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Symmetry breaking of dipole orientations on Caspar-Klug lattices
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Anisotropic dipole-dipole interaction often plays a key role in biological, soft, and complex matter. For it
to induce nontrivial order in the system, there must be additional repulsive interactions or external potentials
involved that partially or completely fix the positions of the dipoles. These positions can often be represented
as an underlying lattice on which dipole interaction induces orientational ordering of the particles. On lattices
in the Euclidean plane, dipoles have been found to assume different ground-state configurations depending on
the lattice type, with a global ordering in the form of a macrovortex being observed in many cases. A similar
macrovortex configuration of dipoles has recently been shown to be the sole ground state for dipoles positioned
on spherical lattices based on solutions of the Thomson problem. At the same time, no symmetric configurations
have been observed, even though the positional order of Thomson lattices exhibits a high degree of symmetry.
Here, we show that a different choice of spherical lattices based on Caspar-Klug construction leads to ground
states of dipoles with various degrees of symmetry, including the icosahedral symmetry of the underlying lattice.
We analyze the stability of the highly symmetric metastable states, their symmetry breaking into subsymmetries
of the icosahedral symmetry group, and present a phase diagram of symmetries with respect to lattice parameters.
The observed relationship between positional order and dipole-induced symmetry breaking hints at ways of

fine-tuning the structure of spherical assemblies and their design.

DOLI: 10.1103/PhysRevResearch.2.043199

I. INTRODUCTION

Anisotropic interactions are a key feature in many self-
assembling systems in biological, soft, and complex matter,
and the capability to precisely control the orientation and
spatial arrangement at the particle level can translate into the
macroscopic properties of the assemblies [1-3]. At close dis-
tances, interactions between particles are usually dominated
by hard-core repulsion, frequently modeled by the Lennard-
Jones potential or simple steric exclusion [4,5]. The assembly
is often further directed by anisotropic weak interactions such
as hydrogen bonding, van der Waals interactions, -7 stack-
ing, dipole-dipole interactions, and metal coordination [6,7].
If the particles are electrostatically charged, these interactions
have to be taken into account as well, as they can play a
significant role both during the assembly and for the stability
of the resulting structure [8—11]. Anisotropy of an interaction
is often described by virtue of multipole expansion, modeling
the interaction as a superposition of monopoles, dipoles,
quadrupoles, and less frequently also higher multipole
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contributions [12—16]. The simplest example of an anisotropic
interaction which goes beyond the monopole moment is the
unscreened interaction between point dipoles, which plays an
important role in many particle assemblies [3,11,17-21] and
is known to affect their thermal fluctuations and stability, as
was demonstrated on the example of crystalline membranes
[22].

If the dipole interaction is to induce nontrivial order in the
system, it must involve either an external field, a boundary, or
additional repulsive interactions that partially or completely
fix the positions of the particles. Consequently, in the assem-
bled state, the positional order of interacting particles can
often be considered to be fixed, with the dipole interaction
determining the orientational order of the particles on the
underlying lattice. The importance of the lattice is visible
when dipoles are arranged in the Euclidean plane, as the
type of their orientational order—which includes an antifer-
romagnetic state, a periodic tiling of closed vortex lines, and
a macrovortex state—strongly depends on whether their po-
sitions are arranged on, for instance, honeycomb, kagome,
square, or thombic lattice [17,23-32]. Much less is known
about the orientational order of dipoles in three-dimensional
assemblies [3,33,34] and assemblies confined to the surface
of a sphere [35]. The latter case is particularly interesting,
as many particle assemblies in complex matter are spherical
in shape (including liquid droplets, hard and soft colloidal
particles, micelles, vesicles, some cells, and viral capsids)
[36—41], and interactions between their building blocks often
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result in structures with high symmetry of the positional order
[42-45].

On a sphere, translational periodicity is ill defined, and a
suitable spherical equivalent of lattices must be considered,
leading to novel phenomena specific to the sphere. Arrange-
ments of dipoles on spherical triangular lattices resulting as
solutions to the Thomson problem [46] are thus far the only
spherical system where their configurations have been system-
atically studied [35]. There, it has recently been shown that if
no additional restrictions are imposed, dipoles positioned on
spherical triangular lattices arrange themselves into a polar
vortex state, even when the underlying lattice has a high sym-
metry. As we show in this paper, a completely different and
novel behavior is observed in dipole configurations arranged
on Caspar-Klug (CK) spherical lattices [47]. These lattices are
ubiquitous in spherical structures with icosahedral symmetry,
such as viruses and viruslike particles [47-49], where the
positional order of their building blocks differs from trian-
gular close packing due to the different interactions involved
in their assembly. These building blocks impose additional
symmetries on the final assembled structure; if they carry
in-plane electrostatic polarization, they will orient themselves
differently compared with unrestricted dipole systems, and so
the symmetry has to be explicitly taken into account.

We utilize the CK lattice construction to obtain the po-
sitional order of (electrostatic) point dipoles and calculate
the orientational ground states of dipole-dipole interaction.
We show that the symmetry of the ground state depends on the
positions of the dipoles within the fundamental domain of the
lattice and ranges anywhere from full icosahedral symmetry
to completely asymmetric structures. Imposing a symmetry
higher than that of the ground state naturally enforces a state
with a higher electrostatic energy, which, however, in most
cases remains metastable when the symmetry restriction is
lifted. We calculate symmetry phase diagrams with respect
to the underlying lattices and perform stability analysis for
select lattices. With this, we show that by choosing a correct
lattice, dipole pair interactions can be utilized to induce a
desired rotational symmetry of the final structure, suggesting
a mechanism for fine-tuning the self-assembly of spherical
structures.

II. THEORETICAL BACKGROUND

Having N dipoles p; positioned on the sphere at positions
r;, we can state our problem in terms of minimization of the
electrostatic potential energy, defined as the sum of dipole-
dipole interaction energies over all pairs of dipoles:

3AiAi' A'Ai' _AiA'
V:ZVU:Z (Prj)(Pjrj) ppj; (1)

i 1?

i>j i>j

r;j =r; —r; are distances between dipoles, and unit vectors
are denoted by a circumflex. We restrict the dipoles to lie
tangentially to the sphere, as this has previously been shown to
be the preferred solution for dipoles on a sphere in the absence
of an external field [35]. We parametrize the dipoles relative
to the local coordinate frame in the form p; = € cos¢; +
&’ sin ¢;, allowing the problem to be restated in the matrix

FIG. 1. Construction of a CK lattice, where (n, m) determines
the triangulation number on the icosahedron, 7 = n? + nm + m?,
with total number of dipoles given by N = 607 . In this particular
example, n =2, m =1, and thus T =7 and N = 420. Placement
of dipole positions (marked in blue) within the fundamental domain
of the lattice (marked by the shaded deltoid in the unit triangle) is
determined by the coordinates (u, v). Reflecting the deltoid across its
diagonal produces a mirror image of the same states, so we restrict
our analysis to lattice positions in the lower right triangle.

form (see Luttinger and Tisza [33]),
x = {cos ¢y, sin ¢y, cos ¢y, .. .}. 2)

Here, M is a constant matrix that depends only on lattice
geometry and the choice of local coordinate frames at each
lattice point.

Dipole positions are fixed to a chosen CK lattice, which
maps a triangular Euclidean tiling onto an icosahedron (see
Fig. 1 for an example), with position vectors normalized
to project them to the unit sphere. The positions are deter-
mined both by the CK parameters (n, m), which determine
the number of dipoles on the lattice, and by the coordinates
of the dipoles within the fundamental domain, parametrized
by (u, v), which correspond to unit vectors pointing from one
vertex of the unit triangle to the other two. The number of
lattice positions on a CK lattice, N = 60T, is given by its
triangulation number 7' = n® 4+ nm + m? [47]. Unless stated
differently, we limit our analysis to (n,m)=(1,0), T =1
lattices with N = 60 dipoles on the sphere.

To analyze the stability and transitions between states
with different orientational symmetries, we first apply desired
symmetry restrictions by equating angles that correspond to
equivalent lattice points. Form in Eq. (2) is symmetry reduced
by adding together the corresponding rows and columns of
matrix M, resulting in a smaller matrix [33]. This is fol-
lowed by minimization, performed by recursive application of
gradient descent X — x — y Mx followed by renormalization
of dipole vectors. Results are verified by comparison with
the quasi-Newton method from Wolfram MATHEMATICA [50].
Minimization is performed several hundred times to obtain
both the ground state as well as the higher-energy states with
high certainty.

V =xMx,
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FIG. 2. Symmetry-restricted lowest-energy states for truncated icosahedron and small rhombicosidodecahedron (lattices A and B, re-
spectively). On lattice A, the ground state has tetrahedral symmetry (7). Ground states with lower symmetries are also present, and all of
them—including the general higher-energy local minima without symmetries—exhibit closed loops of dipoles arranged head to tail. Found
local minima with higher energies are shown in gray, and they indicate that the icosahedral state remains metastable as long as dihedral
symmetry (D) persists. The inset shows the possible symmetry breakings in which the previously-lowest-energy state becomes unstable and
is no longer a minimum but a saddle point. The arrows show the available ways in which these transitions can proceed from higher- to
lower-symmetry states. The ground state on lattice B has full icosahedral symmetry (/) and consists of five-dipole loops around the symmetry
axes. Dipoles are shown in the hemispherical azimuthal equidistant projection, and the symmetry axes are denoted by blue (fivefold), green

(threefold), and red (twofold) markers.

II1I. RESULTS AND DISCUSSION
A. CK lattices of Archimedean polyhedra

A single dipole in the fundamental domain of a
T =1 CK lattice produces a tiling with 60 dipoles, 5 around
each of the 12 icosahedron vertices. The location of the dipole
within the fundamental domain can be arbitrary—meaning
that we can consider any combination of the dipole coor-
dinates (u, v) that falls into the fundamental domain—but
three choices, which we will denote as lattices A, B, and C,
are special as they lead to polyhedra with equal distances
between the dipoles (Archimedean polyhedra). Lattice A with
(u,v) = (1/3,0) corresponds to a truncated icosahedron (a
football), a spherical analog of the hexagonal tiling. Lattice
Bu=v=03- \/§)/ 6, corresponds to a small rhombicosi-
dodecahedron, a spherical analog of the rhombitrihexagonal
tiling, and lattice C, (u,v) = (2/7,1/7), corresponds to a
snub dodecahedron, analogous to snub hexagonal tiling (also
observed in viral capsids [51]). Lattice C has a mirror image
with (4, v) = (1/7,2/7).

The structure and behavior of the assemblies do not de-
pend only on the ground state. Metastable states are often
important, for example, if they are kinetically more acces-
sible or if additional interactions or external stimuli trigger
symmetry-breaking transitions between local energy minima.
Figure 2 shows the energy spectrum of dipoles on lattice A
together with some of the corresponding dipole orientations,
shown on a single hemisphere unless the distinction between
the hemispheres is relevant to the discussion. The icosahe-
dral (/) ground state at V/ = —1917.13 has a straightforward

structure: It consists of closed loops of five tail-chasing
dipoles around each icosahedron vertex. The lowest-energy
state Vi = —1946.67 possesses tetrahedral (7) symmetry
in which pairs of adjacent dipole loops merge into larger
peanut-shaped loops. Two other symmetries have a unique
lowest-energy state: In the dihedral symmetry of degree 3
(D3), a state at V{;g = —1927.02 is based on a six-dipole
central loop and antiparallel neighboring dipole orientations,
and in the uniaxial fivefold rotational symmetry (Cs), the state
with V& = —1930.61 takes the form of antiparallel concentric
loops with additional kinks on the opposite hemisphere. Im-
portantly, none of these structures resemble the macrovortex
state ubiquitously observed in dipoles arranged on Thomson
lattices [35], which is a direct consequence of the underlying
CK positional order. A generic ground state without symmetry
(0) consists of loops of dipoles meandering across the surface,
as shown in one example in Fig. 2, and for each symmetry re-
striction, other local minima with higher electrostatic energies
are found.

The lowest-energy structure with icosahedral symmetry
remains metastable as long as the twofold axis orthogonal to
the main symmetry axis is present also in the state with the
lower symmetry, such as in the tetrahedral and dihedral cases;
otherwise it cascades into a lower-energy state. In fact, most
symmetry-restricted solutions remain local minima when
symmetry is broken, except in a few select symmetry break-
ings: aforementioned transitions from / to a group without
a dihedral symmetry axis, and from Cs if the fivefold sym-
metry axis is removed. Symmetry breakings that destabilize
the local minimum are shown in the inset of Fig. 2. The most
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FIG. 3. Symmetry-restricted lowest-energy states for snub dodecahedron (lattice C). The ground state has a Cs symmetry. Dihedral
symmetry D, forces a reversal of dipole circulation across the equator, while uniaxial rotational symmetry C, allows macrovortex states
with much lower energies (best seen from the side view of Cs and C; structures). The inset shows that the lowest-energy states of 7', Ds, and D3
structures are unstable with respect to certain symmetry breakings, while in the rest of the cases the lowest-energy states remain local energy
minima. The available transitions from higher- to lower-symmetry states are marked by the arrows in the downward direction. Visualization

follows the style from Fig. 2.

negative eigenvalue of the energy Hessian reveals the fastest
decay mode when symmetry restrictions are lifted. The / state
decays via the same mode for any of the symmetries that make
it unstable (inset of Fig. 2), while the decay rate of Cs when
all restrictions are removed is different—more unstable.

On lattice B, the icosahedrally symmetric state—consisting
again of five-dipole loops around icosahedron vertices—is a
global energy minimum, so any symmetry breaking has no
effect (see Fig. 2). Lattice C tells a different story (Fig. 3): The
ground state in this case has a Cs symmetry and a macrovortex
structure spanning across the entire hemisphere, similar to
the ground states of dipoles on Thomson lattices [35]. This
is expected, as a large part of the snub lattice consists of
adjacent triangles, similar to those on closely packed spherical
lattices. The structure with C;3 symmetry is similar but has
more distorted dipole loops, and the C; structure is also close
to a macrovortex. Dihedral structures Ds, D3, and D, have
similar circumpolar structures, but the dihedral axes enforce
antiparallel cycles on opposite hemispheres, leading to signif-
icantly higher energies. The only structures that decay upon
symmetry breaking are the Ds, T', and D3 structures, as shown
in the inset of Fig. 3.

B. Symmetries and vector spherical harmonics

Differences between configurations with different symme-
tries manifest themselves in their vector spherical harmonic
(VSH) expansion. As the dipoles are restricted to lie tangent to
the sphere, we can expand their configurations on any lattice
over the orthonormal set of tangent basis vectors consisting

of gradient (electric-type) v%m =L+ 1)_1 rVY,,, and curl
(magnetic-type) vy,, = +/£(£ + 1)_1 7 x VY, VSH (for de-
tails, see Refs. [52] and [53]). This further allows us to write
the vector analog of the spherical structure factor in the form

P
SEC = — _— .

This definition follows the definition of the spherical structure
factor for the standard (scalar) multipole expansion and is
trivially related to multipole magnitudes [54,55]. In this way,
it provides an insight into the nature of dipole structures and
their symmetries.

Symmetries of different dipole configurations result in
the restriction of the allowed spherical wave number £: For

2

3
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FIG. 4. Curl and gradient VSH spectra, S¢ and S?, for dipoles on
lattice C and with I, T, Ds, and Cs symmetries, shown with respect
to the spherical wave vector ¢ (orbital angular momentum number).
The top histograms (red) show the contributions of curl VSH, and the
bottom histograms (blue) show the contribution of gradient (grad)
VSH. Depending on the symmetry of the structure, certain £ are
forbidden, and the corresponding coefficients are zero. The right side
of the figure shows dipole configurations in three dimensions, where
dipoles equivalent under symmetry operations have the same color.
The vertical axis in these plots is one of the symmetry axes of the
system (threefold for the tetrahedral structure and fivefold for the
rest). The ground state with Cs symmetry is a macrovortex state,
which is reflected in a large nonzero curl component Sy at £ = 1.

icosahedral symmetry, only the values of £ = 6i + 10j(415)
are permitted [14]; for tetrahedral symmetry, £ = 4i + 6j(+3)
(only excluding £ = 1, 2, and 5); D5 symmetry forbids £ = 1
and £ = 3, and D, 3 forbid £ = 1. Figure 4 shows the spectra
of the vector spherical structure factor for dipoles on lattice C
with four different symmetries (also shown in Fig. 3). We can
see that they indeed observe the £ selection rules pertaining
to each individual symmetry. Large components of the curl
harmonics S; describe vortices (closed dipole loops) of dif-
ferent sizes. Specifically, the £ = 1 curl harmonic describes
a macrovortex around a single axis, such as those seen in
the solutions of C; and Cs symmetries (the latter also being
the ground state on lattice C) and on Thomson lattices [35].
Gradient terms Sf describe alignment that resembles poten-

tial flow and are less prominent here, because closed dipole
loops are favored. In physical systems, gradient terms will
be larger when localized negative and positive charges induce
an additional potential field. This analysis also shows that an
approach using VSH is suitable for the analysis of empirical
and simulation data.

C. General CK lattices with T = 1

Despite lattices A, B, and C being Archimedean polyhedra
and thus all having constant nearest-neighbor distances, their
ground-state symmetries and transitions between them are
very different. The next question is how different lattices are
related and how ground states and transitions look for general
(u, v) coordinates. We performed a ground-state calculation
for 3104 different dipole positions (u, v) in the fundamental
domain and summarize the results in the symmetry phase
diagram in Fig. 5. We observe a very complex phase diagram
that is based on the competition of different phenomena. In the
left corner of the fundamental domain, the dominant interac-
tion is between five dipoles around the icosahedron vertices.
These ground states consist of dipole loops which resemble
those seen in / structures, but their senses of rotation may
alternate in different ways, giving rise not only to structures
with I symmetry (black markers in Fig. 5) but also to C;
and Cs symmetries and even to D3 symmetry in a very small
portion of the phase diagram. In the top right corner of the
fundamental domain, the proximity of three dipoles dominates
the interactions. This stabilizes the T symmetry and, to a
lesser extent, lower threefold symmetries. The lower right part
of the phase diagram puts dipoles into close pairs centered
around the edges of the icosahedra. These pairs tend to align
and act as a single dipole, which, due to the polar nature of
the dipoles, breaks all the twofold symmetry axes a structure
could have, so the main symmetries observed are C3 and Cs.
The middle of the phase diagram corresponds to states with
balanced interactions between the closest neighbors, similar to
lattice C, which is representative of this region. These lattices
are locally triangular and feature macrovortexlike states.

Between these regimes, we observe a complex interplay of
symmetries caused by competition between interactions that
favor different structures. A large region of the phase diagram
has no symmetries at all, and a snapshot corresponding to its
right edge shows why: The resulting structure is similar to
the Cs structure with aligned dipoles, but some of the pairs
are reversed, and the pairs of dipoles are just far enough
apart to allow “buckling” instead of acting as a single dipole.
Other disordered structures are observed at the transition from
tetrahedral to fivefold parts of the phase diagram. The energy
landscapes of the observed configurations have many local
minima, and even after many repetitions the lowest one is not
always found. In the parts of the phase diagram where ener-
gies of states with different symmetries are close together, this
leads to isolated points with incorrectly determined ground-
state symmetry.

The electrostatic energy of these systems is dominated by
the closest neighbors due to the divergent nature of the dipole-
dipole interaction. In Fig. 6, we show both the total energy of
the ground state with respect to the lattice parameters (i, v) as
well as the energy difference between the highest-symmetry
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FIG. 5. Phase diagram of ground-state symmetries for a7 = 1 CK lattice with respect to the position (u, v) of the dipole in the fundamental
domain. Top views of select structures are shown in the insets. Structures in the left part of the diagram are very similar to the icosahedral one,
with barely noticeable symmetry breaking. The bottom right side of the diagram features parallel coupling of neighboring dipoles. Note the
asymmetric states at the right edge of the phase diagram, where symmetry is broken by buckling and reversal of direction of some of the dipole
pairs. Isolated points of different symmetries, present throughout the diagram, can be attributed to numerical artifacts. Lattices A, B, and C,
corresponding to the Archimedean solids shown in previous figures, are marked with crosses.

(I) state and the ground state. We see that Cs symmetry offers
an incremental improvement over / structures on the angle
bisector extending from the left corner of the fundamental
domain, and the same holds true for the 7 symmetry extend-
ing from the upper corner of the domain related to the C;
symmetry axis. Conversely, the part of the phase diagram cor-
responding to dipole pairing offers significant improvement
over the I structure due to the very strong binding of aligned
dipole pairs. The electrostatic energy is lowest by absolute
value, |V |min = 1425.7, when the dipoles are farthest apart,
which is very close to lattice C. However, this is still higher
than closely packed spherical lattices, such as the Thomson
lattice, whose energy is |V |, = 1378.0 for the same number
of particles N = 60.

D. General CK lattices with T = 3

Results presented thus far were obtained for CK lattices
with T =1, consisting of N = 60 dipoles. In Fig. 7, we
present a symmetry phase diagram equivalent to that in Fig. 5
for a larger lattice with CK parameters n = m = 1. This lattice
has a triangulation number 7' = 3 and thus contains N = 180
dipoles. It features local hexagonal regions in addition to 12
pentagons of the icosahedron vertices. The main observation
on the 7T = 3 lattice is that, in general, states with higher
symmetries are preferred—icosahedral symmetry dominates

almost the entire left portion of the phase diagram, and tetra-
hedral structures are observed in its upper right part. We
observe no completely asymmetric ground states, and the
region of C, symmetry is shrunk to a small patch in the middle
of the diagram, with structures that can be described as longer
strings of head-to-tail-arranged dipoles. It is noteworthy that
the “fundamental domain” of CK lattices with larger triangu-
lation numbers 7 > 1 is no longer the fundamental domain
of the icosahedral symmetry group. Because of the fivefold
lattice defects, the lattice sites are similar, but not equivalent.
Not only do the dipoles have slightly different environments,
but, more importantly, the dipoles around a hexagonal face can
arrange in an alternating fashion while the pentagonal dipoles
do not have that option. The “almost symmetry” between
lattice sites is the most apparent in the left and upper corners
of the diagram, where trimers and pentamers behave almost
as independent entities, as seen in Fig. 7.

We can also expand dipole configurations on 7 =3 CK
lattices in terms of VSH vfm and v;, , where we again observe
that different symmetries give rise to spectra of select wave
vectors £ only. What is more, since 180 dipoles are positioned
onaT = 3 lattice, the spectra do not always peak at the lowest
allowed ¢ (as was the case for a T =1 lattice containing
60 dipoles, shown in Fig. 4)—one can, for instance, observe
spectra of icosahedrally symmetric lattices with peaks either
at £ = 6, similar to a T = 1 lattice, or at £ = 10. In this way,
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FIG. 6. Electrostatic interaction energy in the ground state V
(lower right triangle) and difference between energies in the icosa-
hedral and ground states AV (upper left triangle). The largest
differences between states occur in the corner corresponding to the
dipole pairing (¢, v) = (1/2, 0), while the other two corners are com-
patible with / symmetry, and the Cs and T regions only extend out as
minor improvements in energy. In the energy plot, the position and
coordinates of the absolute electrostatic energy maximum (minimum
by absolute value, |V| = 1425.7) are marked; it is located very close
to the lattice C coordinates (2/7, 1/7). For comparison, 60 dipoles
placed on a lattice derived from the Thomson problem have the
energy |V| = 1378.0 [35].

VSH expansion can be used to distinguish between different
types of dipole order which otherwise possess the same sym-
metry. For general 7', the dominant ¢ scales inversely with
the distance between nearest neighbors and is proportional
to +/T. For the same reason, for (u, v) closer to the edge of
the fundamental domain, higher spatial frequencies (higher ¢£)
will be present compared with the Archimedean lattices A,
B, and C. A high curl coefficient at £ = 1, equivalent to the
angular velocity parameter introduced in Ref. [35], is expected
to signify the macrovortex state at any triangulation number.
The macrovortex state—the main type of ordering in the
Euclidean space and on Thomson lattices on the sphere—
is in general not energetically preferred on CK lattices, as
they have a honeycomblike structure instead of a closely
packed triangular one. The fundamental difference between
CK lattices (honeycomblike) and closely packed lattices (tri-
angularlike) is the sixfold and fivefold lattice vacancies that
accommodate microvortex states—local dipole loops with no
net dipole moment. With growing lattice size, ever larger parts
of the lattice resemble the Euclidean honeycomb lattice, and
thus the effects of fivefold lattice defects and long-range in-
teractions through the bulk of the sphere become less and less
pronounced. This in turn leads to degeneracy, as loops with
zero lowest-order multipole moments interact very weakly
across large distances over the sphere. With further increase
in triangulation numbers, we expect the limiting regimes to
persist: three-dipole microvortices (supporting / or T sym-
metries) in the top right part of the phase diagram, fivefold
microvortices in the left part of the phase diagram, dipole
pairings with C3 5 symmetries, and most likely, macrovortex-

like states in the middle of the fundamental domain, where
triangular patches can be found on the lattice.

IV. CONCLUSIONS

In contrast to the Euclidean case where lattices possess
only translational symmetries, spherical lattices reflect the
rich structure of the point symmetry groups in three dimen-
sions. Nonetheless, this does not necessarily reflect in the
orientational order of dipoles positioned on spherical lattices,
as triangular lattices—based on solutions of the Thomson
problem—Ilead to a single ground state in the form of a
macrovortex, regardless of the underlying positional symme-
try. Here, we have shown that when dipoles are positioned on
spherical CK lattices instead, dipole-dipole interactions pro-
duce very diverse results. We have demonstrated that dipole
pair interactions can conspire to stabilize any point symmetry,
starting with the highest icosahedral symmetry of the CK
positional order; however, dihedral symmetry is less favored
than others. Fixed-position dipole order alone can therefore
be used to control the orientational symmetry of the resulting
structures. Furthermore, if the interaction can be varied, for
example, with screening, symmetry-changing transitions are
possible. Symmetry phase diagrams also show how control-
ling the positions of the dipoles within the fundamental unit of
the lattice can regulate the resulting symmetry of the structure
and its stability. A drawback of this mechanism is the mul-
titude of metastable states, which decreases the likelihood of
finding the true ground state, although in potential experimen-
tal realizations, favored kinetic pathways could improve their
reproducibility. If the structure is flexible, the symmetry can
also reflect in deformations of the entire assembly, allowing
shape control.

Our work also aims to stimulate the design and study
of novel spherical assemblies where dipole moment would
play a major role, and we show how the stability and struc-
tural transitions between such assemblies can be regulated
using the dipole interaction. Spherical assemblies of dipoles
could be designed experimentally by, for instance, Picker-
ing emulsions of magnetic nanoparticles [56,57] or even dye
molecules around a nanosphere [58,59]. Adsorption of gases
on charged fullerenes also involves ordering of anisotropi-
cally charged molecules on a regular spherical lattice [60].
The general properties observed in our simplified model are
expected to hold even for more complicated and modified
cases—for positional lattices with different symmetries, such
as octahedral or tetrahedral, and for dipole positions displaced
radially from a perfect sphere, which is expected to be the
case in biological systems where the structures themselves
are polyhedral. Here, vector spherical harmonics present a
natural way of analyzing such configurations and determining
their symmetries. In a manner similar to that presented in this
paper, it is also worth exploring other pair interactions such
as the quadrupole-quadrupole interaction, which pertains to
physical building blocks with head-tail symmetry and thus
without polar order. Finally, the question of the ground-state
symmetry of ideal multipoles is also interesting from a purely
mathematical perspective, just like the Thomson problem,
which still inspires new discoveries even a century after its
conception.
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FIG. 7. Phase diagram of ground-state symmetries for a (1,1), 7 = 3 CK lattice with N = 180 dipoles on the sphere. The rough division
of the phase diagram is similar to the (1,0) lattice (Fig. 5), but with a much larger region of stability of icosahedral structures and without
any asymmetric ground states. Note that the lowest symmetry, C;, is also restricted to only a very small portion of the phase diagram. More
numerical artifacts are present compared with Fig. 5 due to a larger number of local minima, which make the identification of the true ground
state difficult.
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