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ABSTRACT
We characterize symmetry transformations of Lagrangian extremals generating “on shell” conservation laws. We relate symmetry transfor-
mations of extremals to Jacobi fields and study symmetries of higher variations by proving that a pair given by a symmetry of the lth variation
of a Lagrangian and by a Jacobi field of the sth variation of the same Lagrangian (with s < l) is associated with an “off shell” conserved current.
The conserved current associated with two symmetry transformations is constructed, and as a case of study, its expression for invariant sets
of Yang–Mills connections on Minkowski space-times is obtained.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0038533

I. INTRODUCTION
The description of fundamental interactions in physics as fields associated with the action of Lie groups on maps between manifolds has

been the cornerstone of the last century. Indeed, within this picture, fields are (local) maps between manifolds adapted to a fibration (which
distinguishes independent from dependent variables and their peculiarity when changing coordinates), i.e., they are sections of fibrations,
having the additional structure of a bundle (fields take values in a manifold, which is the type fiber of the bundle). In particular, it is well
known that due to their invariance properties, physical fields can be described as sections of bundles associated with principal bundles, and
the configuration bundles are, then, the so-called gauge-natural bundle; see, e.g., Refs. 1 and 2.

It is noteworthy that the variational derivation of field equations is an intrinsic operation strictly related just to the fibration structure and
its prolongation up to a given order.1,3–5 This approach had several important developments, in particular when combined with invariance
properties (the geometric formulation of the Noether theorems, specifically).

Furthermore important is now the possibility of a systematic formulation of higher variations (see Proposition III.6 and Theorem IV.11),
which can be interpreted as variations of suitable “deformed” Lagrangians.6

Combined with symmetry considerations, this approach extends to field theory the somehow analogous concept of the so-
called Sarlet–Cantrijn higher order (dynamical) Noether symmetries in mechanics7 (which we can think as a kind of higher order
Noether–Bessel–Hagen symmetries of the Lagrangian8,9,36). The present paper refers directly to canonical Noether symmetries, i.e., symmetries
of the Lagrangian, which we can describe, roughly speaking, as dynamical Noether symmetries up to divergences. Restricting to mechanics,
we recognize second order Sarlet–Cantrijn dynamical Noether symmetries up to divergences as related to second order canonical Noether
currents in our approach.

Higher variations are of interest in theoretical physics, in particular concerning variations of currents;10,11 for applications of the second
variation in gravitational theory in this context, see, e.g., Ref. 12.
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Lagrangian symmetries and symmetries of Euler–Lagrange equations were called by Andrzej Trautman5 invariant transformations
and generalized invariant transformations, respectively, and they were characterized as particular kinds of what he called symmetry
transformations, i.e., transformations of extremals into extremals of the same Euler–Lagrange equations.

Indeed, it is well known that a symmetry of Euler–Lagrange equations (generalized invariant transformations) is also a symmetry trans-
formation of their solutions (extremals), i.e., a transformation preserving the property of a field (a section of the configuration bundle on
space–time) being an extremal.5,13

The inverse, in general, is not true: symmetry transformations of solutions of equations could not be symmetries of the equations them-
selves. A related result stating that a Lagrangian “dragged” along symmetry transformations of its own extremals has the same extremals as
the original Lagrangian (and an inverse statement stating that a transformation dragging a given Lagrangian in a Lagrangian having the same
extremals is a symmetry transformation of the extremals) was obtained in Ref. 14 (see Theorem IV.3).

We focus on conservation laws by explicating the relation among higher variations of Lagrangians, symmetry transformations of
extremals, Jacobi fields, and conserved currents. We characterize symmetry transformations of extremals as particular transformations of the
Euler–Lagrange forms to source forms vanishing along extremals of the original Lagrangian and specifically as Jacobi fields along extremals
(Theorem IV.5).

Compared with generalized symmetry transformations (i.e., transformations leaving invariant the Euler–Lagrange form of a Lagrangian),
such transformations provide a weaker invariance property since the Euler–Lagrange form is not invariant under their action, although it is
transformed to a source form having the same extremals. Therefore, the equations change, but the solutions of the one equation are also the
solutions of the second and vice versa.

By explicating the relation among the variation of an Euler–Lagrange form with the second variation of a Lagrangian and with the
Jacobi morphisms (Proposition III.3 and Remark IV.14), we prove that with this sort of weaker invariance is anyway associated a conserved
current and, in particular, that this current can be identified as a Noether current for a Lagrangian “deformed” by a symmetry transformation
of extremals and associated with (or generated by) a symmetry transformation of extremals. More specifically, symmetry transformations
of extremals generate conserved currents along the extremals themselves. Indeed, Corollary IV.15 states the existence of a weak (i.e., along
extremals) conservation law for any couple of (infinitesimal) generators of (vertical) symmetry transformations.

As an explicit example, we write the expressions of the on shell conserved current generated by couples of symmetry transformations of
extremals.

II. CONTACT STRUCTURE, GEOMETRIC INTEGRATION BY PARTS, AND THE “REPRESENTATION” PROBLEM
Throughout this paper, we work with a fibration π : Y → X, where Y is an m + n-dimensional manifold and X is an n-dimensional

manifold. When choosing coordinates, we will always pick fibered coordinates (xi, yσ) defined over open subsets π−1(U) ⊂ Y , where U is
an open subset of the base. We also set ds to be the local expression of a volume element dx1 ∧ ⋅ ⋅ ⋅ ∧ dxn on X and dsi = ∂

∂xi ⌋ds. Given this
geometric setting, physical fields are encoded as local sections of the surjective submersion π : Y → X.

Let Ωq(JkY) denote the module of q-forms on the set JkY of equivalence classes of (local) sections of the fibration having a contact of
order k in a point. Note that JkY has the structure of a differentiable manifold and the structure of a fibration πk : JkY → X, the prolongation
of order k of π : Y → X.

A prolongation map jk assigns to (local) sections of the fibration π : Y → X (local) sections of the fibration πk : JkY → X. If γ is a section
of π, jkγ is defined as the map assigning to x ∈ X the k-jet jk

xγ of σ at x. A differential q-form α ∈ Ωq(JkY) is called contact if jkγ∗(α) = 0 for all
sections γ of π. It is easy to see that forms ω locally given as

ωσj1...jh = dyσj1...jh − yσj1...jhidxi

for 0 ≤ h < k are indeed contact one-forms.
In particular, (dxi,ωσ ,ωσj1

, . . . ,ωσj1...jk−1
, dyσj1...jk

) is a local basis for one-forms on JkY . Contact forms on a fixed prolongation space JkY
generate an ideal of the exterior algebra; this is usually called the contact structure induced by the affine bundle projections πk,k−1 : JkY
→ Jk−1Y ; see, e.g., Refs. 13 and 4. It is important to note that if α is contact, so is dα; on the other hand, the ideal of the exterior algebra of
forms on JkY generated by the forms ωσj1

, . . . ,ωσj1...jk−1
is not closed under exterior derivation.

For every form ρ ∈ Ωq(JkY), by the contact structure, we obtain the canonical decomposition,13

π∗k+1,k(ρ) = p0ρ + p1ρ + ⋅ ⋅ ⋅ + pqρ,

where p0ρ is a form that is horizontal on X (and so is often denoted by hρ), while piρ is an i-contact q-form, which is a form generated by
wedge products containing exactly i-contact one-forms. We remark that if q > n, every q-form ρ is contact; then, we call it strongly contact
if pq−n = 0. The contact structure also induces the splitting of the exterior differential π∗k+1,kdρ = dHρ + dVρ in the so-called horizontal and

vertical differentials, given by dHρ =
q
∑
l=0

pldplρ and dVρ =
q
∑
l=0

pl+1dplρ, respectively.

According to Ref. 15, we define the formal derivative with respect to the ith coordinate, i = 1, . . . , n, by an abuse of notation also denoted
by di, as an operator acting on forms. Explicitly, we require di to be the usual total derivative on zero-forms, to commute with the exterior
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derivative, and to satisfy the Leibniz rule with respect to the wedge product. We see that dHρ = (−1)qdiρ ∧ dxi if ρ is a q-form. On the basis
one-forms associated with the contact structure, we have didxj = 0, diωσj1...jr

= ωσj1...jr i, and didyσ = dyσi . Note that di induces a vector field on
JkY along πk+1,k; we still denote it by di and refer to it as the formal derivative.

In the following, a multi-index will be an ordered s-uple I = (i1, . . . , is); the length of I is given by the number s; and an expression such
as Ij denotes the multi-index given by the (s + 1)-uple (i1, . . . , is, j).

As much as the integration by parts procedure is concerned, we will use the local formula ωσIi ∧ ds = −dωI ∧ dsi. We also recall the
properties dJωσ = ωσJ and ∂

∂yνJ
⌋ωσI = δσνδJ

I (where the Kronecker symbol with multi-indices has the obvious meaning: it is 1 if the multi-indices
coincide up to a rearrangement and 0 otherwise).

Finally, if ψ is a projectable vector field on Y (i.e., an infinitesimal automorphism preserving the fibration), jkψ is the projectable vector
field, defined on JkY , associated with the prolongation of the flow of ψ (see, e.g., Refs. 13, 4, and 5).

The contact structure of jet prolongations enables us to define an algebro-geometric object deeply related to the calculus of variations:
a differential sequence of sheaves made of equivalence classes of differential forms taking a variational meaning. We refer to Ref. 16, where
the construction of a sequence of “variational sheaves” can be found, and to Refs. 15 and 17 for the representation of finite order variational
sequences. The concept of a sheaf is due to Leray;18 a classical reference on this topic is, e.g., Ref. 19.

Let Ωk
q denote the sheaf of differential q-forms on JkY . It can be seen as a sheaf on Y ; in fact, we assign to an open set W ⊆ Y a form

defined on π−1
r,0(W). We set Ωk

0,c = {0} and denote by Ωk
q,c the sheaf of contact q-forms, for q ≤ n, or the sheaf of strongly contact q-forms if

q > n. The quotient sequence of the de Rham sequence of forms,

{0}→ RY → Ωk
0 → ⋅ ⋅ ⋅→ Ωk

n/Θk
n → Ωk

n+1/Θk
n+1 → ⋅ ⋅ ⋅→ Ωk

N → {0},

where Θk
q = Ωk

q,c + dΩk
q−1,c, N = dim(JkY), and RY is the constant sheaf over Y , is called Krupka’s variational sequence of order k.16 Let us

denote the quotient sheaves by 𝒱 k
q. Morphisms in this sequence are denoted by ℰ q: 𝒱 k

q→ 𝒱 k
q+1, and they are quotients of the exterior differ-

ential, i.e., ℰ q([ρ]) = [dρ]. By this construction, classes of forms modulo contact forms are interpreted as differential forms relevant for the
calculus of variation (Lagrangians, currents, source forms, and so on); the Euler–Lagrange mapping can be identified with a morphism in the
variational sequence. The representation of the second variational derivative has been studied from this point of view.20–23

The interest of this construction in physics is that the cohomology of the complex of the global section of the variational sequence is
the de Rham cohomology of Y .16 Dealing with the exact sequence of sheaves and resolutions enables us to study cohomology obstructions
to variational exactness of variationally closed forms, and this turns out to be of interest in many different areas of physics; for example, an
obstruction to the existence of global extremals is related to the obstruction to the existence of global Noether–Bessel–Hagen currents.24

Strictly related to concrete applications is, then, the so-called representation problem, which, roughly speaking, consists in showing that
classes of forms, i.e., elements of the quotient groups 𝒱 r

q, can be associated with global differential forms. By the intrinsic geometric structure of
the calculus of variations on finite order prolongations of fibrations, indeed, it is possible to define an operator (called representation mapping),
which takes differential forms on the prolongation of order r and associates with it a differential form on a certain prolongation order s ≥ r,
having a meaning in the Lagrangian formalism for field theory, i.e., Rr

q : Ωr
q → Ψs

q, with Ψs
q being an Abelian group of forms of order s, such

that ker Rr
q = Θr

q. It provides an isomorphism 𝒱 r
q ≅ Ψs

q = Rr
q(Ωr

q).
For q ≤ n, Rr

q can be taken to be simply the “horizontalization” h = p0. For q ≥ n + 1, it is the image of an operator denoted by ℐ ,
which will be suitably defined below and which reflects in an intrinsic way the procedure of getting a distinguished representative of a class
[ρ] ∈ Ωk

q/Θk
q for q > n by applying to ρ the operator pq−n and then factorizing by Θk

q; see, e.g., Ref. 17.
In this paper, we will refer to the interior Euler operator defined within the finite order variational sequence according to Refs. 25 and 15

and applied to the representation of variational Lie derivatives according to Ref. 17.

Definition II.1. In the following, differential forms that are ωσ generated l-contact (n + l)-forms will be called source forms.

Now, define locally the map ℐ : Ωr
n+k → Ω2r+1

n+k by

ℐ (ρ) = 1
k
ωσ ∧ Iσ =

1
k
ωσ ∧

r

∑
∣I∣=0
(−1)∣I∣dI(

∂

∂yσI
⌋pkρ).

For a given ρ, ℐ (ρ) is a source form of degree n + k, and it is by construction a k-contact form. It turns out that if ρ is global, ℐ (ρ) is a globally
defined form; for a proof, see Ref. 15.

In view of a characterization of Noether currents, we study the difference between ℐ (ρ) and (π2r+1,r+1)∗(pkρ). In particular, we define
the residual operator ℛ by the decomposition formula, which is, in fact, a geometric integration parts formula,

(π2r+1,r+1)∗(pkρ) = ℐ (ρ) + pkdpkℛ (ρ). (1)
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Note that although the decomposition mentioned above has a global meaning, ℛ (ρ) is a strongly contact (n + k − 1)-form defined
only locally.

Example II.2. Following Ref. 15, we can characterize ℛ (ρ) in local coordinates. For k ≥ 1, if ΨI
σ are (k − 1)-contact (n + k − 1)-forms

and if ωσI are local generators of contact one-forms, up to pull-backs, we can write (a sort of integration by parts on formal derivatives of
forms)

pkρ =
r

∑
∣I∣=0

ωσI ∧ΨI
σ =

r

∑
∣I∣=0

dI(ωσ ∧ ζI
σ) = ℐ (ρ) + pkdpkℛ (ρ),

with ζI
σ =

r−∣I∣
∑
∣J∣=0
(−1)∣J∣( ∣I∣+∣J∣∣J∣ )dJΨJI

σ . The first term gives us the Euler–Lagrange form, while by rewriting ωσ ∧ ζI
σ = ΦI ∧ ds, for suitable

k-contact k-forms ΦI on J2rY , we get
r

∑
∣I∣=1

dI(ωσ ∧ ζI
σ) = dH(

r−1

∑
∣I∣=0
(−1)kdIΦIj ∧ dsj) = dHℛ (ρ).

This local expressions for ℛ (ρ) will be exploited in Example V.2 for the case k = 1, specifically for concrete one-contact (n + 1)-forms
ωσI ∧ΨI

σ associated with the exterior differential of a suitably “deformed” Yang–Mills Lagrangian. We will explicitly write the formsΦIj relative
to this Lagrangian. Combined with results of Corollary IV.15, this approach will enable us to obtain explicit conserved currents associated
with symmetry transformations of Yang–Mills extremals on Minkowski space-times.

III. HIGHER VARIATIONS AND RELATED CURRENTS
The representation by the horizontalization h and by the interior Euler operator ℐ (also called the Takens representation17) defines

a sequence of sheaves of differential forms (rather than of classes of differential forms) such that both the objects and the morphisms have
a straightforward interpretation in the calculus of variations. We can obtain formulas for (higher) variations of a Lagrangian based on an
iteration of the first variation formula expressed through this representation.

A. Noether currents
The formulation of the first Noether theorem26 is concerned with the representation of variational Lie derivatives of classes of degree

n, which illustrates the relation between the interior Euler operator, the Euler–Lagrange operator, and the exterior differential, as well as the
emerging of the divergence of the Noether currents by contact decompositions and geometric integration by parts formulas.

In the following, for any n-form ρ, ℐ (dρ) = ℐ (dhρ) = ℐ d(hρ) is the Euler–Lagrange form En(hρ), while hdhμ = p0dp0μ is the horizon-
tal differential dH(hμ), which can be recognized as a divergence (for the notation and the interpretation in the context of geometric calculus
of variations, more details can be found, e.g., in Ref. 17).

Proposition III.1. For any n-form ρ and for any π-projectable vector field ψ on Y , we have, up to pull-backs by projections,

LJr+1ψhρ = ψV⌋ℐ d(hρ) + dH(Jr+1ψV⌋pdV hρ + ψH⌋hρ), (2)

where pdV hρ = −p1ℛ (dhρ).

The formula mentioned above was first obtained by Noether in the proof of her celebrated first theorem (see the original paper of Noether
in the historical survey in Ref. 27). This suggests the definition of a Noether current.

Definition III.2. The Noether current for a Lagrangian λ associated with ψ is defined as

εψ(λ) = Jr+1ψV⌋pdVλ + ψH⌋λ.

The term pdVλ = −p1ℛ (dλ) is called a local generalized momentum.

It should be stressed that a Noether current is defined for any projectable vector field, independently from it being a Lagrangian symmetry
or not. When it is not a symmetry, of course, the Noether current is not conserved along critical sections.

A generalization of formula (2) to the class of degree greater or lower than n has been obtained.8,17,28

B. Higher Noether currents
We now tackle a systematic formulation of higher variations, interpretable as variations of suitable “deformed” Lagrangians;6 com-

bined with symmetry considerations, this approach extends to field theory the concept of the so-called higher order Noether symmetries in
mechanics developed in Ref. 7.
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Now, we obtain a formula for the second variation, which will be further exploited in Sec. IV. We note that LJr+1ψhρ = hLJrψρ and then
apply a standard inductive reasoning. Of course, the iterated variation is pulled-back up to a suitable order in order to suitably split the Lie
derivatives.6

Proposition III.3. For any n-form ρ and any pair of π-projectable vector fields ψ1 and ψ2, we have, up to pull-backs by projections,

LJr+1ψ2 LJr+1ψ1 hρ = ψ2,V ⌋ℐ d(ψ1,V ⌋ℐ d(hρ))+ (3)

+dHεψ2(ψ1,V ⌋ℐ d(hρ)) + dHεψ2(dHεψ1(hρ)),

where we define the following (higher) Noether currents associated with ψ2 for the respective new Lagrangians:

εψ2(ψ1,V⌋ℐ d(hρ)) = ψ2,H⌋ψ1,V⌋ℐ d(hρ) + Jr+1ψ2,V⌋pdVψ1,V⌋ℐ d(hρ), (4)

εψ2(dHεψ1(hρ)) = ψ2,H⌋dH(Jr+1ψ1,V⌋pdV hρ + ψ1,H⌋hρ)+, (5)

+ Jr+1ψ2,V⌋pdV dH(Jr+1ψ1,V ⌋pdV hρ+ψ1,H⌋hρ).

Note that expression (3) is given in terms of ℐ and ℛ .
Related to this formula is an identity that will suggest the definition of the Jacobi morphism, with a look to a specific characterization of

symmetry transformations of extremals (see Definition IV.6).
Let, then, ψ1, ψ2 be vertical vector fields. We note that due to the exactness of the representation sequence and by linearity of the Lie

derivative (for s a suitable prolongation order), we can write

Jsψ1⌋LJsψ2ℐ d(hρ) = ψ1⌋ℐ d(ψ2⌋ℐ d(hρ)) = (6)
= LJsψ2 LJsψ1 hρ − [ψ2,ψ1]⌋ℐ d(hρ) − dHεψ2(dHεψ1(hρ)).

From (3), we get then the following identity.

Proposition III.4. For every pair of vertical vector fields ψ1 and ψ2, the following holds:

ψ1⌋ℐ d(ψ2⌋ℐ d(hρ)) − ψ2⌋ℐ d(ψ1⌋ℐ d(hρ)) =
= [ψ1,ψ2]⌋ℐ d(hρ) + dH(εψ2(ψ1⌋ℐ d(hρ))). (7)

Note that, being the vector fields vertical, here, we have εψ2(ψ1⌋ℐ d(hρ)) = Jr+1ψ2⌋pdVψ1⌋ℐ d(hρ). Note also that this current is the Noether
current for the “deformed” Lagrangian ψ1⌋ℐ d(hρ) and associated with ψ2.

Remark III.5. As we already mentioned in the Introduction, there exists a concept of a higher order Noether symmetry referring actually
to a higher order generalization of a “Noether symmetry” intended as a symmetry of the exterior differential of the Poincaré–Cartan equivalent
of a given Lagrangian, i.e.,Ψ is called a “Noether symmetry” if LΨdθ = 0. In particular, we refer to the generalization due to Sarlet and Cantrijn,7
and in the following, we shall call a “Noether symmetry” according to them as a Sarlet–Cantrijn symmetry.

We stress that this symmetry differs from a Noether symmetry as a symmetry of the Lagrangian (due to the fact that the Poincaré–Cartan
equivalent of L differs for a one-contact term, let us call it Ω), which is the original meaning also used by Emmy Noether who referred to
symmetries of the action, i.e., of the Lagrangian. As well-known symmetries of the Lagrangian are also symmetries of the Euler–Lagrange
form (which can be expressed in terms of the differential of the Poincaré–Cartan equivalent as p1dθ), but the converse is not true, in general.
Indeed, symmetries of the Euler–Lagrange form are generalized symmetries of the Lagrangian, i.e., symmetries up to a horizontal differential.
Therefore, Sarlet–Cantrijn symmetries, which are symmetries of the Poincaré and Cartan equivalent up to a differential, can be identified as
a kind of generalized symmetries. Accordingly, higher Noether symmetries and currents in this paper can be compared with Sarlet–Cantrijn
ones.

Example III.6. Let us now denote by θ = L +Ω the Poincaré–Cartan equivalent of the Lagrangian L = hρ. Let us for a moment skip the
prolongation symbols to simplify the notation; we have the following.

Let Ψ denote a projectable vector field, and let LΨLΨdθ = d(Ψ ⌋d(Ψ ⌋dθ)) = 0. On the one hand, by the naturality of the Lie derivative
and by Eq. (6), we have

LΨLΨdθ = dLΨLΨθ =
= d[ΨV⌋ℐ d(ΨV⌋ℐ dL) + dHεΨ(ΨV⌋ℐ dL) + dHεΨ(dHεΨ(L)) + LΨLΨΩ].
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Let us take the quotient modulo the contact structure Θ, ℐ dLΨLΨθ. ℐ dLΨLΨΩ = LΨLΨℐ dΩ = 0, being Ω a contact form and being
dΩ also in the contact sheaf Θ. Thus, we have ℐ dLΨLΨθ = ℐ dη, with η = ΨV⌋ℐ d(ΨV⌋ℐ dL) + dHεΨ(ΨV⌋ℐ dL) + dHεΨ(dHεΨ(L)).

Note that under the assumption that LΨLΨdθ = 0, η is a ℐ d-closed form, i.e., ℐ dη = 0; then, by the exactness of the variational sequence,
we have locally ΨV⌋ℐ d(ΨV⌋ℐ dL) = dH(G − [εΨ(ΨV⌋ℐ dL) + εΨ(dHεΨ(L))]).

On the other hand, following Ref. 7, let β = Ψ⌋dα, where α = Ψ⌋dθ. We have LΨLΨθ = β + d(Ψ ⌋d(Ψ ⌋θ)) = β + dξ, and from the above
description, we also get ℐ dη = ℐ d(β + dξ) = ℐ d(β + dVξ).

We now elaborate and compare these two issues. Indeed, from Proposition III.3, we have the identity dHεΨV (ΨV⌋ℐ dL) = 0. Thus,

ΨV⌋ℐ d(ΨV⌋ℐ dL) = dH(G −ΨH⌋ΨV⌋ℐ dL − εΨ(dHεΨ(L))]).

Furthermore, if we assume ΨV to be such that ΨV⌋ℐ d(ΨV⌋ℐ dL) = 0 (i.e., to be a Jacobi field; see later), then we get the conservation law,

dH(G −ΨH⌋ΨV⌋ℐ dL − εΨ(dHεΨ(L))) = 0,

which along an extremal reads

dH(G − εΨ(dHεΨ(L))) = 0.

On the other hand, since LΨLΨdθ = d(Ψ⌋d(Ψ⌋dθ)) = 0, then dβ = 0; therefore, locally, β = dF.7
By taking the horizontal part, we have hβ = dHF. However, from the above description, dHG = hη = hβ + dHξ; thus, we can take G = F + ξ,

and we locally have that, for ΨV being a Jacobi field along an extremal,

dHF = dH(εΨ(dHεΨ(L)) − ξ) = dH( εΨ(dHεΨ(L)) −Ψ⌋d(Ψ⌋θ).

Now, up to pull-backs and jet prolongations of the vector field Ψ, we have

dHF = dH(ΨH⌋dH(ΨV⌋pdV L +ΨH⌋L) +ΨV⌋pdV dH(ΨV⌋pdV L+ΨH⌋L)+

−ΨH⌋(dH(ΨV⌋pdV L +ΨH⌋L)) −ΨH⌋(dV(ΨV⌋pdV L +ΨH⌋L))+
−ΨV⌋(dH(ΨV⌋pdV L +ΨH⌋L)) −ΨV⌋(dV(ΨV⌋pdV L +ΨH⌋L)))

= dH(ΨV⌋pdV dH(ΨV⌋pdV L+ΨH⌋L) −ΨH⌋(dV(ΨV⌋pdV L +ΨH⌋L))+

−ΨV⌋(dH(ΨV⌋pdV L +ΨH⌋L)) −ΨV⌋(dV(ΨV⌋pdV L +ΨH⌋L))) =
= dH(ΨV⌋pdV dH(ΨV⌋pdV L+ΨH⌋L) −ΨV⌋(dV(ΨV⌋pdV L +ΨH⌋L))

= dH( εΨV (dHεΨV (L) +ΨV⌋pdV dH(ΨH⌋L) −ΨV⌋(dV(ΨV⌋pdV L +ΨH⌋L)),

which explicates the relationship between Sarlet–Cantrijn second order Noether conserved current and the conserved current along extremals
εΨV (dHεΨV (L)), for ΨV being a Jacobi field; see later Eq. (14) combined with Proposition III.4. The last term can be shown to vanish under
the horizontal differential;8,17,28 thus, in the case of a vertical Sarlet–Cantrijn symmetry, the conserved current F essentially coincides with the
Noether conserved current εΨV (LΨV (hρ)) up to a horizontal differential.

By Propositions III.1 and III.3, formulas for the higher variations of hρ are obtained as an original result.

Proposition III.7. Let ρ be an n-form on JkY. Consider the Lagrangian hρ, and take l variation vector fields ψ1, . . .,ψl. Define recursively a
sequence rl by

rl = 2rl−1 + 1, r0 = r.

We have

(πrl ,r+1)∗(LJr+1ψl . . .LJr+1ψ1 hρ)
= ψl,V⌋ℐ d(ψl−1,V⌋ℐ d(. . .ψ2,V⌋ℐ d(ψ1,V⌋ℐ d(hρ)) . . . )+
+ dHεψl(ψl−1,V⌋ℐ d(. . .ψ2,V⌋ℐ d(ψ1,V⌋ℐ d(hρ)) . . . )+
+ dHεψl(dHεψl−1(ψl−2,V⌋ℐ d(. . . (ψ1,V⌋ℐ d(hρ)) . . . )+
. . .

+ dHεψl(dHεψl−1 dH(. . . dHεψ2(dHεψ1(hρ)) . . . ).

(8)
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Proof. The proof is a straightforward induction using as base step the case l = 1 or l = 2. Taking into account the exactness of the
representation sequence, the inductive step follows easily, although not trivially; details of the proof can be found in Ref. 29.

Remark III.8. By means of a recursive application of (2) or (3), the currents that appear in formula (8) can be worked out more explicitly
and characterized as Noether currents similarly to the expressions in (4) and (5).

The variation of any order of a Lagrangian hρ is a horizontal form, i.e., again a Lagrangian; therefore, we can express its variation by
means of formula (2). On the other hand, formula (8) gives us the possibility to investigate how to relate the symmetries of a variation of hρ to
hρ itself (see Theorem IV.11).

IV. SYMMETRY TRANSFORMATIONS OF EXTREMALS AND CONSERVED CURRENTS
Let hρ be a Lagrangian of order r + 1 on Y .

Definition IV.1. A (local) section γ is an extremal of hρ if it satisfies

ℐ d(hρ) ○ J2r+1γ = 0.

Let now ϕ be an automorphism of Y (i.e., a transformation preserving the fibration) with projection ϕ0, and let Jr+1ϕ be its prolongation.

Definition IV.2. The automorphism ϕ is a symmetry transformation of an extremal γ if the section ϕ ○ γ ○ ϕ−1
0 is also an extremal, i.e.,

ℐ d(hρ) ○ J2r+1(ϕ ○ γ ○ ϕ−1
0 ) = 0.

A π-projectable vector field ψ is the generator of symmetry transformations of γ if its local one-parameter group of transformations is a
flow of symmetry transformations of γ. It can be shown that a symmetry of ℐ d(hρ) is also a symmetry transformation of every extremal γ;
see Refs. 13 and 5.

According to the above references, the following relates symmetry transformations of extremals to projectable vector fields dragging hρ
in such a way that LJr+1ψhρ admits the same extremals; for the proof, see, in particular, Ref. 14.

Theorem IV.3. Let hρ be a Lagrangian of order r + 1, and let γ be an extremal. Then, a π-projectable vector field ψ generates symmetry
transformations of γ if and only if

ℐ d(LJr+1ψhρ) ○ J2r+1γ = 0.

Remark IV.4. We make now an observation that will have a fundamental consequence when related to Proposition III.2. Indeed, we
note that, being the Lie derivative a natural operator, it holds LJ2r+1ψℐ d(hρ) = ℐ d(LJr+1ψhρ), and ψ generates symmetry transformations of γ
if and only if

(LJ2r+1ψℐ d(hρ)) ○ J2r+1γ = 0.

We thus characterize vertical symmetry transformations of extremals as particular transformations of the Euler–Lagrange forms to source
forms vanishing along extremals of the original Lagrangian.

We are now able to state our first main result, which is the premise for the next fundamental step: to characterize vertical symmetry
transformations of extremals specifically as Jacobi fields along extremals (see Theorem IV.7 and Remark IV.14). We do this basically by
expressing the Lie derivative of Euler–Lagrange forms in terms of the second variation (see also Ref. 22).

Theorem IV.5. Let hρ be a Lagrangian of order r + 1, and let γ be an extremal. Then, a vertical vector field ψ generates vertical symmetry
transformations of γ if and only if

ℐ d(ψ ⌋ℐ d(hρ)) ○ J4r+1γ = 0.

Proof. The result follows from Theorem IV.3 and Remark IV.4 by using Proposition III.2 via identity (6), which, we stress, holds true
for any vertical vector field ψ1.

We focus on higher order Noether currents and, in particular, on currents associated with the infinitesimal second variation formula (3)
in a specific way.

Roughly speaking, up to horizontal differentials, the second variation (generated by vertical vector fields) of a Lagrangian λ is the Jacobi
morphism (see Ref. 3 for first order field theory; see also Ref. 21). Here, we define the Jacobi morphism within the representation sequence,
i.e., by the interior Euler operator.
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Definition IV.6. Let XV(Y) be the space of vertical vector fields on Y . The map

𝒥 : Ωr
n,X(JrY)→ X∗V(J2r+1Y)⊗ X∗V(Y)⊗Ωr

n,X(JrY), (9)
λ :↦ ● ⌋ℐ d(● ⌋ℐ d(λ)) (10)

is called the Jacobi morphism associated with the Lagrangian λ.

The Jacobi morphism is self-adjoint along critical sections of a Lagrangian field theory of any order. This is a property of great importance
in physical applications, and we recall its full statement for the role it plays in the paper.

Theorem IV.7. For any pair of vertical vector fields ψ1, ψ2 on Y, we have

J2r+1ψ2 ⌋ℐ (J2r+1ψ1 ⌋dℐ (dλ)) = 0.

Along extremals, the Jacobi morphism is self-adjoint.

Indeed, we have

ℐ d(ψ ⌋ℐ d(λ)) =
2r+1

∑
∣J∣=0
(−1)∣J∣dJ(ψρ

∂Eρ(λ)
∂yσJ

)ωσ ∧ ds = (11)

=
2r+1

∑
∣J∣=0

dJψσ
∂Eρ(λ)
∂yσJ

ωρ ∧ ds. (12)

For the full proof, extending a Goldschmidt and Sternberg result for first order theories,3 see Ref. 6, as well as, in a slightly different context,
Ref. 21.

In the following, we use the notation 𝒥ψ(λ) for short to denote ℐ d(ψ⌋ℐ d(λ)).

Definition IV.8. Let λ be a Lagrangian of order r. A Jacobi field for the Lagrangian λ is a vertical vector field ψ that belongs to the kernel
of the Jacobi morphism, i.e., satisfying the Jacobi equation for the Lagrangian λ,

𝒥ψ(λ) = 0.

Remark IV.9. The Jacobi morphism 𝒥 ψ(λ), evaluated along an extremal γ, depends only on the values of the vector field ψ along γ.
A Jacobi equation along an extremal is then well defined; we call its solutions the Jacobi fields along an extremal γ.

Remark IV.10. Equation (12) provides the “adjoint expression” for the Jacobi equation along extremals; it can be of use in order to obtain
an easier characterization of the kernel of the Jacobi morphism in practical computations.

Notably, here, it will be used in order to calculate the conserved current associated with invariant sets of Yang–Mills connections (see
Example V.2). See also Ref. 30 for an explicit application in SU(3)-Yang–Mills theories in the context of a variationally featured symmetry
breaking in view of a canonical characterization of confinement phases in non-Abelian gauge theories.31

A. Jacobi fields and higher conservation laws
We observe that the Jacobi equation for variations of hρ can be expressed in terms of hρ. In fact, just using the exactness of the

representation sequence, we have

ℐ d(ψ⌋ℐ d(⌋LJr+1ψs . . .LJr+1ψ1 hρ)) = ℐ d(ψ⌋ℐ d(ψs⌋ℐ d(. . .ψ1⌋ℐ d(hρ) . . .))).

The application of Proposition III.6 to an iterated variation of a Lagrangian gives results that are relevant for the Lagrangian itself; in fact,
using (8), we can relate the Noether current of the sth variation to Noether currents of lower order variations. More precisely, we can state the
following important original result.

Theorem IV.11. If we take a symmetry of an (l − 1)-th variation of hρ and we suppose that the sth variation (s < l) is taken with respect
to a Jacobi field of the (s − 1)-th variation, then
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dHεψl . . . dHεψs+1(LJr+1ψs . . .LJr+1ψ1 hρ) = 0.

Proof. Actually, we have

dHεψl(LJr+1ψl−1
. . .LJr+1ψ1 hρ) = 0,

with some terms that vanish separately. In fact, applying the definition of the Jacobi field, we get

ψl⌋ℐ d(ψl−1⌋ℐ d(. . .ψ2⌋ℐ d(ψ1⌋ℐ d(hρ)) . . .) = 0,
dHεψl(ψl−1⌋ℐ d(. . .ψ2⌋ℐ d(ψ1⌋ℐ d(hρ)) . . .) = 0,

. . .

dHεψl . . . dHεψs+2(ψs+1⌋ℐ d(. . . (ψ1⌋ℐ d(hρ)) . . .) = 0.

Then, the statement follows by using (8) (Proposition III.7).

Remark IV.12. The previous result is a strong conservation law (i.e., it holds along any section, not necessarily an extremal): the con-
served current is the (l − s − 1)-th variation of the horizontal differential of the Noether current for the sth variation of hρ. The result is not
trivial because we are not assuming that ψs+1 is a symmetry of the sth variation.

Remark IV.13. We can write formula (8) in terms of Jacobi morphisms,

(πrl ,r+1)∗(LJr+1ψl . . .LJr+1ψ1 hρ)
= ψl,V⌋𝒥 ψl−1,V

(ψl−2,V⌋𝒥 ψl−3,V
. . . (hρ) . . .)+

+ dHεψl(ψl−1,V⌋𝒥 ψl−2,V
(ψl−3,V⌋ . . . (hρ) . . .))+

+ dHεψl(dHεψl−1(ψl−2,V⌋𝒥 ψl−3,V
(. . . (hρ) . . .)))+

+ ⋅ ⋅ ⋅ + dHεψl(dHεψl−1 dH(. . . dHεψ1(hρ) . . .)).

Remark IV.14. Note that by Theorem IV.5 and by Theorem IV.7, Jacobi fields along extremals are vertical symmetry transformations of
extremals and vice versa.

Our characterization of (vertical) symmetry transformations of extremals as Jacobi fields along extremals is motivated by the fact that
there can exist conservation laws associated with symmetry transformations, which, in principle, are different from the Noether or the
Noether–Bessel–Hagen conservation laws associated with symmetries or generalized symmetries of a Lagrangian λ; in particular, we stress
once more that all symmetries of equations are also symmetry transformations of extremals, but the converse is not true, in general.

Indeed, we have the following as our further main result.

Corollary IV.15. Let ρ be an n-form on Jr−1Y and hρ be the associated Lagrangian on JrY. Let ψ1 and ψ2 on Y be two generators of vertical
symmetry transformations of extremals. Then, along extremals of hρ, the weak conservation law holds true,

dHϵψ2(ψ1 ⌋ℐ d(hρ)) = 0. (13)

Proof. Indeed, by Theorem IV.5, the two generators of symmetry transformations ψ1 and ψ2 are also Jacobi fields, i.e., they must satisfy
𝒥ψi
(hρ) = 0 for i = 1, 2. Therefore, from (7), since also [ψ2,ψ1]⌋ℐ d(hρ) vanishes along extremals, we get the result.

For the interpretation of this current as a Noether current for a “deformed” Lagrangian, see the note at the end of Proposition III.3.

Remark IV.16. Suppose that ψ2 is a symmetry of the first variation of hρ generated by ψ1 and that ψ1 and ψ2 satisfy ψ2⌋𝒥ψ1
(hρ) = 0, then

we have a strong conservation law,

dHϵψ2(LJrψ1 hρ) = 0. (14)

Now, it is clear that along extremals, taking two vertical symmetry transformations ψ1 and ψ2, we get two separated weak conservation laws;
see also Ref. 6.
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V. CONSERVED CURRENTS FOR INVARIANT YANG–MILLS CONNECTIONS
Let us consider a Yang–Mills theory32 on the bundle (CP,π, M) of principal connections with structure bundle (P, p, M, G), G being a

semi-simple group. Lower Greek indices label space–time coordinates, while capital Latin indices label the Lie algebra g of G; then, on the
bundle CP, we introduce coordinates (xμ,ωA

σ ).
Let δ be the Cartan–Killing metric on the Lie algebra g, and choose a δ-orthonormal basis TA in g; the components of δ will be denoted

as δAB. The Yang–Mills Lagrangian is locally expressed by

λYM = −
1
4

FA
μνg

μρgνσFB
ρσδAB

√
gds,

where g stands for the absolute value of the determinant of the metric gμν, cA
BC are the structure constants of g, FA

μν = ωA
ν,μ − ωA

μ,ν + cA
BCωB

μωC
ν is

the so-called field strength, and we set ωA
μ,ν = dνωA

μ .
From now on, we assume the metric η to be Minkowskian; in this case, the Euler–Lagrange expressions for the Yang–Mills Lagrangian

are explicitly written as

EνB = δBAηλμηεν(ωA
ε,λμ − ωA

λ,εμ + cA
ZDω

Z
λ,μω

D
ε + cA

ZDω
Z
λω

D
ε,μ)+ (15)

+ ηλμηενδDA(ωD
ε,λ − ωD

λ,ε + cD
EFω

E
λω

F
ε )cA

BZω
Z
μ .

Let (ϕa) be a set of coordinates on the group G. A vertical vector field over CP has the form ψ = ψZ
σ

∂
∂ωZ

σ
, and its components satisfy the

transformation rule ψ′Bν = AdB
A(ϕ)ψA

μ Jμν , where AdB
A(ϕ) is the adjoint representation of G on g and Jμν denotes the inverse of the matrix of the

change in coordinates in the base space. Let L(M) be the frame bundle of M, and V = g⊗Rn. Let us denote by ∇ the covariant derivative
corresponding to Ω = dxμ ⊗ (∂μ + cB

ADψD
σ ωA

μ∂
σ
B), the connection induced on the bundle (P × ML(M)) × λV of vertical vector fields over CP,

where the representation λ comes from the transformation rules mentioned above (see Refs. 33, 34, and 2).
By some careful manipulations (see Ref. 6 for details), Theorem IV.7 and specifically formula (12) provide the Jacobi equation along

extremals for this kind of Yang–Mills theory. In particular, due to the antisymmetry of FD
βσ in the lower indices, it splits into the antisymmetric

and symmetric parts

ην[σηβ]α{∇β[(∇αψA
σ −∇σψA

α )δBA] + FD
βσδADcA

BZψ
Z
α} = 0, (16)

ην( σηβ )α{∇β[(∇αψA
σ −∇σψA

α )δBA]} = 0

for any pair (ν, B); hereafter, the brackets () and [] in the superscripts denote symmetrization and anti-symmetrization, respectively.
Note that the left-hand side of these equations is the analogous, for a Minkowskian metric, of the classical expression for the Jacobi

operator for Yang–Mills theories on different backgrounds (see, e.g., Refs. 35 and 37), and it reproduces results for first order non-regular
Lagrangians.3

In order to avoid notational confusion, let χA
μ , χA

μ,ν, χA
μ,νρ, . . . denote generators of contact forms.

Remark V.1. According to our results, the solutions ψ of the above equations are the generators of symmetry transformations of
Yang–Mills extremals ω, i.e., if ψ is a solution of the above equation, then the source form LJ3ψ(EνB χB

ν ∧ ds), where EνB are given by (15),
also vanishes along the same extremals, i.e.,

(LJ3ψ(EνB χB
ν ∧ ds)) ○ J3ω = 0.

Here, by a slight abuse of notation, we denoted by ω a section of the bundle (CP,π, M), which is an extremal, i.e., a Yang–Mills connection.
As we already mentioned, compared with transformations leaving invariant the Euler–Lagrange form EνB χB

ν ∧ ds, such transformations
are involved with a weaker invariance property since the Euler–Lagrange form is not invariant under their action, but it is transformed to a
source form having the same extremals. Note that, indeed, the Yang–Mills extremals ω are also solutions of the equation mentioned above
and vice versa.

Example V.2. As an illustration of the application of our main result, given by Theorem IV.5 and Corollary IV.15, we determine the
conserved current associated with such a weaker invariance property. We write down explicitly the current for two given generators of vertical
symmetry transformations ψ and ψ̃, solutions of Eq. (16) (for details, we refer to Refs. 29 and 6, where computations are made for Jacobi fields
along extremals).

Being the vector fields vertical, from Corollary IV.15, Eq. (13), and according to Proposition III.1, the conserved current along an extremal
is defined through p1ℛ (d(ψ ⌋ℐ d(λYM)). Recalling that EνB are coordinate expressions of the Euler–Lagrange form according to (15), we apply
the coordinate characterization of the residual operator (given in Example II.2) to the following form:
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d(ψ ⌋ℐ d(λYM)) = (
∂ψB

ν

∂ωZ
ρ

EνB + ψB
ν
∂EνB
∂ωZ

ρ
)χZ

ρ ∧ ds+

+
⎛
⎝
ψB
ν
∂EνB
∂ωZ

ρ,ξ

⎞
⎠
χZ
ρ,ξ ∧ ds +

⎛
⎝
ψB
ν

∂EνB
∂ωZ

ρ,ξτ

⎞
⎠
χZ
ρ,ξτ ∧ ds.

By suitably rewriting the above-mentioned equation in the form
2
∑
∣I∣=0

dI(χA
μ ∧ ζμ,I

A ), we can easily obtain the local expression for

ℛ(d(ψ⌋ℐ d(λYM))); thus, obtaining the conserved current, we are looking for

ϵψ̃(ψ ⌋ℐ d(λYM)) = [ηρ[ξησ]νδBAcA
ZDω

D
σ (ψB

ν ψ̃
Z
ρ − ψZ

ρ ψ̃
B
ν)

(ηξσηρν − ηρ(σηξ)ν)(ψZ
ν∇σ(ψ̃B

ρδBZ) − ψ̃Z
ρ∇σ(ψB

ν δBZ))]dsξ .

Remark V.3. It is noteworthy that, by Proposition III.3 and, in particular, by Remark IV.14, here, the existence and the meaning of
the above-mentioned current (also appeared in Ref. 6 in relation to Jacobi fields) is understood under a new light, definitely relevant from a
physical point of view.

In the present paper, we clarify that such a conservation law emerges by an invariance property of the set of extremals and, moreover,
that the associated conserved current can be interpreted as a very specific kind of Noether current, the existence of which is related to a
wide class of symmetry transformations. Indeed, we proved that this current can be identified as the Noether current for the Yang–Mills
Lagrangian “deformed” by the symmetry transformation of extremals ψ and associated with (or generated by) the symmetry transformation of
extremals ψ̃.

Remark V.4. We note that Eq. (7) of Proposition III.3 says us that for any vertical vector field ψ1 = ψ2 = ζ, the current ϵζ(ζ ⌋ℐ d(hρ))
is a strong conserved current (i.e., conserved “off shell”). However, it can be easily checked that, at least in the specific case of study, for
any (vertical) symmetry transformation of extremals ψ̃ = ψ, the weak (i.e., “on shell”) conserved current reduces to ηρ( σηξ )ν(ψZ

ν∇σ(ψB
ρ δBZ)

− ψZ
ρ∇σ(ψB

ν δBZ))dsξ , which vanishes identically because ηρ( σηξ )ν = ην( σηξ )ρ. This holds true for any couple of linearly dependent symmetry
transformations.
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