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Abstract: Semiflexible polymers bound to planar substrates by a short-range surface potential are
studied by Molecular Dynamics simulations to clarify the extent to which these chain molecules can
be considered as strictly two-dimensional. Applying a coarse-grained bead-spring model, the chain
length N and stiffness κ as well as the strength of the adsorption potential εwall are varied over a
wide range. The excluded-volume (EV) interactions inherent in this model can also be “switched off”
to provide a discretized version of the Kratky–Porod wormlike chain model. We study both local
order parameters (fraction f of monomers within the range of the potential, bond-orientational order
parameter η) and the mean square gyration radius parallel, 〈R2

g〉||, and perpendicular, 〈R2
g〉⊥, to the

wall. While for strongly adsorbed chains EV has negligible effect on f and η, we find that 〈R2
g〉|| is

strongly affected when the chain contour length exceeds the persistence length. Monomer coordinates
in perpendicular (⊥) direction are correlated over the scale of the deflection length which is estimated.
It is found that f , η, and 〈R2

g〉⊥ converge to their asymptotic values with 1/N corrections. For both
weakly and strongly adsorbed chains, the distribution functions of “loops”, “trains”, and “tails” are
analyzed. Some consequences pertaining to the analysis of experiments on adsorbed semiflexible
polymers are pointed out.
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1. Introduction

Many macromolecules with linear chemical architecture are neither perfectly flexible nor entirely
rigid-rod-like chain molecules, but exhibit instead only local stiffness and are called semiflexible.
Within a coarse-grained description, such a polymer chain is modeled as a curve in continuous space
~r(s), with s a coordinate along the backbone of the macromolecule. The stiffness is due to a nonzero
bending modulus κ, which is proportional to the persistence length `p, describing the length along the
contour over which the orientations of subsequent bonds (or tangent vectors along~r(s), respectively)
are correlated [1–3]. This Kratky–Porod model [3] (also-called Wormlike Chain (WLC) model) is
widely accepted as a proper phenomenological description of semiflexible polymers, in particular,
of biopolymers such as the double-stranded (ds) DNA [4], filamentous (F)-actin [5], etc.

When one deals with the liquid–crystalline order of semiflexible polymers in lyotropic
solution [6,7], it is clear that a description in terms of two lengths only, the contour length L of
the WLC and its persistence length, `p, does not suffice: the effective chain diameter D controls
the interchain repulsion and hence the possible onset of nematic order (see, e.g., [8–11]). However,
for single semiflexible chains in d = 3 dimensions (as they matter in dilute solutions), the excluded
volume interactions due to nonzero D do not matter for large `p/D, provided L is much smaller
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than L∗ = D(`p/D)3 [12,13]. For this reason, the WLC model is broadly accepted as kind of a “gold
standard” as far as the statistical mechanics of semiflexible chains is concerned.

Care is needed, however, when one deals with the adsorption of semiflexible polymers on planar
surfaces [14–20]. When a polymer gets adsorbed, its conformation changes from three-dimensional
to (quasi) two-dimensional [21–23]. Now, the WLC model implies that a polymer, which in
d = 3 exhibits a decay of the tangent–tangent correlation function with persistence length `p,
would exhibit in d = 2 a corresponding decay with 2`p. In fact, adsorbed polymers on planar
substrates are not at all strictly confined into a two-dimensional plane, one rather expects loops and
tails. For flexible polymers, the structure of the adsorbed “pancake“ is rather a two-dimensional
self-avoiding walk (SAW) of more or less spherical ”blobs“ of radius r attached to the surface
whereby r ∝ τ−ν/ϕ. Here, τ � 1 is a variable denoting the relative distance from the adsorption
transition point, using the temperature or the strength of the adsorption potential as control variable.
The exponent ν ≈ 0.588 is the Flory exponent [23] characterizing the size of a flexible polymer in
bulk three-dimensional solution under good solvent conditions, and ϕ ≈ 0.48 [24] is the so-called
crossover exponent [22,25]. For Gaussian chains (e.g., appropriate for Θ-solvents [8,9]), the corresponding
exponents are ν = 1/2 [8,9], and ϕ = 1/2 [21–25]. Thus, r exceeds the diameter D of the effective
monomers for weak adsorption (τ � 1) while r is of the same order as D for the case of strong
adsorption (τ > 1). Only for the latter case can an orientation of the bond vectors between subsequent
effective monomers predominantly parallel to the adsorbing substrate be anticipated.

For semiflexible polymers with `p � D, the regime of weak adsorption is predicted to be much
narrower [15], τ ≤ τ∗∗ ∝ (∆/`p)2/3, where ∆ is the range of the adsorption potential (we assume for
simplicity an adsorption potential of short range ∆ of the same order as D). Note that, for adsorbed
semiflexible polymers, long loops for τ > τ∗∗ are expected to be very rare, but if they occur they must
bend away from the substrate over distances larger than `p [15]. However, short wormlike loops,
which are nearly parallel to the surface, are still expected in the regime of strong adsorption, their
length being gradually suppressed with increasing τ. The fraction of monomers f within the potential
range ∆ is, however, predicted [15] to be close to unity already when τ exceeds τ∗ ∝ (∆/`p)4/3 � τ∗∗.

These predictions imply that an adsorbed semiflexible polymer is not identical to a strictly
two-dimensional chain confined in a plane parallel to the adsorbing surface. While for a
two-dimensional semiflexible polymer the doubling of the decay length (2`p) of orientational
correlations can be understood simply from the fact that in d = 2 there is a single direction orthogonal
to the tangent vector of a chain, in d = 3, there are two orthogonal directions. Since, as emphasized
above, adsorbed chains are not strictly two-dimensional, it is questionable what their decay length
`

e f f
p of orientational correlations actually is. Therefore, even for L of the same order as `p, their lateral

chain dimensions cannot be straightforwardly predicted from the WLC model [26,27]. For L � `p,
an additional problem arises that excluded volume matters since in d = 2 chain intersection is
strictly forbidden, and the crossover to d = 2 SAW behavior (mean square end-to-end distance
〈R2〉 ∝ `1/2

p L3/2) [28–30] sets in when L exceeds `p. These problems are potentially relevant for
experiments such as atomic force microscopy (AFM) studies of DNA fragments adsorbed on various
substrates; see, e.g., [31–37].

The existing theory [15,16] refers mostly to the limit L→ ∞, and, being based on the WLC model,
ignores excluded volume completely. In the present work, we wish to elucidate further both the
effects of excluded volume and of finite chain length on the properties of adsorbed semiflexible chains,
carrying out Molecular Dynamics (MD) simulations of a coarse-grained model. We have used that
model in previous work [26,27] to estimate how the adsorption transition of semiflexible polymers
depends on their stiffness. While our previous work focused on estimating the critical strength εcr

wall of
the potential of the adsorbing wall where adsorption occurs, and the crossover of the decay length
`

e f f
p from `p to 2`p upon chain adsorption, we now focus on the properties of the adsorbed polymers

for wall potentials chosen such that εwall > εcr
wall (note that τ ≡ εwall/εcr

wall − 1). We expect that
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understanding the properties of such more or less strongly adsorbed semiflexible polymers should be
useful for the interpretation of pertinent experiments.

In Figure 1, we illustrate the above introductory discussion by snapshots for weakly adsorbed (left)
or more strongly adsorbed (right) semiflexible polymers, resulting from our simulations. Note that in
each figure 50 independent conformations are superimposed such that the grafting site for all chains is
identical (since a single chain configuration needs not be typical, a whole ensemble of independent
chains is shown in both cases). The adsorbing planar surface is shown in green, and monomers with z
coordinate within the range of the adsorption potential are colored in blue while monomers in loops
and tails (i.e., monomers outside the range) are displayed in yellow. Note that for the case of weak
adsorption most of the monomers are in flat loops, i.e., the perpendicular extension of the loops from
the wall amounts to a few monomer diameters only. In the case of strong adsorption, even if the
majority of the monomers reside within the potential range, the polymer conformation still contains
many small loops in a rather random succession along the chain.

Figure 1. Snapshot pictures of N = 50 single semiflexible polymers, described by a bead-spring
model, with N = 250 monomers each for the case of a chain stiffness κ = 25 and wall potential
depth εwall = 0.60 (left) and 0.80 (right)—see Section 2 for a precise description of the chosen model.
The adsorbing surface is shown in green, and monomeric units within the range of the adsorption
potential are shown in blue while those outside of this range are shown in yellow. Note that the root

mean square gyration radius in the z-direction
√
〈R2

gz〉 is only about 2.14 for εwall = 0.60, and about 0.48
for εwall = 0.80, implying that in both cases the polymer conformations are almost two-dimensional

while
√
〈R2

g〉|| ≈ 48 in both cases. All chains are grafted at the point x = 0, y = 0, z = 0.97 so the
superposition of the snapshots should not be confused with pictures of star polymers.

In Section 2, we briefly summarize the model, simulation method, and describe the properties
that will be analyzed. Section 3 describes our numerical results for the properties of adsorbed chains
and discusses them, comparing to pertinent theoretical predictions and related simulation work when
appropriate. Section 4 summarizes our findings for the distribution functions of the lengths of loops,
trains and tails. Section 5 contains our conclusions.

2. Simulated Model

Given the fact that systems of interest such as ds-DNA involve mesoscopic length scales (where
the persistence length `p is accepted to be 50 nm, meaning that about 150 base pairs correspond to
one persistence length), a simulation of a chemically realistic model (with water and added salt as a
solvent) is extremely difficult. As in our previous related work [26,27], we use a coarse-grained model
of bead-spring type. The diameter σ of the beads is chosen to represent the effective diameter of the
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real wormlike polymer, e.g., σ ≈ 2 nm in the case of (ds)-DNA. Excluded volume between the beads is
described by a truncated and shifted Lennard–Jones potential,

U(r) = 4ε[(σ/r)12 − (σ/r)6 + 1/4], r < rc = 21/6σ, (1)

while for larger distances between the beads the effective potential is zero, U(r > rc) ≡ 0. This choice
represents good solvent conditions (solvent molecules are not considered explicitly). The strength ε of
the potential is used as unit of energy, ε ≡ 1 (and temperature kBT = 1 as well), while henceforth σ is
chosen as unit of length, σ ≡ 1. Chain connectivity is obtained via the finitely extensible nonlinear
elastic (FENE) potential between subsequent beads along the chain,

UFENE(r) = −0.5kr2
0 ln[1− (r/r0)

2], r < r0, (2)

with UFENE(r > r0) = ∞. Choosing the parameters as [38] r0 = 1.5σ, k = 30ε/σ2 has the effect
that the bond length `b ≈ 0.97σ, i.e., this does not introduce a new length scale in the problem.
Other models [39] yield `b much smaller than σ and such strongly overlapping spheres may be a bit
closer to reality for some semiflexible polymers but simulating stiff polymers with L� `p using such
a model would be very difficult.

Stiffness is introduced by means of a bending potential,

Ub(θijk) = κ[1− cos(θijk)], (3)

where θijk is the angle that the bond vector ~uj = ~rk −~rj forms with the preceding bond vector
~ui =~rj −~ri, (~ri,~rj,~rk being the positions of the subsequent beads). This model is a discrete counterpart
of the KP model of WLCs where the coordinate s along the contour is a continuous variable while
here only discrete positions sn = n`b (n = 1, 2, . . .) are possible. Note that for large κ one has
Ub(κ) ≈ 1/2κθ2

ijk so locally only small θijk occur. The present model differs substantially from the KP
model by inclusion of excluded volume (EV), but a great advantage of MD is that EV interactions
(apart from nearest neighbors along the chain) can be kept or switched off to obtain a direct test for
their effect. In this model, the contour length of a chain containing N beads is simply L = (N − 1)`b

while the effective persistence length, `e f f
p , characterizing the initial decay of the bond orientational

correlation function, is conveniently estimated from

`eff
p /`b = −1/ ln〈cos θijk〉. (4)

Equations (3) and (4) yield directly [26,27] for large κ/kBT when `
e f f
p /`b ≈ 2/〈θ2

ijk〉

`
e f f
p /`b = κ/kBT (d = 3), `

e f f
p /`b = 2κ/kBT (d = 2). (5)

Equation (5) is compatible with the KP model, irrespective of whether EV is included or not.
The adsorbing substrate is approximated by a structureless rigid wall at the plane z = 0 at which

the potential acts

Uwall(z) = εwallC
[(σw

z

)10
−
(σw

z

)4]
, (6)

where the constant C = 5
3
( 5

2
)2/3

so that the minimum at z = zmin =
( 5

2
)1/6

has the depth −εwall ,
cf. Figure 2a. The potential in Equation (6), the so-called “Mie potential”, can be thought of resulting
from integrating a 12–6 Lennard-Jones potential over all the atoms of an (infinite) two-dimensional
plane. The resulting attraction, decaying proportional to z−4, hence, is realistic when polymers
are adsorbed on quasi-twodimensional membranes, graphene sheets, etc., or when a surface of a
three-dimensional substrate is coated with a suitable surfactant monolayer to control the wettability
conditions [40].
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We show in Figure 2a the corresponding distributions of the monomer density for a typical case,
for which the adsorption transition is predicted to occur at [26,27] εcr

wall = 0.47± 0.01. Choosing εwall
as our control parameter, this means that Figure 2a includes both ‘mushrooms’, just before the onset
of adsorption (εwall = 0.40), chains in the transition regime (εwall = 0.5÷ 0.6), and strongly adsorbed
chains (εwall = 0.7÷ 0.8). As far as in all simulations the first monomer of a chain is “anchored” at the
surface, we choose z1 = 0.97. In addition, for the mushrooms, there occurs an enhanced monomer
density near the surface while a tail of ρ(z) extends to large z. For strongly adsorbed chains, however,
almost all monomers reside in the range 1 ≤ z ≤ 2.4. Monomers are seldom found in the region
0 < z < 1 where the wall potential is repulsive.

Apparently, the position of the minimum of Uwall(z) does not coincide with the position of the
maximum of the monomer density distribution. Actually, most of the monomers are localized further
away from the wall, even if the whole chain is strongly bound to the wall. This fact becomes evident
when we examine the distribution of the center of mass position of the chain, Figure 2b. It is, therefore,
of interest how the center of mass position, 〈zCM〉, and its distribution function, P(zCM), depend on
the parameters εwall , N, and κ, Figure 2b. Evidently, 〈zCM〉 decreases with increasing εwall only rather
slowly and shorter chains such as N = 50, 100 are rather loosely bound to the attractive surface,
compared to the longer ones. While Figure 2b refers to κ = 25 as far as in the framework of our
coarse-grained model this case might mimic ds-DNA, it is clear that for the rigid rod limit and large
N 〈zCM〉 would only be slightly enhanced beyond zmin (see Appendix A). Such long rods would
undergo almost harmonic fluctuations of their position around zmin as well as accompanying very
small fluctuations of their orientation. Apparently, semiflexible polymers behave very differently from
hard rods in this respect: the latter have a P(zCM), which resembles a Gaussian, centered at z = zmin
with a width scaling as 〈z2

CM〉 − 〈zCM〉2 ∝ 1/L.
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Figure 2. (a) adsorption Mie-potential, Equation (6)—broken curves, plotted for z and five choices
of εwall , as indicated. The corresponding monomer density distributions ρ(z) for N = 500, κ = 25,
normalized as

∫ ∞
0 ρ(z)dz = 1, are indicated by full curves, (b) probability distribution P(zCM) of the

center-of-mass position zCM of a chain with N = 500, κ = 25, for six choices of εwall . Weakly bound
chains (εwall = 0.55 and 0.60) have very asymmetric distributions while strongly bound chains (εwall =

0.75 and 0.80) have almost Gaussian distributions with only small asymmetry in the tails, whereas
the peak position exceeds zmin distinctly. Inset shows the variation of 〈zCM〉 with εwall for five choices
of N.

It is convenient to define a range ∆z of the adsorption potential from the condition that
Uwall(z) < −εwall/2, which yields ∆z ≈ 0.55. This parameter allows for making comparisons with
analytical work [15,16], where as adsorption potential a square well potential of depth u and range ∆
is used. Since our choice of ∆ is somewhat arbitrary, we define an adsorbed monomer fraction as

f =

∞∫
0

dz Uwall(z) ρ(z)/
∞∫

0

dz Uwall(z), (7)
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rather than defining f from the monomers within the range of Uwall(z) [26,27]. A similar model as
Equations (1)–(6) has been used in early work [41] but only rather short chains were accessible.

While f can be taken as order parameter of the adsorption transition, another interesting
characteristic is the orientation of the bond vectors ~ui relative to the surface normal,

η =
3
2
〈cos2 ζ〉 − 1

2
, (8)

with ζ being the the angle between a bond vector and the z-axis (the average 〈. . .〉 includes average
over all N − 1 bond vectors of the chain). In addition to f , η, the mean square gyration radius
〈R2

g〉 of the polymers is also analyzed, distinguishing perpendicular, 〈R2
g〉⊥ = 〈R2

gz〉, and parallel
〈R2

g〉|| = 〈R2
gx〉+ 〈R2

gy〉 components. We note that such long wave length properties of the chains relax
much more slowly than the local properties f , η, and hence it is much more difficult to both equilibrate
them and obtain meaningful statistical accuracy via MD simulations [26]. We have performed multiple
runs for every parameter combination, N, κ, εwall , using the HOOMD-Blue software [42,43] on
graphics processing units (GPUs). For each run, N = 50 chains are studied in parallel, choosing a
MD time step δt = 0.002τMD with τMD =

√
mσ2/ε (whereby the monomer mass m = 1). The length

of each run was at least 5× 106 τMD and typically 6÷ 12 runs were carried out for N = 500, 750.
As discussed in more detail in [26], the rapid increase of relaxation times with chain length limits the
accessible range to N ≤ 750.

3. Numerical Results for the Properties of Adsorbed Chains

The methods used to identify the critical value εcr
wall as a function of κ have already been discussed

in [26,27]. For the sake of completeness, in Figure 3 we add here an example not shown previously.
When the polymer chain is in the non-adsorbed mushroom state, all components 〈R2

gγ〉with γ = x, y, z
are of the same order whereas in the adsorbed state 〈R2

gz〉 should converge to a finite value as N → ∞

while 〈R2
g〉|| ∝ `1/2

p L3/2 → ∞, recalling that in d = 2 excluded volume also matters for semiflexible
chains [28–30] and the Flory exponents is ν = 3/4 [1].

Thus, the ratio 〈R2
g〉⊥/〈R2

g〉|| for large N converges to a constant (which would be 1/2, if all
〈R2

gγ〉 were equal) for εwall being less than the critical value εcr
wall , whereas this ratio converges to

zero for εwall > εcr
wall . Scaling theory [22,25] predicts that for large enough N right at εcr

wall the
ratios 〈R2

g〉⊥/〈R2
g〉|| cross at a universal crossing point which has been estimated (for SAWs [24])

to be around 0.32. For our model and the available chain lengths, the crossing occurs, Figure 3a,
near εcr

wall = 0.47± 0.01 for N ≥ 250, while for smaller N the crossings are shifted to smaller values.
In addition, the ordinate of the crossing occurs near 0.20± 0.05 rather than near the theoretical value.
We interpret these problems as being due to strong corrections to scaling. In fact, near εcr

wall , the chain
conformations are still of mostly three-dimensional character, and, therefore, given this choice of
stiffness, excluded volume matters for very long chains only [12,13] as discussed in the Introduction.

An alternative method to search for εcr
wall is the study of the variation of f with N [25]. In the

mushroom regime, only few monomers are close to the surface, and hence f ∝ 1/N while in the regime
of strong adsorption f should converge to nonzero values close to unity. Right at εwall = εcr

wall , a power
law decay, f ∝ N1−ϕ, is predicted [22–25], with ϕ = 1/2 for Gaussian chains while ϕ = 0.48 in the
presence of excluded volume [24]. In the example shown in Figure 3b, one sees that for chains that are
clearly non-adsorbed (such as for εwall = 0.40), f ∝ 1/N is verified, but only for large N. For chains
that are clearly adsorbed (such as for εwall = 0.50), one observes undoubtedly a convergence to a
nonzero value for N → ∞. For intermediate values of εwall , there is a curvature in the log-log plot,
and with decreasing εwall the sign of the curvature changes, suggesting that for εwall = 0.475 a nonzero
extrapolation is reached, while for εwall = 0.45 ultimately f ∝ 1/N should result (although N > 750
would be needed to see this).

Much larger values of N would be required to estimate εcr
wall more precisely, too difficult to access

with MD, while Monte Carlo studies where Equation (3) is used for SAWs on the simple cubic lattice
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allow the choice of N up to 25,000 [44]. However, the fact that only a discrete bond angle θijk = 900 is
possible on this lattice eliminates all bending fluctuations under small angles that are clearly important
for polymers such as DNA, and are captured by the present model. For the lattice model, trains
would simply be straight lines (typically of length 2`p) in the lattice plane adjacent to the surface and
hence have no entropic contributions due to bending. In contrast, the present model exhibits bending
fluctuations on small scales also in z-direction perpendicular to surface, Figure 4a–c. We see that zi
varies monotonically from some minimum position (typically in the range 1 ≤ zi ≤ 1.3) to a maximum
(zj). If this maximum is still within the train, we take the distance λi = `b(j− i) as an entry for the
distribution of the so-called deflection length λ [45]. This concept was introduced for a semiflexible
polymer confined in a cylindrical pore of diameter ∆� `b. On average, the bond vectors are oriented
parallel to the pore axis. However, an individual bond vector from~ri to~ri+1 can make an angle θi with
this axis, even though subsequent angles are strongly correlated due to stiffness. By estimating the
mean square displacement 〈(zj− zi)

2〉 from the pore axis, resulting from adding up such misalignment

(using the KP model), one finds the length scale λ, where
√
〈(zj − zi)2〉 = ∆, as λ ∝ (∆2`p)1/3 [45].
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Figure 3. (a) Ratio of perpendicular and parallel parts 〈R2
g〉⊥/〈R2

g〉|| of the mean square gyration radius
of semiflexible macromolecules with κ = 25, plotted vs. strength εwall of the adsorption potential for
five choices of N. A second order adsorption transition should show up as universal crossing point of
the curves for large N. The resulting estimate εcr

wall = 0.47± 0.01 is indicated by an arrow, (b) log-log
plot of the adsorbed fraction of monomers f vs. chain length for κ = 25 and five choices of εwall ,
as indicated. Broken straight lines denote power laws, the slopes show the resulting effective exponents.

Qualitatively, one can take over this concept to confinement of semiflexible polymers in the
potential well due to adsorption potential. There is a simple scaling argument to predict the variation
of εcr

wall with `p [15]: A string of nλ = λ/`b monomers, when adsorbed, wins an energy of order εwallnλ,
whereas the entropy change due to adsorption of such a string is of order kBT. Hence, the adsorption
transition occurs when εcr

wallnλ ≈ kBT, i.e., εcr
wall ∝ `b/λ ∝ `b/(∆2`p)1/3 [15]. This variation has been

confirmed in our previous work [26,27]. It is important to note that the standard picture of an adsorbed
chain as a sequence of ”trains“, ”loops“, and (one or two) ”tails’ [21] must not be misunderstood as
implying that “trains” are strictly two-dimensional chains restricted to the plane z = zmin. Such a
picture does occur in the simplistic lattice model [25,44], however. There a train is a self-avoiding walk
formed from straight lines (of lengths typically of order `p) in the lattice plane next to the adsorbing
wall, as stated above, and hence one finds εcr

wall ∝ `b/`p for such a model [44,46,47].
It must be realized that there is only a vague analogy between the confinement of a polymer

between two equivalent hard walls a distance ∆ apart and the confinement caused by the attractive
potential associated with a single wall within the soft “potential well” of width ∆. While in the slit
pore case the average position of the center of mass of the polymer is trivially equidistant to both walls,
and the monomer density distribution is symmetric around this position, the situation here is much
more complicated. As we shall see, the center of mass position depends in a nontrivial way on all
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parameters of the problem (N, εwall , κ), and the monomer distribution has no symmetry properties.
In addition, the confinement is by no means perfect: the formation of loops means the chain can “leak
out” from the region where it is localized on average. Therefore, it is not apparent to what extent the
deflection length concept can be applied here.
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Figure 4. Conformations of strongly adsorbed chains (N = 250, κ = 25) showing the z coordinate zi

of the monomers plotted vs. their index i labeling them along the chain contour. Three choices of εwall
are shown: εwall = 0.60 (a); 0.70 (b); and 0.80 (c). Monomers in trains are shown in blue, those in loops
in yellow. (d) probability distribution W(λ) plotted vs. deflection length λ for N = 250, εwall = 0.60,

and five choices of κ, as indicated. The dashed line denotes the function W(λ) = 0.18 ln
(

λ0
λ

)
with

λ0 ≈ 7.39.

Indeed, when we analyze configurations as shown in Figure 4a–c along the lines described
above to sample the distribution function W(λ) of deflection lengths, we find a (perfectly fitted by a
logarithmic function) monotonous decay of W(λ) with λ, cf. Figure 4d, whereby with increasing κ

large values of λ are only slightly favored. The parameters, A, λ0 in the empirical relation W(λ) =

A ln(λ0/λ), Figure 4d, depend on κ only weakly. This distribution implies that all lengths λ/`b =

1, 2, . . ., up to λ0/`b ≈ 7.39, are very frequent while large values of λ are systematically suppressed.
The large weight of small λ/`b = 1, 2, etc. is clearly due to immediate reversals of the contours shown
in Figure 4a–c and other small-scale structures. One could filter out such features, but such a procedure
is somewhat arbitrary. Therefore, we have decided to estimate an effective deflection length from the
moments of W(λ). The result is shown in Figure 5 for N = 250 where the inset displays the variation
of λ for three values of εwall as function of stiffness κ. However, as expected from the logarithmic
distribution, Figure 4d, the numbers extracted from the different moments somewhat disagree with
each other, and the theoretical variation proportional to `1/3

p is not confirmed. This problem clearly
shows the limitations of the confinement analogy.
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κ for three different strengths of εwall in normal coordinates.

One consequence of the fact that adsorbed chains have a nontrivial structure also in the z-direction,
Figure 4, was already studied in [26,27]. The orientational correlation function

〈cos θ(s)〉 = 〈~ui.~ui+s〉/`2
b (9)

exhibits a very nontrivial variation with s: for s = 1, 2 . . ., the initial decay is still controlled by
the three-dimensional persistence length `p/`b = κ/kBT before a crossover to a larger value `

e f f
p

sets in, i.e., 〈cos θ(s)〉 = A exp(−s`b/`e f f
p ). For κ/kBT � 1 and εwall � εcr

wall , one has A → 1 and

`
e f f
p /`b = 2κ/kBT, as expected from Equation (5). If these inequalities are not fulfilled, the amplitude

A is somewhat smaller than unity, and `
e f f
p /`b is also reduced in comparison to its theoretical value

of Equation (5). Moreover, for s`b ≥ `
e f f
p , a slow crossover to the power law decay 〈cos θ(s)〉 ∝ s−1/2

[28–30] takes place (for s� N). The latter regime is due to excluded volume effects, and hence out of
scope of the KP model treatment [15,16].

An interesting issue is also the perpendicular linear dimension 〈R2
g〉⊥ of strongly adsorbed chains.

While a rather short strongly adsorbed chain (which is like a flexible rod) cannot have any loops in
contrast to much longer chains, one might expect that 〈R2

g〉⊥ increases with growing N albeit Figure 6

demonstrates the opposite trend. In addition, when N � 2κ (i.e., L � `
e f f
p ), the variation seems a

bit steeper than for the case where L and `
e f f
p are comparable. The explanation for this unexpected

behavior is that for the same choice of κ and εwall a longer chain is more strongly bound to the wall
than a shorter one. This emerges from a study of both f , Figure 7, and η, Figure 8. While near εcr

wall the
presence (or absence) of excluded volume does make a difference with respect to both f and η, and in
some cases a plot vs. 1/N then shows a non-monotonic variation, this is not the case here. For stiff
chains and εwall � εcr

wall , f is extremely close to its saturation value f = 1, which means that the effect
of loops is completely negligible.

We note that the order parameter η = (3〈cos2 θ〉 − 1)/2 can be written in terms of the
complementary angle α = π/2− θ that a bond makes with the surface plane, as η = 3(〈sin2 α〉 −
1)/2 ≈ (3〈α2〉 − 1)/2, and hence 1/2 + η ≈ 3〈α2〉/2, when 〈α2〉 is small. It is also interesting to study
both 〈α2〉 and 〈R2

gz〉 vs. κ at fixed N for the case of strong adsorption, Figure 9. It is seen that both
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quantities vary proportionally to κ−1 within reasonable error limits. The residual dependence on N
almost disappears when (〈R2

g〉⊥/κ2)1/3 is plotted against 〈α2〉, see Figure 9c.
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Figure 6. Plot of 〈R2
g〉⊥ vs. 1/N for five choices of κ, and εwall = 0.80 (a); and 0.70 (b). Straight lines

through the data are guides for the eye.
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volume are systematically larger, while for larger κ presence or absence of excluded volume does not
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We now turn to the interpretation of the apparent power laws visible in Figure 9. Naively,
one might think that the problem is fully analogous to the problem of a semiflexible polymer
confined between two hard walls a distance H apart, for which one finds [48] 1

2 + η = 1
2 C||(H/`p)2/3,

with C|| ≈ 0.5484. However, using H = ∆ would yield 1
2 + η ∝ `−2/3

p , while the data on Figure 9a
rather support 1

2 + η ∝ `−0.96
p .

Thus, we must assume that the actual region where the monomers are localized should not

be identified with a constant region H = ∆z, but must be clearly of the same order as
√
〈R2

g〉⊥.
Thus, we would conclude

1
2
+ η ∝

(
〈R2

g〉⊥/ κ2
)1/3

. (10)

Figure 9 shows that indeed 1
2 + η is compatible with a power law of

〈
(R2

g〉⊥/κ2
)1/3

, and while

both 1
2 + η and 〈R2

g〉⊥ reveal individually a pronounced dependence on N, see Figure 9a,b, the plot

of 1
2 + η vs.

(
〈R2

g〉⊥/κ2
)1/3

leads to an almost perfect collapse of the different chain lengths on a

master curve. This master curve, however, is not the equation predicted above, but rather 1
2 + η ∝(

〈R2
g〉⊥/κ2

)0.28
. We have no explanation of this (effective?) exponent yet. While from Figure 6b it is

clear that short chains (for a given choice of κ and εwall) are less strongly adsorbed than longer ones,
the almost perfect collapse of 1

2 + η versus 〈R2
g〉⊥ where the chain length dependence is eliminated

(Figure 9c,d) seems nontrivial to us.

10 100
κ

0.01

0.1

1
/2

+
η

N=50
N=100
N=250
N=500
N=750

~κ
−0.96

(a)

ε
wall

 = 0.80

10 100
κ

0.01

0.1

1

<
R

g

2
>

⊥

N=50
N=100
N=250
N=500
N=750

(b)

ε
wall

 = 0.80

0.01 0.1 1

(<R
g

2
>

⊥
 / κ

2
)
1/3

0.01

0.1

1

0.001

1
/2

+
η

N=50
N=100
N=250
N=500
N=750

~ x
0.84

(c)

ε
wall

 = 0.80

0.01 0.1 1

(<R
g

2
>

⊥
 / κ

2
)
1/3

0.01

0.1

1

0.001

1
/2

+
η

N=50
N=100
N=250
N=500
N=750

~ x
0.86

(d)

ε
wall

 = 1.00

Figure 9. (a) log-log plot of 3/2〈α2〉 = 1/2 + η vs. stiffness κ at εwall = 0.80 for several choices of N,
as indicated. Only data for κ ≥ 16 are included so as to restrict attention to the strongly adsorbed case;

(b) the same as (a), but for 〈R2
g〉⊥ vs. κ; (c) log-log plot of 1/2 + η vs.
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)1/3

for εwall = 0.80;
(d) the same as in (c), but for εwall = 1.00.
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4. Distributions of Trains and Loops

The very interesting behavior of loops and tails in the vicinity of the adsorption threshold,
where the lateral correlation length (i.e., the typical maximal lateral size of loops) is larger than `p,
has already been discussed in the literature [15,20]. Here, we focus rather on the behavior of trains
and loops in the strongly adsorbed phase. However, since for large κ the probability to observe
loops and tails is extremely small, we focus here on chains with moderate stiffness, κ = 5 and 8,
respectively. In these cases, the adsorption transition for N → ∞ occurs near εcr

wall ≈ 0.65 [26,27].
Figure 10 demonstrates (note the logarithmic ordinate scale) that for large n the data for Ptrain(n) are
very well described by a simple exponential decay. The average train length increases strongly with
εwall (but for the chosen parameters nav � N, so there should not be too strong effects due to the finite
length of the chain present).

In contrast, the distribution of loop lengths Ploop(n) exhibits a very different behavior, cf. Figure 11.
There is a rapid initial decay and then a gradual crossover to a much slower decay. We tentatively
interpret this as qualitative evidence for Semenov’s [15] prediction that not too far away from the
adsorption transition there should be a coexistence of small loops, whose extension away from the
plane z = 0 is of the order of `p or less, with much fewer large loops which make much larger
extensions away from the surface. Note that with excluded volume the loops are somewhat larger
than without. Of course, the average length of the loops increases when εwall decreases towards εcr

wall ,
reflecting the critical divergence of the correlation length of the adsorption transition in the limit
N → ∞. Due to the finiteness of N = 750, this divergence is rounded off, however.
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Figure 10. Probability distribution Ptrain(n) to observe trains having a length of n monomers,
for N = 750 and two choices of κ, κ = 5 (a); and κ = 8 (b). Five choices of εwall are included,
as indicated. In case (b), symbols indicate data with EV shut off while curves show data including EV.
Inserts show the average train length, defined from nav =

∫
dnPtrain(n)n.

In this context, it is of interest to study simply also the decay of the density distribution ρ(z) as
a function of the distance from the surface, Figure 12. For large values of εwall and large κ, there is a
sharp peak near z = zmin, and the mean square width of this peak, 〈∆H2〉 =

∫
z2ρ(z)dz− (

∫
ρ(z)dz)2,

is extremely small and strongly decreases as κ → ∞, Figure 12. Then, the polymers are rigid rods (of
finite length L = (N− 1)`b) very tightly bound to the wall. Fluctuations of their center-of-mass position
and orientation will also vanish as N → ∞ (see Appendix A). However, when κ is small enough so
that the chosen value of εwall is close to εcr

wall , 〈∆H2〉 becomes larger than unity due to a shoulder of
ρ(z) for z much larger than zmin. Ultimately, in a medium regime, zmin � z � `p, for εwall ≈ εcr

wall ,
a power law decay ρ(z) ∝ z−4/3 is predicted to occur [15], and our data are qualitatively compatible
with this prediction, Figure 12a. However, a chain length N = 500 is still by far too small to yield a

wide enough region `b < z < `p <
√
〈R2

g〉⊥, which is needed to clearly observe this regime. For large

z, ρ(z) decays exponentially with z for εwall > εcr
wall , as predicted [15]. The phenomenological power

laws indicated for the variation of 〈∆H2〉 with κ remain to be explained, however.
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Figure 11. Probability distribution Ploop(n) to observe loops having a length of n monomers,
for N = 750 and two choices of κ, κ = 5 (a); and κ = 8 (b). Five choices of εwall are included,
as indicated. In case (b), symbols indicate data with EV shut off while curves show data including EV.
Insets show the average loop length, defined as nav =

∫
dnPloop(n)n.
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Figure 12. Density distribution function ρ(z) vs. z for several choices of κ for N = 500 and εwall = 0.8
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5. Conclusions

In this paper, we have studied adsorption of semiflexible polymers on a flat unstructured surface,
using a coarse-grained bead-spring model, applying Molecular Dynamics methods, and varying the
persistence length over a wide range. A distinguishing feature is the choice of 10–4 adsorption potential,
Equation (6), qualitatively reasonable for adsorption on a thin rigid membrane. Chain lengths are
used in the range from N = 50 to N = 750 effective monomers. Unlike flexible chains, where in
the regime of weak adsorption (i.e., adsorption energy εwall slightly exceeding the threshold εcr

wall)
“pancakes” formed from blobs of mesoscopic thickness occur, we find here a thin adsorbed layer with
thickness comparable to the chain thickness (or, monomer diameter, respectively). The position of the
center of mass of this layer does not coincide with the position zmin of the minimum in the adsorption
potential but is clearly farther away from the adsorbing substrate surface. With increasing chain length
N (for otherwise identical parameters εwall and stiffness κ), the binding of the chain to the substrate
becomes tighter, i.e., the perpendicular linear dimension 〈R2

g〉⊥ and center-of-mass position 〈zCM〉
decrease, other parameters (adsorbed fraction f and orientational order parameter η) come close
to their saturation values, and the chain gradually adopts a quasi two-dimensional conformation.
However, in no case do we come close to a situation where the polymer is strictly two-dimensional and
confined to the plane z = zmin. The d = 2 Kratky–Porod model never yields a perfect representation of
our results for the range of stiffness κ and chain length L accessible in our work.

While many of our findings are in qualitative agreement with the theoretical predictions of
Semenov [15], a quantitative comparison was not sought since the latter work addresses the region
L� `p, taking also `p very much larger than the effective chain thickness. This regime is not easily
accessed by Molecular Dynamics simulations, however. Many predictions of the theory [15] refer to
the vicinity of εcr

wall , which can only be tested, if much longer chains are accessible. The theory [15] did
not discuss many of the phenomena found here such as the distribution of the center of mass of the
chains and its behavior with εwall , κ and N, however, cf. Figure 2b.

Thus, the findings here suggest that additional theoretical studies addressing such issues would
be desirable. With respect to the experiment, our simulations provide overwhelming evidence that
properties of an adsorbed semiflexible chain are by no means identical to properties of a strictly
two-dimensional chain that “lives” in the plane z = zmin, an assumption, which is implicit in many
discussions in the literature. An adsorbed chain still has degrees of freedom due to its intrinsically
three-dimensional character, and it is still an open problem to understand all consequences of this fact.
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Appendix A. The Hard Rod Limit

In the hard rod limit for large N, the macromolecules are almost perfectly aligned parallel to the
wall at z = zmin = (5/2)1/6. Therefore, the wall potential can be expanded quadratically around the
minimum,

Uwall(z) = εwallC
[(σ

z

)10
−
(σ

z

)4
]
= −εwall + εwallC′(z− zmin)

2, (A1)

using C =
( 5

3
) ( 5

2
)2/3

and σ = 1 to find
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C′ = 8
(

5
2

)2/3
≈ 14.7361 (A2)

Displacing a rod with N monomers by a distance z− zmin away from zmin hence costs an energy

∆E = NεwallC′(z− zmin)
2. (A3)

Since such a translation is a single degree of freedom, straightforward application of the
equipartition theorem (∆E = kBT/2) yields

〈(z− zmin)
2〉 = kBT

εwall2NC′
. (A4)

For N = 50, this yields at εwall/kBT = 0.80√
〈(z− zmin)2〉 ≈ 0.0291. (A5)

Thus, in Figure 2, the position of the center of mass of this rigid rod will typically fluctuate from
z ≈ 1.136 to z ≈ 1.194. These numbers clearly show that the harmonic approximation is still justified
(and it is a forteriori justified for larger N). Hence, in the rigid rod limit, the distribution of the center
of mass is a Gaussian centered at zmin with half width compatible with Equations (A2) and (A4).

The hard rod has a second degree of freedom where its axis is inclined by an angle α with respect
to the case when all its monomers are at z = zmin. We assume for simplicity that the center of mass is
still at z = zmin and that N is odd so the monomer positions are z̃i = ±i α `b, i = 1, 2, . . . , (N − 1)/2
with (z̃i = zi − zmin) (`b = 1 is the distance between beads), labeling the monomer that coincides with
the center of mass as i = 0.

The involved energy cost is then

∆E = 2
(N−1)/2

∑
i=1

C′εwall i2 α2, (A6)

which we can approximate as an integral along the contour (L is measured in units of σ = 1)

∆E = 2εwallC′ α2
∫ L/2

0
s2ds =

2
3

εwallC′ α2
(

L
2

)3
=

1
12

C′εwall α2L3. (A7)

Using equipartition again, 〈∆E〉 = kBT/2, we conclude

1
2

kBT =
L3

12
C′εwall〈α2〉, 〈α2〉 = 6

kBT
εwallC′L3 . (A8)

For L = (N − 1)`b ≈ 49 and εwall/kBT = 0.80, we find thus

〈α2〉 ≈ 4.33× 10−6. (A9)

Hence, in the rod limit, the orientational order parameter η deviates from its saturation value
η = −1/2 by at most a few parts in a million only. The order parameter f = 1 is completely saturated
within numerical precision.

Note also that

〈R2
gz〉 =

2
N

(N−1)/2

∑
i=1

〈z̃2
i 〉 =

2
N
`2

b〈α
2〉

(N−1)/2

∑
i=1

i2 =
1

12
`2

b〈α
2〉(N2 − 1) (A10)
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and hence
〈R2

gz〉 ≈
1
2

kBT
εwall

`2
b

1
C′N

, (A11)

i.e., we find that in the rod limit 〈R2
gz〉 varies proportional to 1/N.
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