with θ being odd and Lk0 
half-integer. In either case

π= = .
π θ+S i Lkexp( ) e (23)i Lk

closed 2 ( 2 )0

In other words, we find that the full self-linking number splits in the sum of the regular self-linking number 
counting the uniform (small) rotations and the large π jumps:

θ
= + .Lk Lk

2 (24)0

Lk0 is a half-integer if the number of π jumps is odd. In most general open chain case Lk0 is a real number, 
while θ is an integer. An appropriate generalization of Eq. (24) would be

θ θ

θ θ
= +










−

Lk Lk[ ] 2
, even

1
2

, odd
,

(25)

0

where [Lk0] stands for the integer part of Lk0.
We should yet connect the index θ discussed here to the index ϑ computed in section 4. We noted before that 

the sum of torsion angles, or equivalently, the integral of torsion, is not a topological invariant – in particular, it is 
not the full self-linking number. From the point of view of our discussion this happens, because by 
non-commutativity of three-dimensional rotations, we cannot simply add torsion angles to obtain Lk. However, 
this can be done with the discrete π rotations, which “commute” with the rotation matrices. Consequently, θ is 
counting the sum of the individual jumps accounting for their direction.

Index ϑ is closely related to θ, but is not precisely the same. It computes local difference between τn and in 
continuous case would correspond to integrating a derivative of τ. A key subtlety is that torsion angles are defined 
modulo 2π, to which θ is less sensitive. To explain this point we first notice that there are two kind of structures in 
the behavior of ϑ n( ) on Fig. 7 (left): the peaks and the steps. Both of these structures indicate the same jump θn as 
in the indicated on the following diagram corresponding to a positive jump

 (26)

Note that the peak has a magnitude π, while the height of the step is 2π, and both of the contribute +π to θ 
(similarly for the negative peaks, steps and jumps). If ϑ n( ) only consisted of steps than one would find θϑ = 2 , but 
due to additional winding information contained in ϑ, values of ϑ and θ are independent.

Writhe. Finally, we should explain the meaning of index ϖ. To find a non-trivial index in terms of the curva-
ture angles we have extended their domain to negative values. As was mentioned, a positive κn rotation around 
vector bn is equivalent to a negative rotation around vector = −u bn n. So a non-trivial index ϖ corresponds to a 
different, non-Frenet framing of the polygon. This new framing can be introduced by additional local rotations of 
the frame

= = = ′ ′+ + +
−

+ + +     

ˆ ˆ ˆ ˆ ˆ ˆS N S S S U U S S S( ) , (27)n n n n n n n n n n n n n n1, , 1 1,
1

, 1 1, , 1

where Un rotates b and n vectors by π at positions n. The tangent vectors remain the same, so only the framing is 
changed. In the new framing we will use labels un for the counterparts of the binormal vectors. This rearrange-
ment is equivalent to a gauge transformation in the definition of the self-linking number (12), so it does not 
change the topology.

In the u-framing we cast the rotation matrices in the form

′ = ⋅ ω π
+ +

ˆ ˆS S e , (28)n n n n
i u

1, 1,
/2n n

where now ωn, which can be either 0, 1, or −1, represent additional shifts of rotations relative to the uniform 
curvature angles. In this way, we can still assume κ π≤ <0 n , while the “negative” rotations around un would 
correspond to ω = ±1n . This change is reflected in the transition from the curvature angle diagram on Fig. 3 
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(right) to the one on Fig. 5 (right). We note that in this case there are no extra shifts in the torsion angles, since 
those shifts are “undone” by transformations Un.

We can play the same game defining an index

ω ω ω= + + − , (29)N1 3

which corresponds to collecting all the extra rotations localized at the initial frame.

= ⋅ ⋅ ⋅
π ω ω

− − 
ˆS N S S S b( ) e , (30)i

N N2 2, 3 3,2 2,1 1

where, by definition, =u b1 1.
Once again, imagining a closed polygon, the product of uniform rotations and ωπ rotation around b1 should 

conspire to produce a phase π ⋅i Lkexp( ) with an integer Lk. As rotations around a b vector, ωn will contribute to 
the “writhe” part of the self-linking number.

As in the case of θ, one can compare index ω with index ϖ computed in section 4. The relation between ϖ and 
ω is the same as between ϑ and θ. Consequently, one can recover ω from the evolution of ϖ, as in the examples of 
Figs 6 (left) and 8 (left), using the rules outlined by Eq. (26).

An obvious question is whether one should expect θ equal to ω, since after all, both indices count the points 
with a large flip of the b vector. It is clear from Fig. 8 (right), that ϖϑ ≠ . Moreover, one can also find examples in 
Figs 6 (left) and 8 (left), where the direction of the change of ϑ is different from the direction of the change of ϖ. 
Therefore, in general, θ ω≠ . The discrepancy has the following explanation.

Indices θ and ω identify and quantify inflection points, where b and n have discontinuous π jumps. The direc-
tion of the jump, or the sign of π is not defined. Meanwhile, in the discrete polygon, like the protein molecule, 
there are no well-defined inflection points. What one has is some discretized resolution of the framing across 
inflections. The resolution depends, among other things, on independent“random fluctuations” of the vectors κn 
and τn around their mean values. For example, the jump in θ is defined as πθ τ τ= − −n n n 1, where τ −n 1 is supposed 
to be close to τ. The difference is never exactly π, which allows to determine the sign of the rotation, but the value 
of the sign depends on particular values of the angles at position n. Consequently, the b and u framings represent 
two different topological classes characterized by two self-linking numbers, whose values differ by θ ω| − |.

Nevertheless some “invariant” information can be obtained. Since by construction, and by observation of 
Fig. 6 (left), large jumps occur simultaneously in curvature and torsion channels, one at least expects that

θ ω= .mod2 (31)

We checked that for 80% of the analyzed proteins, rounded values of ϑ and ϖ are indeed equal modulo 2. 
Moreover, one can count the total number of jumps, which should agree between two channels,

∑ ∑ω θ| | = | |.
(32)n

n
m

m

This is a topological invariant since any local large rotation of the frame removing θn will create a contribution 
to ωn.

More generally, one can define the set of vectors un in terms of two-dimensional planes V in the 
three-dimensional space. In the case of a generic plane all vectors b will either have a positive or a negative scalar 
product with one of the two normal vectors to the plane. We will flip the direction of those →b un n whose scalar 
product sign would be opposite to that of vector b1. If bn and +bn 1 had opposite orientations (not within V) one of 
them would always become a u-vector giving a non-zero ω +n 1. Since large rotations of b vectors do not always 
happen through exactly a π angle, there will also be non-zero θ contributions. The topological invariant of the 
polygon will be the sum

∑ ∑ω θ| | + | |,
(33)n

n
m

m

where only the values ωn and θm are V-dependent, but not the sum of their absolute values. This is a special version 
of the Calugareanu’s theorem.

Gauge theory Description
In the discrete approach three-dimensional curves (polygons) can be described using set of angles κn and τn. One 
might have noticed that curvature angles are associated to the nodes of the polygons, while torsion angles corre-
spond to the bonds connecting the nodes. In the language of lattice gauge theory κn can be understood as vertex 
(matter) degrees of freedom, while τn are “connections” (gauge fields). Indeed this point can be further elaborated 
in the continuous presentation (see25).

In the Frenet picture curvature κ s( ) and torsion τ s( ) characterize the rotation of the Frenet frame around the 
curve. However, the particular choice of the Frenet framing is not physical. There is an infinite number of possible 
choices of framing for a smooth generic curve. For example, a different local choice can be realized by introducing 
a local rotation of the Frenet frame around the tangent vector. It is not hard to see, that from the point of view of 
the Frenet description, such a local rotation induces transformations of the curvature and torsion25,

κ κ τ τ α→ → + ′αs s s s s( ) e ( ), ( ) ( ) ( ), (34)i s( )
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where it is convenient to generalize curvature to a complex quantity. Indeed, this means that curvature behaves 
like a complex scalar field, while τ is a one-dimensional analog of a gauge fields.

At the same time, we have seen from Eq. (8) that one-dimensional gauge field τ  and complex field κ can be 
viewed as components of a non-Abelian SU(2) gauge connection. Moreover the non-Abelian one-dimensional 
connection is a projection of a three-dimensional connection on the given curve, see e.g.26. The three-dimensional 
connection in turn, defines framing at any point in space. It is well known, that framed three-dimensional mani-
folds are classified by an integer framing number. Consequently, one can think of the framing as coming from an 
embedding of the curve in a framed manifold. The choice of the framed manifold will define the framing and the 
associated integer number – the self-linking. Projection of the three-dimensional connection on a selected curve 
breaks the SU(2) symmetry down to the U(1) subgroup (34) of frame rotations around the tangent vector.

Based on the standard symmetry approach to construction of effective actions in field theory one can ask, what 
is the effective description of curves defined by functions κ s( ) and τ s( ), subject to gauge transformations (34).  
A simplest effective model of such degrees of freedom is provided by the Abelian Higgs model25. In order for the 
theory to reproduce solutions with non-zero torsion the minimal extension is to add a one-dimensional 
Chern-Simons term (see26,27 for the general approach to the construction of the effective model), as in the follow-
ing functional, cf.25,

∫ ∫τ κ τ κ μ κ λ κ τ=





∇ − ∇ + − + | |





−ˆ ˆ ˆ ˆ ˆ ˆ ˆ⁎F ds i i F ds1
2

( ) ( )
2 2

,
(35)

2
2 4

Here hats upon torsion and curvature indicates that they are gauge dependent quantities transforming according 
to Eq. (34). In the Frenet gauge curvature is a real scalar κ κ=ˆ  and τ τ=ˆ . Constants μ, λ and F are phenomeno-
logical parameters of the curves, which are obtained by comparing the curves and basic geometric features of the 
protein molecules. ∇ is the one-dimensional gradient. The last term is an analog of the Chern-Simons action for 
gauge fields in three dimensions. To make the theory regular it might also be useful to add a gauge invariant Proca 
mass term for the gauge field proportional to τ2.

Functional (35) can serve as an effective free energy functional, whose minimum energy configurations are 
curves with constant curvature and torsion, i.e. helices. Apart from the lowest energy translationally invariant 
solutions (ground states) such theories can also have solitons, i.e. solutions interpolating between the same, or 
different ground states21. The solitons can be either kinks or lumps (dents) in curvature and torsion. Clearly plots 
of the topological indices on Figs 3 and 8 are examples of such solitons. In other words, topological indices θ and 
ω count the total soliton numbers of the proteins. We do not intend to describe the corresponding solitons here, 
though many details about their discrete version, in direct application to proteins, can be found in works28–31.

Discussion
In this paper we considered effects of framing for nature given discretizations of smooth curves, such as protein 
molecules. Protein backbones equipped with the Frenet framing underline basic features of the secondary struc-
ture of proteins, such as existence of regular helical pieces connected by structural kinks (motifs). Studying the 
structure at the topological level we have introduced a simple spin-chain-like model of proteins, in which regular 
pieces corresponded to parallel oriented vectors (ground state), while kinks corresponded to short sequences of 
vectors that deviated from the standard orientation.

We have demonstrated that the kinks-motifs can be counted by topological indices taking discrete values. This 
owes to the fact that the kinks correspond to inflection points of smooth versions of the discrete curves, where 
the Frenet frame experiences large rotations. The discrete indices can be related to the self-linking number Lk of 
a framed curve, which is a topological invariant. Although the self-linking number is defined for smooth framed 
curves, we showed how the notion of the self-linking number can be extended to the case of singular fram-
ings, such as the Frenet framing with inflection points. In this case the invariant splits into a sum of the regular 
self-linking number of a regular framing and an integer index associated to the inflection points.

We have shown that the Frenet framing corresponds to a special type of the singular self-linking number – a 
pure twist. To have also a writhe-type contributions to Lk one has to flip at least a part of the normal vectors in 
the Frenet framing. Such flips are local (gauge) transformations that convert units of twist to units of writhe in 
accordance with the Calugareanu’s theorem. We showed that in terms of the indices defined here, the theorem is 
satisfied only if we compute all the indices modulo sign. Otherwise our indices are defined with respect to incom-
patible framings and cannot be compared. This is, of course, a result of the singularity of the Frenet framing.

Spin chains can be extended to effective field theory models. In such models curvature is promoted to a com-
plex scalar field κ s( ), while torsion is a one-dimensional scalar field. Indices computed here can be related to 
topological charges of field theory solitons.

As an open direction, it is interesting to study how the topological indices defined here behave in the protein’s 
dynamics. Formation of the structural motifs is one of the basic steps in the protein folding, so understanding 
the behavior of the indices, e.g. during a protein folding process, could be a good way to understand better how 
proteins fold. Moreover, the evolution of the indices during the time evolution of a dynamical protein could tell 
us how proteins move. At the moment, we are not aware of any systematic experimental data, that could be used 
for such a study. The only data that one could conceivably use, may come from molecular dynamics simulations 
with quite long proteins. This is an ambitious program for the future. As an alternative, one could try to make 
simulations with coarse grained force fields such as UNRES32. We hope to look at this, in a future publication.
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