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Abstract. Recent studies classify the topology of proteins by analysing
the distribution of their projections using knotoids. The approximation
of this distribution depends on the number of projection directions that
are sampled. Here we investigate the relation between knotoids differing
only by small perturbations of the direction of projection. Since such
knotoids are connected by at most a single forbidden move, we char-
acterise forbidden moves in terms of equivariant band attachment be-
tween strongly invertible knots and of strand passages between θ-curves.
This allows for the determination of the optimal sample size needed to
produce a well approximated knotoid distribution. Based on that and
on topological properties of the distribution, we propose a numerical
measure for the determination of deeply knotted proteins that does not
require the computationally expensive method of subchain analysis.

1. Introduction

Knotoids provide a generalisation of knots that deals with the problem of
classifying knottiness for open curves [30] . They are defined as equivalence
classes of diagrams of open arcs, up to isotopies of S2 and Reidemeister
moves performed away from the endpoints. Each equivalence class forms
a specific knotoid type. Some examples of knotoid diagrams are shown in
Figure 2.1.

In the past few years, knotoids have been used to classify entanglement
in proteins [12, 10, 9, 7]. Proteins are long chains of amino acids that fold
into specific conformations that can sometimes form open ended knots. The
fraction of knotted proteins is fairly small [7], and even if the presence of
knots in proteins slows the folding process [21, 6, 26], it is known that the
knotted domains of some families of proteins have been conserved through
evolution [27]. While studies seem to suggest that knots provide advantages
to some proteins [8, 25], the biological purpose of the presence of knots in
proteins is still an open and interesting question in biology. For this reason,
understanding the topological features of knotted proteins is an important
step in investigating the effect of the presence of knots to structure and
function of proteins. With the approach provided by knotoids, a protein
is represented as an open-ended polygonal chain and it is studied by con-
sidering all different projections of it. Subsequently, these projections are
analysed as knotoids. The topology of the curve is characterised by a dis-
tribution of knotoid types, also called the spectrum of the curve, while the
predominate type represents the distribution. Since considering all possible
projections of a curve is not computationally feasible, the usual approach is
to sample from the knotoid distribution.
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In this work, we study the relation between pairs of knotoids that are
obtained from projections that differ from one another only by a small per-
turbation. Indeed, small perturbations in the choice of the direction of
projections can either leave the corresponding knotoid type unchanged (i.e.
by changing the knotoid diagram by isotopies of S2) or have the effect of
performing a sequence of, so-called, forbidden moves (see Figure 1.1) on the
knotoid diagram. Thus, when the spectrum approximates well the knotoid
distribution, a pair of different knotoids whose projections are related by a
small perturbation will differ by at most a single forbidden move.

Figure 1.1. Forbidden moves between knotoid diagrams.
Performing a forbidden move on a knotoid diagram might
result in changing the knotoid type. Moreover, any knotoid
diagram can be transformed into the trivial one by a finite
sequence of forbidden moves.

In analogy to the case of knots and crossing changes, we define a distance
on knotoids using forbidden moves.

Definition. Given two knotoids k1 and k2, their forbidden move-distance
or f -distance df (k1, k2) is the minimal number of forbidden moves, across
all representatives of k1 and k2, needed to transform k1 into k2.

We characterise forbidden moves on knotoids in terms of equivariant band
attachments on strongly invertible knots, using the correspondence between
knotoids and strongly invertible knots proved in [2], and in terms of crossing
changes on θ-curves [30]. The main theorem of this paper is the following:

Theorem 1.1. Consider two equivalence classes of of knotoids k1 and k2
up to rotation and reversion. The following are equivalent:

(i) k1 and k2 differ by a single forbidden move;
(ii) their corresponding θ-curves t≈(k1) and t≈(k2) differ by a strand

passage of the edge e0 over either e+ or e−;
(iii) their corresponding strongly invertible knots γS(k1) and γS(k2) differ

by an equivariant band surgery.

This result allows us to produce lower bounds on the f -distance between
knotoids. We then compute the total number of strand passages on all the
knotoid diagrams with up to 6 crossings. This computation gives us upper
bounds for the f -distance between knotoids with up to 6 crossings. By
comparing lower and upper bounds we compute the f -distances df (k1, k2)
for each pair of knotoids k1 and k2 with minimal crossing number ≤ 4. We
then create the f -distance table for knotoids with minimal crossing number
≤ 4.
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In the second part of this work we apply the main theorem and the table
of f -distances to determine an optimal size for the set of sampled projections
that not only approximates well the knotoid distribution but also favours
computational speed. We further expand on this result by inferring a numer-
ical measure for detecting deeply knotted proteins. A protein is considered
deeply knotted if it has at least 20 amino acids at each one of its termini
[29]. The knotted core of a protein is believed to have an important bio-
logical role in the protein’s function [20, 5], and recent studies show that
that formation of deep knots with characteristic structural motifs provides
a favourable environment for active sites in enzymes [8]. The length of the
knotted core of a protein is currently determined by computationally ex-
pensive subchain analysis [9, 7]. The advantage of our measure is that it
gives an estimate of whether a protein is deeply knotted or not without re-
quiring the full subchain analysis. Finally, we demonstrate our method by
analysing all proteins in the Protein Data Bank (PDB, [3]) having the 31 as
predominate knotoid.

Notation

Throughout this paper knotoids are indicated according to the tabulation
created by the second author in [11]. All maps and manifolds are assumed
to be smooth, and for maps and sets we will use the notation of [2], namely:

• K(S2) and K(S2)/≈ are the sets of knotoids and the set of knotoids
up to rotation and reversion;
• Θs is the set of simple labelled θ-curves in S3 and Θs/≈ is the set of

simple labelled θ-curves in S3 up to relabelling the vertices, and up
to relabelling the vertices and the edges e− and e+, respectively;
• KSI(S3) is the set of strongly invertible knots (K, τ) in S3.

2. On forbidden moves, crossing changes and band surgeries

Recall that there are four commuting involutive operations on knotoids in
K(S2). These operations are called reversion, mirror reflection, symmetry
and rotation, and are described in Figure 2.1. Reversion has the effect
of changing the orientation of a knotoid, and mirror reflection transforms
a knotoid into a knotoid represented by the same diagrams with all the
crossings changed. Symmetry reflects a knotoid diagram with respect to the
line in R2 passing through the endpoints. The last involution, the rotation,
is defined as the composition of symmetry and mirror reflection.

We will sometimes consider knotoids up to these involutions. Indeed,
following the notation of [2], we will denote by K(S2)/≈ the set of knotoids
in S2 up to rotation and reversion.

2.1. Knotoids, θ-curves and strongly invertible knots.

Definition 2.1. A θ-curve is a graph embedded in S3 with 2 vertices, v0
and v1, and 3 edges, e+, e− and e0, each of which joins v0 to v1, taken up
to ambient isotopies preserving the labels of the vertices and the edges.

Note that the curves e0 ∪ e−, e− ∪ e+ and e0 ∪ e+ form knots, called the
constituent knots of the θ-curve. A θ-curve is called simple if its constituent
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Figure 2.1. From left to right, a knotoid k, its reverse
rev(k), its mirror reflection mir(k), its symmetric sym(k)
and its rotation rot(k).

knot e− ∪ e+ is the trivial knot. An example of a simple θ-curve is shown
in Figure 2.2. We will only work with simple θ-curves, since these are the
ones corresponding to knotoids (see [30]). Moreover, we will always choose
e+ and e− to be the ones forming the trivial knot.

Figure 2.2. A simple θ-curve. The constituent knot e−∪e+
(the blue&red circle) is the trivial knot.

We will find useful to consider θ-curves up to certain particular symme-
tries. Indeed, following the notation of [2], we will denote by Θs/≈ the set
of simple θ-curves up to relabelling the vertices v0 and v1, and the edges e−
and e+.

Recall that the symmetry group of a knot K, Sym+(S3,K), is the group
of diffeomorphisms of the pair (S3,K) preserving the orientation of S3,
where the diffeomorphisms are taken up to isotopies.

Definition 2.2. A strongly invertible knot is a pair (K, τ), where K is a
knot in S3, and τ ∈ Sym+(S3,K) is called a strong inversion, and it is an
orientation preserving element of S3 that reverses the orientation of K and
such that τ2 is equal to the identity, taken up to conjugacy in Sym+(S3,K).

Note that the positive solution of the Smith Conjecture (see e.g [31])
implies that fix(τ) (i.e. the fixed point set of τ) is a trivial knot intersecting
K in two points. We will denote by KSI(S3) the set of strongly invertible
knots. As an example, the trefoil knot 31 admits such an inversion in its
symmetric group, see Figure 2.3.

The set K(S2)/≈ (i.e. the set of unoriented knotoids in S2, taken up to
rotation) is in bijection with the sets Θs/≈ and KSI(S3) (see [30] and [2]
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Figure 2.3. The trefoil knot admits a unique strong inver-
sion τ . The fixed point set of fix(τ) is shown in the picture
as a vertical line (the blue&red line).

respectively for the proofs):

t≈ : K(S2)/≈ −→ Θs/≈.

γS : K(S2)/≈ −→ KSI(S3).

Figure 2.4. On the top, a knotoid and its corresponding
simple θ-curve. On the bottom, the associated strongly
invertible knot obtained by taking the double cover of S3

branched along e− ∪ e+.

These correspondences work schematically as follows (see also Figure 2.4
for an example).

Step 1. Given a diagram in S2 representing a knotoid k, we construct an
embedded arc in S2 × I by pushing the overpasses of the diagram into the
upper half-space, and the underpasses into the lower one. The endpoints lie
in the lines v0×I and v1×I. We then obtain a θ-curve by collapsing S2×∂I
to two points. The vertices of the θ-curve are the endpoints of k, e0 = k, e+
is the edge containing the image of S2 × {1} and e− the one containing the
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image of S2 × {−1}.

Step 2. Given a simple, labelled θ-curve, we obtain a strongly invertible
knot by taking the double cover of S3 branched1 along the constituent trivial
knot e− ∪ e+, see Figure 2.4.

The converse follows in a similar fashion:

Step 1. Given a strongly invertible knot (K, τ), we label the two halves
of the circle fix(τ) as ẽ+ and ẽ−. The involution τ induces a projection
map p : S3 −→ S3/τ ≈ S3. We then obtain the θ-curve p(fix(τ)) ∪ p(K),
where p(K) = e0 and p(fix(τ)) = e− ∪ e+.

Step 2. Given a simple, labelled θ-curve in S3, we can think about it
as being embedded in R3. We can isotope it in such a way that e+ and e−
lie in the upper and lower half-spaces, respectively. We can always do that
in such a way that the projection of e0 into R2 × {0} is standard. Such
projection gives us a knotoid.

Remark 2.3. Since two knotoids k and krot (respectively rev(k)) differing
by a rotation (respectively reversion) correspond to θ-curves differing by
swapping the e− and e+ labels (respectively v0 and v1), and since the dou-
ble branched covers of such θ-curves produce equivalent strongly invertible
knots, we have the correspondences.

2.2. Characterisation of forbidden moves. In what follows we will give
a characterisation of forbidden moves in terms of operations on θ-curves and
on strongly invertible knots.

2.2.1. Crossing changes on θ-curves. A forbidden move on k corresponds to
performing a strand passage (i.e. a crossing change) on the θ-curve t≈(k),
see Figure 2.7. More precisely, a forbidden move induces a strand passage
between the arc e0 and either e+ or e−.

Remark 2.4. Call K±k the constituent knot of t≈(k) given by e0 ∪ e±. From
the previous construction, it follows that a forbidden move induces a crossing
change on exactly one between K+

k and K−k . In particular, this specific
strand passage cannot change simultaneously both these constituent knots
of t≈(k).

Remark 2.5. Note that given a knotoid k, the pair (K+
k ,K

−
k ) can be ob-

tained by computing the overpassing closure and the mirror image of the
underpassing closure of k (for a definition see [30]).

2.2.2. Band surgeries on strongly invertible knots. A band surgery is an
operation which changes a link into another link.

Definition 2.6. Let L1 be a link and b : I × I −→ S3 an embedding such
that L1 ∩ b(I × I) = b(I × ∂I). The link L2 = (L1 \ b(I × ∂I))∪ b(∂I × I) is
said to be obtained from L1 by a band surgery along the band B = b(I × I),
see Figure 2.5.

1For a definition of double branched covers, and for an explanation on how to obtained
the double cover of S3 branched along a trivial knot see e.g. [24].
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The band surgery is called coherent if it respects the orientation of L1

and L2, otherwise it is called non-coherent, see Figure 2.5. A non-coherent
band surgery it is often called a H2-move (see e.g. [1], [14]). Contrary to
the case of coherent band surgeries, H2-moves preserve the number of the
components of links. This means that the result of an H2-move performed
on a knot will always be a knot.

Figure 2.5. Local pictures for a coherent (top) and a non-
coherent (bottom) band surgery.

As discussed in [2], two knotoids that differ by a forbidden move have
lifts that are related by a single H2-move. Moreover, the band attachment
is equivariant with respect to the involutions of the two knots (see Figure
2.7).

Definition 2.7. Consider a strongly invertible knot (K1, τ1). We say that
the strongly invertible knot (K2, τ2) is obtained from (K1, τ1) by an equivari-
ant band surgery if the knots K1 and K2 are related by an H2-move, such
that:

• fix(τ1) intersects the band b(I × I) transversally exactly once in its
interior and the band is invariant under τ1;
• (K2, τ2) and (K ′1, τ1) are equivalent as strongly invertible knots2,

where K ′1 is the knot obtained from K1 by doing the band surgery.

Figure 2.6. The strongly invertible knots (31, τ) and (01, τ
′)

are related by an equivariant band surgery.

An example of an equivariant band surgery is shown in Figure 2.6.

2Recall from Definition 2.2 that two strongly invertible knots (K, τ) and (K′, τ ′) are
equivalent if K and K′ are equivalent as knots in S3, and τ and τ ′ are conjugated in
Sym+(S3,K).
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Figure 2.7. A forbidden move between two knotoids k1 and
k2 induces a strand passage between the arcs e0 and e± be-
tween the corresponding θ-curves, and an equivariant band
attachment between the corresponding strongly invertible
knots.

2.2.3. Main result. We are now able to prove our main result, Theorem 1.1
below.

Theorem. Consider two equivalence classes of of knotoids k1 and k2 up to
rotation and reversion. The following are equivalent:

• k1 and k2 differ by a single forbidden move;
• their corresponding θ-curves t≈(k1) and t≈(k2) differ by a strand

passage of the edge e0 over either e+ or e−;
• their corresponding strongly invertible knots γS(k1) and γS(k2) differ

by an equivariant band surgery.

Proof. Thanks to the discussion of the previous subsections, it is enough to
show the following.

• Given two strongly invertible knots related by an equivariant band
attachment, their corresponding θ-curves are related by a strand
passage of e0 through either e+ or e−;
• given two θ-curves related by a strand passage of e0 through either
e+ or e−, their corresponding knotoids differ by a forbidden move.

Consider then an equivariant band surgery between two strongly invert-
ible knots (K1, τ1) and (K2, τ2). Up to ambient isotopies fixing the circle
fix(τ1) the band attachment locally looks like the one in the top part Fig-
ure 2.8, with possibly the opposite twists on the band. On the quotient
S3/τ1 ≈ S3 this results in a strand passage between the arcs e0 and one
between e+ or e− in the θ-curve p(fix(τ)) ∪ p(K), as shown in the bottom
of Figure 2.8.

Analogously, consider a simple θ-curve. Up to label preserving ambient
isotopies fixing the circle e− ∪ e+, any strand passage between the arc e0
and the arc e± locally looks like the one shown in the top part of Figure
2.9 (up to changing the crossing between e0 and e±). The bottom right
part of Figure 2.9 shows how this translates into a forbidden move on the
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Figure 2.8. On the top, two strongly invertible knots
(K1, τ1) and (K2, τ2) related by an equivariant band surgery.
Up to ambient isotopies fixing the circle fix(τ1) (and up to
inverting the crossings), the band looks like the one in the
middle of the top row. The band has an odd number of
twists. On the bottom, the corresponding effect on the asso-
ciated θ-curves. If the band has 2n + 1 twists, the θ-curves
are related by a sequence of n Reidemeister moves of type I
(R1s) followed by a a Reidemeister move of type II (R2) and
by a single strand passage.

corresponding knotoid. The case where the crossing between e0 and e± is
the opposite one is similar.

�

2.3. Lower bounds on the f-distance. We use Theorem 1.1 to produce
lower bounds for the forbidden move-distance between equivalence classes
of knotoids up to the four involutions of Figure 2.1. With a little abuse of
notation, we will still call “knotoids” these equivalence classes.

The H2-Gordian distance dH2(K,K ′) between two knots K and K ′ is
defined as the minimal number of equivariant band attachments connecting
K and K ′ (see [1]). As an immediate consequence of Theorem 1.1, given two
knotoids k1 and k2, with corresponding strongly invertible knots γS(k1) =
(K1, τ1) and γS(k2) = (K2, τ2), we have that

(2.1) df (k1, k2) ≥ dH2(K1,K2).

Analogously, given two knotoids k1 and k2, consider the pairs (K+
k1
,K−k1)

and (K+
k2
,K−k2). We can define their Gordian distance dpair((K

+
k1
,K−k1), (K+

k2
,K−k2))

as the minimum between d(K+
k1
,K+

k2
)+d(K−k1 ,K

−
k2

) and d(K+
k1
,K−k2)+d(K−k1 ,K

+
k2

),
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Figure 2.9. On the top row, two θ-curves related by a
strand passage between the arc e0 and the arc e±. Up to
label preserving ambient isotopies fixing the circle e− ∪ e+
we can make the strand passage look like in the picture. The
effect on the corresponding projections giving the knotoids
is to perform a sequence of Reidemeister moves of type I
followed by a single forbidden move.

where d is the usual Gordian distance between knots. From Remark 2.4 it
follows that

(2.2) df (k1, k2) ≥ dpair((K+
k1
,K−k1), (K+

k2
,K−k2)).

Thus, as a corollary of Theorem 1.1 we have the following.

Corollary 2.8. Let u denote the trivial knotoid. If k is a non trivial knot
type knotoid then df (k, u) ≥ 2u(k), where u(k) is the unknotting number
(see e.g. [24] for a definition) of k considered as a knot in S3.

Proof. If k is a knot type knotoid, its corresponding constituent knots K±k
are both isotopic to k. Thus, df (k, u) ≥ 2u(K±k ) where u(K±k ) is the un-
knotting number of the constituent knot.

�

Note that we do not expect the equality to hold in general, since in K±k
the unknotting crossing change might involve only the arc e±, and thus it
would not correspond to a forbidden move.

3. Computing f-distances of S2-knotoids

As mentioned above, the main theorem provides lower bounds for f -
distances between isotopy classes of knotoids. Since our aim is to build a
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table of f -distances, this is information alone is not sufficient. For this rea-
son, we computed experimentally the f -distance between all non-composite
knotoid diagrams, including non-minimal crossing representations, with up
to six crossings with the help of a computer program written in python 3.7.

In brief our strategy works as follows. First, all 2363766 knotoid diagrams
with up to six crossings (both of minimal and non-minimal crossing number
representation) [11] are encoded using the oriented Gauss codes for knotoids
(see e.g. [11] and [2]). We note here that from now on, we shall be using the
terms knotoid diagram and oriented Gauss code interchangably. Moreover,
we will not take into consideration composite knotoids and we will deal
only with prime knotoids. Each knotoid diagram is then identified using
the arrow polynomial for knotoids [13] and the classification of S2-knotoids
provided by [11]. Let now K be the set of all knotoid diagrams with up to
six crossings and let G(V,E) be an undirected graph such that:

V (G) = K

E(G) = {(v, u) | (v, u) ∈ K2, v
f∼ u, v 6= u},

where v
f∼ u denotes a pair of knotoid diagrams (v, u) that are related by

a single forbidden move. In other words, G is the undirected graph whose
vertices are knotoid diagrams and two diagrams are related with a single
forbidden move if and only if the corresponding vertices of G are connected
with an edge. Our program builds G and then searches for all Dijkstra
paths between all possible pairs of vertices. Finally, the set of all diagrams
is partitioned into isotopy classes and the Dijkstra path of minimal distance
between two isotopy classes determines their numerical f -distance, dnumf .
From this we can obtain upper bounds for the f -distances between isotopy
classes of knotoids by computing their experimental f -distances which are
defined as:

dexpf (v, u) = min
{
dnumf (v, x) | x ∈ (u,mir(u), sym(u), rot(u))

}
.

By comparing the upper bounds with the lower bounds discussed in Sec-
tion 2.3 we are able to produce Table 1 (shown in Appendix A) containing
the f -distances between equivalence classes of knotoids with minimal cross-
ing number ≤ 4. Most of the lower bounds in Table 1 are obtained using
the inequality (2.2). Gordian distances between knot types are taken from
[22], while H2-distances from [17] and [18].

Note that this could be improved by considering in the experimental ap-
proach a higher threshold for the maximum crossing number. This means
that non-minimal representations of higher crossing number for the ambigu-
ous entries in Table 1 will be considered, which may help decreasing their
upper bounds. Unfortunately, our available computational power prohibited
us from exploring this possibility.

Example 3.1. Computing lower bounds using inequality (2.2) it is quite
straightforward. Indeed, given a knotoid k we obtain the constituent knots
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K±k as explained in Remark 2.5. Then, using values for the Gordian distance
taken from [22] we compute dpair for each pair of knotoids.

To illustrate how our method works in the case of inequality (2.1), we
will prove as an example that df (31, 47) = 2. Given a knot K, it is well
known (see e.g. [24]) that the double cover of S3 branched along K is a
closed 3-manifold Σ(K) whose homeomorphism class depends solely on the
knot K. Let’s denote by δ(K) the dimension of the first homology of Σ(K)
with coefficients in Z3, δ(K) = dim(H1(Σ(K),Z3)). The value of the Jones

polynomial of K at t1/2 = eiπ/6 can be computed as V (K,ω) = ±(i
√

3)δ(K)

[17, Proposition 5.1]. If two knots K and K ′ have H2-distance 1 then the ra-

tio V (K,ω)/V (K ′, ω) ∈ {±1,±i
√

3
±1}, which is the content of [17, Lemma

5.2].
We shall apply these to the pair (31, 47). Following [2] it is straight-

forward to see that knotoid 31 lifts to a connected sum of trefoil knots
31#31. Additionally, it is known (see e.g. [17]) that δ(31#31) = 2 and,
thus, V (31#31, ω) = ±3. On the other hand, 47 lifts to the torus knot
819, and in this case we have (see e.g. [4]) that H1(Σ(819),Z) ∼= Z3. Thus,

δ(819) = 1. The ratio V (31#31, ω)/V (819, ω) /∈ {±1,±i
√

3
±1} and so 31 and

47 cannot have H2-distance equal to 1. Finally, from Table 3 we see that
dexpf (31, 47) = 2 and therefore we have that df (31, 47) = 2. In a similar way

we can compute lower bounds for the f -distance of corresponding to the
entries in red of table and 2, since in these cases the knotoids lift to knots
K with δ(K) = 1.

Remark 3.2. By employing statistical procedures we can re-arrange the table
of numerical f -distances so that the isotopy classes of knotoids are ordered
with respect to their proximity. More precisely, by considering Tables 3-5
as a 40 × 40 matrix M and then shifting its empirical mean to zero, we
can apply Principal Component Analysis (PCA)[23, 15] to move the data
to a new orthogonal coordinate system where the greatest variance of the
data appears by projecting along the first coordinate. This corresponds to
the eigenvector that is related to the highest eigenvalue of the correlation
matrix 1

n−1M
TM , where n is the number of rows of M . The post-PCA

matrix provides a more comprehensive overview of the knotoids space and
allows for an easier exploration of potential relations between knotoids. A
graphical representation of the results of applying PCA on the set of knotoids
is shown below in Figure 3.1. The analysis and the graphic representations
below were done using the statistical package R.

4. Application to the study of proteins’ topology

Proteins are long linear biomolecules that often fold into conformations
with non-trivial topology. By tracing the coordinates of their Cα atoms,
one can model them as open polygonal curves in 3-space. Until recently, in
order to analyse proteins in terms of their knottedness one had first to arti-
ficially close the curve since under classical knot theory all open curves are
topologically trivial. In [10] the second author and collaborators proposed
an alternative approach using the concept of knotoids.
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Figure 3.1. A graphical representation of the set of all kno-
toids with up to 4 crossings (on the left) before and after (on
the right) using PCA. On the right, the trivial knotoid is
placed in the middle of the figure since while each knotoid
together with its rotation (here denoted as ms) are always
on the opposite side of 01 and in equal distance from it than
its mirror reflection and its symmetric involutions. Note also
that the same holds for 41 due to its amphichirality and since
two knotoids cannot occupy the same spot, it is place imme-
diately to the left of 01. The legend on the far right shows
the correspondence between distance and colour.

Figure 4.1. The projection map for the protein N-acetyl-
L-ornithine transcarbamylase complexed with N-acetyl-L-
ornirthine (PDB code: 3kzn). For this map we used 10000
projections. We can see that the predominate knotoid type
is 3m1 since it corresponds to the region with the biggest area.
The colour scale on the right shows the colour-knotoid type
correspondence. Note that the | symbol in the knotoid name
stands for “or”, meaning that knotoid names separated with
| share the same arrow polynomial. The label “UNKNOWN”
corresponds to knotoids with minimal crossing number > 6.
Finally, knotoid composition is denoted with an asterisk ∗.
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The general idea of this approach is to characterise the global topology
of each protein chain by assigning a knotoid type to it. The term global
topology refers to the topology of the whole protein chain. The modelled
protein is considered inside a large enough sphere (one can also consider
its convex hull), centered at the center of mass of the chain. Choosing a
point on the sourranding sphere defines a planar projection, resulting in a
knotoid diagram [10]. Note that different planes of projection may yield
different knotoid diagrams, hence determining the knotoid type of a protein
using a single projection is far from being accurate. In principle, the knotoids
approach considers the knottedness of any open-ended curve embedded in 3-
space as a distribution (also called spectrum) of knotoid types. The knotoid
with the highest probability in the distribution of knotoid types over all
projections, characterises the protein and is called predominate. In order to
obtain an unbiased overview of a protein’s topology, all possible projections
have to be considered. However, since this is not computationally feasible,
the distribution is approximated by sampling from the space of all possible
projections. To avoid a change of knotoid type under ambient isotopy, two
infinite lines are introduced each time a projection plane is chosen. Each
line passes through one of the endpoints and they are perpendicular to the
projection plane [13, 10]. Additionally, an algorithm similar to KMT [19, 28]
that simplifies the curve but preserves its underlying topology is also applied
[13, 10] in order to make computations of knotoid types more efficient. The
knotoid types are determined using invariants. For this work we have used
the arrow polynomial for knotoids in S2 [13].

The above data is often summarised in a plot called the projection map
[10]. The projection map is in fact the Voronoi diagram VD of the cor-
responding Delaunay triangulation of S2 with respect to the set of points
sampled from S2. Furthermore, each cell of the projection map is colour-
coded according to the knotoid type it produces. By construction, there is
a bijection between the number of different colours in a projection map and
the number of different knotoids in the spectrum of the analysed curve (see
Fig. 4.1).

Both the spectrum and the projection map depend heavily on the sample
size of projections; if too few points are sampled, then the overall topology
of the analysed curve will not be well approximated. In fact, the optimal
size for the set of sampled projections remains an open question.

In several cases the protein chain doubles back right after forming a knot.
This results in unknotting the knot previously formed. This type of proteins
are called slipknotted. In order to detect these local knots one has to study
the local topology of any given protein by analysing all possible subchains.
During this analysis one can also determine the knotted core of a protein,
that is the shortest subchain forming a knot. The subchains located before
and after the knotted core are called N-tail and the C-tail, where N and
C are the two termini of the protein (see Fig. 4.2). The vast majority of
proteins are enzymes where there is an overlap between knotted cores and
the respective enzymatic active sites. Indeed, these sites are either located
inside or close to the knotted core of the chain. In this context, it was
shown that knotted cores of proteins play a vital role in some aspects of a
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Figure 4.2. The core (in red) and the two tails (in black) of
an open knot representing a protein with a trefoil knot. The
two beads on either side represent the two termini, N and C
respectively, of the protein chain.

protein’s structure and function [20, 5]. Moreover, in [8], it was observed
that formation of deep knots with characteristic structural motifs provides a
favourable environment for active sites in enzymes. However, it is important
to mention that the knots are not necessary for the formation of regions with
increased intra-chain contacts. An open polygonal knot is considered deep,
if several vertices from either side of the knotted core have to be removed
before making the knot trivial.

The subchain analysys can be computationally heavy, depending on the
total length of the protein. Therefore, it would be useful if one could deter-
mine numerically the tightness of a knot directly from the global topology
analysis.

In this section we will use Theorem 1.1 to provide numerical approxima-
tions for the two questions that were discussed in this section, namely:

a. How many projections are required in order to have an accurate
overview of a protein’s topology?

b. Can we define a numerical measure that can indicate whether a
protein is deeply knotted or not?

4.1. Approximating the sample size of projections. Consider a generic
projection of a protein chain on some plane and let k be the corresponding
knotoid. If we continuously perturb the projection direction until the kno-
toid type changes to k′, we will obtain a pair of knotoids with df (k, k′) > 0.
We will use this idea to make measurements on projection maps that are
obtained from sample sets of increasing size, in order to approximate nu-
merically an optimal sample size of projections s for a given protein.

As mentioned earlier, the spectrum of a protein chain depends on the
number of projections. Indeed, using a smaller sample will lead to a trian-
gulation of S2 that produces a Voronoi diagram with wider cells. Therefore,
there is a higher chance for cells corresponding to knotoids with df > 1 to be
adjacent. Since the predominate knotoid corresponds to the largest region
of the projection map, it suffices to focus on the discrepancies between the
region of the predominate and its immediate neighbours. For this, we define
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the interface error, er(s), associated to the sample of size s. The interface
error is the ratio of the total number of pairs of adjacent regions adjacent
to the region of the predominate knotoid k0 that correspond to knotoids ki,
for which Theorem 1.1 gives df (k0, ki) > 1 over the number of all adjacent
regions to k0. We expect that there will be a high correlation between er(s)
and Spec(s), the spectrum of knotoids in the projection map associated to
the sample of size s. By gradually increasing the number of projections,
the triangulation will become progressively finer and so the possibility of
having pairs of adjacent cells with df > 1 will effectively decrease, hence the
correlation between er(s) and Spec(s) will become weaker.

For our experiment, we concentrated on proteins with predominate kno-
toid type 31. As of August 2019, there are 457 such proteins in total de-
posited in the Protein Data Bank [3], according to [16, 7]. All proteins of
interest are analysed using 50, 100, 500, 1,000, 5,000 and, finally, 10,000 pro-
jections. Each time er(s) for the respective Voronoi diagram is computed.
More precisely, for each Voronoi diagram we build a graph whose vertices
correspond to the regions of the map and the edges correspond to common
boundaries between regions. We compute er(s) by counting the number of
graph edges between 31 and knotoids that give df > 1 and taking the ratio
over the total number of edges that have 31 as one of its endpoints, loops
excluded. In Table 2 we present the f -distances of 31 from all knotoids with
5 and with 6 crossings. The number of unique knotoid types in the Voronoi
diagram corresponds to the size of Spec(s). Recall that in this analysis we
don’t consider composite knotoids. Finally, we compute the Spearman cor-
relation coefficient, r, between er(s) and Spec(s), for each of the six cases
for the sample size of projections.

As shown in Fig. 4.3, we observe positive correlation between er(s) and
Spec(s) that is marginally strong since r = 0.7455, keeping in mind that
for strong correlation one should have r ∈ (0.75, 1). As the number of
projections is increased, r become consistently smaller with its smallest value
at 10000 projection. Our analysis suggests that at 10000 projections we will
have the most accurate overview of the topology of a protein. However,
if we consider computational speed as well, 5000 projections providea an
approzimation reliable enough.

In conclusion, the numerical difference between the Spearman correlation
coefficients for the 5,000 and 10,000 projections is not that significant and,
moreover, both coefficients lie in the interval (0.25, 0.5) indicating a weak
positive correlation. For this reason, we suggest that analysing a protein
with 5,000 projections provides a good compromise between computational
speed and accuracy.

4.2. A numerical measure for deeply knotted proteins. In this sec-
tion we discuss a numerical measure, the relative area Arel of a protein chain,
that can be used to estimate wether a protein is deeply knotted, without
passing through the computational expensive subchain analysis [7].

Definition 4.1. Let k be a knotoid in S2. An interface knotoid, denoted by
kint, is a knotoid such that:

df (k, kint) = 1 and df (kint, 01) ≤ 1
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Figure 4.3. The diminishing effect of increasing the number
of projections on the correlation between the interface error
er(s) and the spectrum Spec(s) of a protein chain. The slopes
of the lines gradually decrease. In the last two panels (in red)
the lines are almost parallel to the x-axis, indicating there is
almost no correlation between the two measures.

A deep protein knot is also usually tightly knotted as the length of its
knotted core is relatively small, compared to the knot’s overall length. The
converse is not always true since we can easily find examples of tight knots
very close to one the termini of the chain.

The idea behind our strategy is assuming that the deeper a knot is, the
smaller the total area of the interface knotoids will be in the VD. This is
because the two tails of the knot are less probable to interact with the rest
of the chain in a way that will produce a forbidden move. Since the knot is
deep, it will also be relatively tight, hence the regions of the corresponding
diagram will be smaller. Thus, the probability of having large areas in
VD corresponding to interface knotoids will be smaller. To quantify this
assumption we define notion of the relative area Arel as the ratio of the sum
of areas of interface knotoids in the VD over the area of the predominate,
namely:

(4.1) Arel =
1

Ap

∑
k∈Kint

Ak,

where Kint is the set of all interface knotoids of the predominate knotoid,
Ap is the area in the VD of the predominate knotoid and Ak is the area in
the VD of the knotoid k.

As mentioned earlier, to determine the depth of a protein knot one has
to analyse all of its subchains. Computationally this is achieved by progres-
sively trimming the chain from each side and evaluating its knotoid type
until the knotted core is obtained. We can define an abstract measure of
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depth, denoted by D(k), as follows:

D(k) =
`N (k) `C(k)

`T (k)2

where k is a knotoid, `T (k) is the total length of the chain of k, `N (k) is the
length of the N-tail of k and `C(k) is the length of the C-tail of k.

Figure 4.4. Scatterplot of values of Arel against D(k). The
color map on the right indicates the different values of D(k).
The higher the value, the deeper a knot is. Two distinct
clusters of points, in terms of D(k), are visible in the graph
indicating a well defined separation between deeply and shal-
lowly knotted proteins.

In the spirit of the previous section, we will test our measures on all
proteins that form a 31 knot. From Theorem 1.1 we have that 21 is the only
knotoid (among knotoids with 6 or fewer crossings) having distance 1 from
both 31 and 01. In fact, it is straightforward to check that all the knotoids
k with less than 6 crossings and df (k, 31) = 1 have distance > 1 from 01
using inequality (2.2). In this case Equation (4.1) becomes:

Arel =
A21

A31

Next, we compute Arel and D(k) for all of the 457 studied proteins. In
more detail, we first compute the projection map for each protein using
the optimal value of 5000 projections that was determined in the previous
section. From each projection map we then compute the corresponding Arel

and D(k). The Spearman correlation between these two measurements is
-0.8138, indicating a strong decreasing monotonous relation between them,
which can be seen in Figure 4.4. We also observe a partition of the set of
all proteins with a 31 into two separate clusters, one in upper left corner of
the scatterplot and one in the lower-right. The upper cluster includes the
deep 31-proteins while the lower one is the cluster of shallow 31-proteins.
From the histograms of the two different groups we can say that, a value
Arel ≤ 0.2 is likely to correspond to a protein having a deeply knotted trefoil
(see Figure 4.5). It would be interesting to further explore Arel for other
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proteins knots and determine the appropriate cutoff values that suggest deep
knots of specific types.

Figure 4.5. The two histograms for the deeply knotted pro-
tein group and the shallowly knotted group.

There are seven proteins that are shallow and have Arel < 0.2, namely
the proteins with PDB codes 1eku, 1z97, 2obv, 3iml, 4h6v, 4twl and 5yud.
From a biological point of view, there is no relation between them (no com-
mon function, organism of residence, length or PFAM identifier) that would
suggest any particular behaviour and so it is probable that they are just
numerical outliers of our method. On the other hand, there are 10 configu-
rations that are deep but have Arel > 0.2. These are the PDB entries with
codes: 2egv, 2egw, 3jyw, 3sig, 3sij, 3v5u, 4k1c, 4kjr, 4kpp and 5jdf. From
these, 2egv and 2egw represent homologous protein and the same holds for
3sig and 3sij. Therefore there are also eight non-homologous deep proteins
with Arel > 0.2. Similarly to the previous case, there is no specific biological
relation between them and they are probably another outlier group of our
method.

Concluding, our computations show how, remarkably, we can infer subtle
information about the global geometry of the protein and about its knot
depth, directly from a refined topological analysis based on the properties
of knotoids and on Theorem 1.1.
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Appendix A. The f-distances tables.

01 21 31 32 41 42 43 44 45 46 47 48

01 0 1 2 1 2 1 2 2 2 3 1 1
21 1 0 1 2 3 1 1 1 1 2 1 1
31 2 1 0 3 4 2 2 1 2 1 2 2
32 1 2 3 0 1 2 2-3 3 1 3-4 2 2
41 2 3 4 1 0 3 3-4 4 2 4-5 3 3
42 1 1 2 2 3 0 1-2 1 2 2 1-2 1
43 2 1 2 2-3 3-4 1-2 0 2 2 1 1-2 1
44 2 1 1 3 4 1 2 0 2 1 1-2 1
45 2 1 2 1 2 2 2 2 0 2-3 1-2 2
46 3 2 1 3-4 4-5 2 1 1 2-3 0 2-3 2
47 1 1 2 2 3 1-2 1-2 1-2 1-2 2-3 0 1-2
48 1 1 2 2 3 1 1 1 2 2 1-2 0

Table 1. The f -distance table for equivalence classes of kno-
toids with minimal crossing number ≤ 4. In a few cases (e.g
for the pair (41, 46)) lower and upper bounds do not coincide.
In these cases we write upper and lower bounds separated by
a dash, indicating the interval of possible values of the f -
distances. Entries in the table are colour coded accordingly
to how lower bounds were computed. Lower bounds for the
entries in blue are computed using the inequality 2.2, while
the ones in red using the inequality 2.1. We are not able to
produce lower bounds for entries in orange.
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31 31 31 31 31

51 2 66 3 635 2 664 3 693 3
52 2 67 3 636 2 665 2-3 694 2
53 2 68 1-2 637 2-4 666 2 695 2
54 2 69 1-2 638 2-3 667 2 696 2
55 3 610 2 639 1-2 668 2 697 2-3
56 2 611 1-2 640 2 669 2 698 2
57 3 612 2 641 2 670 3 699 2-4
58 2 613 2 642 3 671 4 6100 2-3
59 2 614 3 643 3 672 2 6101 3
510 3 615 1 644 2 673 2 6102 3
511 1 616 1 645 1-2 674 3-4 6103 3
512 2 617 2 646 3-4 675 3 6104 3
513 4 618 2 647 2 676 3 6105 2
514 3 619 2-3 648 2-3 677 2 6106 1
515 4 620 3-4 649 3 678 3 6107 2
516 2 621 2 650 2-3 679 3-4 6108 2-3
517 2 622 2-3 651 2 680 2-4 6109 2-3
518 2 623 2-3 652 3 681 2 6110 3
519 2 624 2-3 653 1 682 2-3 6111 2
520 1 625 3 654 4 683 1-3 6112 1-2
521 3 626 2 655 2 684 2 6113 3
522 2 627 2-3 656 2 685 2-3 6114 2
523 3 628 2 657 4 686 2-4 6115 1-2
524 1-2 629 2 658 2 687 2 6116 2
61 4 630 1-2 659 1 688 1 6117 3
62 2 631 3 660 3 689 2 6118 1-3
63 2 632 3 661 3 690 2 6119 2-3
64 3 633 3 662 1-2 691 2-3 6120 2-3
65 2 634 2-3 663 2-3 692 2-3 6121 2-4

Table 2. The f -distances between equivalence classes of
knotoids with minimal crossing number ≤ 6 and the 31 kno-
toid. In a few cases (e.g for the 699 knotoid) lower and upper
bounds do not coincide. In these cases we write upper and
lower bounds separated by a dash, indicating the interval
of possible values of the f -distances. Entries in the table
are colour coded accordingly to how lower bounds were com-
puted. Lower bounds for the entries in blue are computed
using the inequality 2.2, while the ones in red using the in-
equality 2.1. We are not able to produce lower bounds for
entries in orange.

Appendix B. Experimental values
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01 21 2m
1 2ms

1 2s
1 31 3m

1 32 3m
2 3ms

2 3s
2 41 42 4m

2

01 0 1 1 1 1 2 2 1 1 1 1 2 1 1
21 1 0 2 2 2 1 3 2 2 2 2 3 1 2
2m
1 1 2 0 2 2 3 1 2 2 2 2 3 2 1

2ms
1 1 2 2 0 2 1 3 2 2 2 2 3 2 2

2s
1 1 2 2 2 0 3 1 2 2 2 2 3 2 2

31 2 1 3 1 3 0 4 3 3 3 3 4 2 3
3m
1 2 3 1 3 1 4 0 3 3 3 3 4 3 2

32 1 2 2 2 2 3 3 0 2 2 1 1 2 2
3m
2 1 2 2 2 2 3 3 2 0 1 2 1 2 2

3ms
2 1 2 2 2 2 3 3 2 1 0 2 1 2 2

3s
2 1 2 2 2 2 3 3 1 2 2 0 1 2 2

41 2 3 3 3 3 4 4 1 1 1 1 0 3 3
42 1 1 2 2 2 2 3 2 2 2 2 3 0 2
4m
2 1 2 1 2 2 3 2 2 2 2 2 3 2 0

4ms
2 1 2 2 1 2 2 3 2 2 2 2 3 2 2

4s
2 1 2 2 2 1 3 2 2 2 2 2 3 2 2

43 2 1 3 3 3 2 4 3 3 3 3 4 2 3
4m
3 2 3 1 3 3 4 2 3 3 3 3 4 3 2

4ms
3 2 3 3 1 3 2 4 3 3 3 3 4 3 3

4s
3 2 3 3 3 1 4 2 3 3 3 3 4 3 3

44 2 2 3 1 3 1 4 3 3 3 3 4 3 3
4m
4 2 3 2 3 1 4 1 3 3 3 3 4 3 3

4ms
4 2 1 3 2 3 1 4 3 3 3 3 4 2 3

4s
4 2 3 1 3 2 4 1 3 3 3 3 4 3 2

45 2 3 1 3 3 4 2 1 3 3 2 2 3 2
4m
5 2 1 3 3 3 2 4 3 1 2 3 2 2 3

4ms
5 2 3 3 3 1 4 2 3 2 1 3 2 3 3

4s
5 2 3 3 1 3 2 4 2 3 3 1 2 3 3

46 3 2 4 2 4 1 5 4 4 4 4 5 3 4
4m
6 3 4 2 4 2 5 1 4 4 4 4 5 4 3

4ms
6 3 2 4 2 4 1 5 4 4 4 4 5 3 4

4s
6 3 4 2 4 2 5 1 4 4 4 4 5 4 3

47 1 2 1 2 2 3 2 2 2 2 2 3 2 2
4m
7 1 1 2 2 2 2 3 2 2 2 2 3 2 2

4ms
7 1 2 2 2 1 3 2 2 2 2 2 3 2 2

4s
7 1 2 2 1 2 2 3 2 2 2 2 3 2 2

48 1 1 2 2 2 2 3 2 2 2 2 3 2 2
4m
8 1 2 1 2 2 3 2 2 2 2 2 3 2 2

4ms
8 1 2 2 1 2 2 3 2 2 2 2 3 2 2

4s
8 1 2 2 2 1 3 2 2 2 2 2 3 2 2

Table 3. Table of experimental f -distances of all knotoids
with up to 4 crossings (part 1).
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4ms
2 4s

2 43 4m
3 4ms

3 4s
3 44 4m

4 4ms
4 4s

4 45 4m
5 4ms

5 4s
5

01 1 1 2 2 2 2 2 2 2 2 2 2 2 2
21 2 2 1 3 3 3 2 3 1 3 3 1 3 3
2m
1 2 2 3 1 3 3 3 2 3 1 1 3 3 3

2ms
1 1 2 3 3 1 3 1 3 2 3 3 3 3 1

2s
1 2 1 3 3 3 1 3 1 3 2 3 3 1 3

31 2 3 2 4 2 4 1 4 1 4 4 2 4 2
3m
1 3 2 4 2 4 2 4 1 4 1 2 4 2 4

32 2 2 3 3 3 3 3 3 3 3 1 3 3 2
3m
2 2 2 3 3 3 3 3 3 3 3 3 1 2 3

3ms
2 2 2 3 3 3 3 3 3 3 3 3 2 1 3

3s
2 2 2 3 3 3 3 3 3 3 3 2 3 3 1

41 3 3 4 4 4 4 4 4 4 4 2 2 2 2
42 2 2 2 3 3 3 3 3 2 3 3 2 3 3
4m
2 2 2 3 2 3 3 3 3 3 2 2 3 3 3

4ms
2 0 2 3 3 2 3 2 3 3 3 3 3 3 2

4s
2 2 0 3 3 3 2 3 2 3 3 3 3 2 3

43 3 3 0 4 4 4 3 4 2 4 4 2 4 4
4m
3 3 3 4 0 4 4 4 3 4 2 2 4 4 4

4ms
3 2 3 4 4 0 4 2 4 3 4 4 4 4 2

4s
3 3 2 4 4 4 0 4 2 4 3 4 4 2 4

44 2 3 3 4 2 4 0 4 2 4 4 3 4 2
4m
4 3 2 4 3 4 2 4 0 4 2 3 4 2 4

4ms
4 3 3 2 4 3 4 2 4 0 4 4 2 4 3

4s
4 3 3 4 2 4 3 4 2 4 0 2 4 3 4

45 3 3 4 2 4 4 4 3 4 2 0 4 4 3
4m
5 3 3 2 4 4 4 3 4 2 4 4 0 3 4

4ms
5 3 2 4 4 4 2 4 2 4 3 4 3 0 4

4s
5 2 3 4 4 2 4 2 4 3 4 3 4 4 0

46 3 4 3 5 3 5 2 5 2 5 5 3 5 3
4m
6 4 3 5 3 5 3 5 2 5 2 3 5 3 5

4ms
6 3 4 3 5 3 5 2 5 2 5 5 3 5 3

4s
6 4 3 5 3 5 3 5 2 5 2 3 5 3 5

47 2 2 3 2 3 3 3 3 3 2 2 3 3 3
4m
7 2 2 2 3 3 3 3 3 2 3 3 2 3 3

4ms
7 2 2 3 3 3 2 3 2 3 3 3 3 2 3

4s
7 2 2 3 3 2 3 2 3 3 3 3 3 3 2

48 2 2 2 3 3 3 3 3 2 3 3 2 3 3
4m
8 2 2 3 2 3 3 3 3 3 2 2 3 3 3

4ms
8 2 2 3 3 2 3 2 3 3 3 3 3 3 2

4s
8 2 2 3 3 3 2 3 2 3 3 3 3 2 3

Table 4. Table of experimental f -distances of all knotoids
with up to 4 crossings (part 2).



26 A. BARBENSI, D. GOUNDAROULIS

46 4m
6 4ms

6 4s
6 47 4m

7 4ms
7 4s

7 48 4m
8 4ms

8 4s
8

01 3 3 3 3 1 1 1 1 1 1 1 1
21 2 4 2 4 2 1 2 2 1 2 2 2
2m
1 4 2 4 2 1 2 2 2 2 1 2 2

2ms
1 2 4 2 4 2 2 2 1 2 2 1 2

2s
1 4 2 4 2 2 2 1 2 2 2 2 1

31 1 5 1 5 3 2 3 2 2 3 2 3
3m
1 5 1 5 1 2 3 2 3 3 2 3 2

32 4 4 4 4 2 2 2 2 2 2 2 2
3m
2 4 4 4 4 2 2 2 2 2 2 2 2

3ms
2 4 4 4 4 2 2 2 2 2 2 2 2

3s
2 4 4 4 4 2 2 2 2 2 2 2 2

41 5 5 5 5 3 3 3 3 3 3 3 3
42 3 4 3 4 2 2 2 2 2 2 2 2
4m
2 4 3 4 3 2 2 2 2 2 2 2 2

4ms
2 3 4 3 4 2 2 2 2 2 2 2 2

4s
2 4 3 4 3 2 2 2 2 2 2 2 2

43 3 5 3 5 3 2 3 3 2 3 3 3
4m
3 5 3 5 3 2 3 3 3 3 2 3 3

4ms
3 3 5 3 5 3 3 3 2 3 3 2 3

4s
3 5 3 5 3 3 3 2 3 3 3 3 2

44 2 5 2 5 3 3 3 2 3 3 2 3
4m
4 5 2 5 2 3 3 2 3 3 3 3 2

4ms
4 2 5 2 5 3 2 3 3 2 3 3 3

4s
4 5 2 5 2 2 3 3 3 3 2 3 3

45 5 3 5 3 2 3 3 3 3 2 3 3
4m
5 3 5 3 5 3 2 3 3 2 3 3 3

4ms
5 5 3 5 3 3 3 2 3 3 3 3 2

4s
5 3 5 3 5 3 3 3 2 3 3 2 3

46 0 6 2 6 4 3 4 3 3 4 3 4
4m
6 6 0 6 2 3 4 3 4 4 3 4 3

4ms
6 2 6 0 6 4 3 4 3 3 4 3 4

4s
6 6 2 6 0 3 4 3 4 4 3 4 3

47 4 3 4 3 0 2 2 2 2 2 2 2
4m
7 3 4 3 4 2 0 2 2 2 2 2 2

4ms
7 4 3 4 3 2 2 0 2 2 2 2 2

4s
7 3 4 3 4 2 2 2 0 2 2 2 2

48 3 4 3 4 2 2 2 2 0 2 2 2
4m
8 4 3 4 3 2 2 2 2 2 0 2 2

4ms
8 3 4 3 4 2 2 2 2 2 2 0 2

4s
8 4 3 4 3 2 2 2 2 2 2 2 0

Table 5. Table of experimental f -distances of all knotoids
with up to 4 crossings (part 3).
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