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Proteins that regulate transcription often also play an

architectural role in the genome. Thus, it has been difficult to

define with precision the distinctions between transcription

factors and nucleoid-associated proteins (NAPs).

Anachronistic descriptions of NAPs as ’histone-like’ implied an

organizational function in a bacterial chromatin-like complex.

Definitions based on protein abundance, regulatory

mechanisms, target gene number, or the features of their DNA-

binding sites are insufficient as marks of distinction, and trying

to distinguish transcription factors and NAPs based on their

ranking within regulatory hierarchies or positions in gene-

control networks is also unsatisfactory. The terms ’transcription

factor’ and ’NAP’ are ad hoc operational definitions with each

protein lying along a spectrum of structural and functional

features extending from highly specific actors with few gene

targets to those with a pervasive influence on the

transcriptome. The Streptomyces BldC protein is used to

illustrate these issues.
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Introduction
The analysis of transcription control networks in model

bacteria shows that genes are organized for collective

responses within regulatory groupings such as operons,

regulons and stimulons [1–3,4�]. Regulons and operons

are characterized by their dependence on a common

regulator, usually a protein, which imposes collective

control in response to signals such as quorum-sensing

molecules, second messengers such as cAMP or
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c-di-GMP, metals, carbohydrates, or changes in a physical

parameter such as temperature.

An important concept in the analysis of regulatory networks

is the range of the regulator: how many genes does it control?

Conventional transcription factors can govern the expression

of very few or very many genes. For example, the LacI

repressor in Escherichia coli controls the lacZYA operon

negatively in the absence of its allolactose inducer, while

the cAMP receptor protein (CRP) controls the same operon

positively but also regulates the transcription of hundreds of

other genes in response to the second messenger cAMP

[5,6]. LacI targets the lac operator sequence and cAMP-CRP

targets its own binding site within the same promoter. Thus,

target genes can join or leave a regulon simply by gaining

or losing sequences that resemble a transcription factor-

binding site [7�,8,9].

Nucleoid-associated proteins (NAPs) are DNA-binding

proteins that play a role analogous to that of histones in

the chromatin of eukaryotes [10]. NAPs can bend, bridge,

wrap and polymerize along DNA [10], allowing them to

play an architectural role in the genome, but they can also

influence transcription. The promiscuous nature of their

binding activity throughout the genome allows NAPs to

exert a pervasive effect on gene expression. Interestingly,

several of the DNA-dependent activities associated with

NAPs are shared with transcription factors, raising

questions about the sharpness of the distinction between

these two groups of DNA-binding proteins [11�].
Sequence specificity is not a reliable distinguishing

feature. For example, Integration Host Factor (IHF) is

a NAP that requires a relatively strict match to its

consensus sequence for DNA binding [12]. In this

respect, IHF seems to be equivalent to the transcription

factors LacI and CRP. Conversely, LysR-type transcrip-

tion regulators (LTTRs) rely heavily on DNA shape

rather than on nucleotide sequence in recognising their

DNA targets, something they share with NAPs such as

H-NS and HU [13]. IHF bends DNA impressively, in

some instances imposing bend angles of up to 180�, but

transcription factors also bend their DNA targets, even if

they do not introduce complete U-turns into the DNA

duplex, for example, the E. coli purine repressor, PurR

[14]. H-NS has a DNA-binding mode that involves the

formation of DNA-protein-DNA bridges, but so too do

the transcription factors LacI, LeuO and lambda CI

[15,16]. Many transcription factors bind signalling ligands

as part of their sensing-and-response activities, but the

activity of Leucine-responsive Regulatory Protein (LRP),
www.sciencedirect.com
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BldC contains a MerR-like DNA-binding domain.

Superimposition of the BldC DNA-binding domain (green) [29��] onto

that of the MerR-family transcription factor MtaN from B. subtilis (red)

[30]. The domains can be overlaid with an rmsd = 1.7 Å for

45 corresponding Ca atoms. Note the lack of the dimerization coiled

coil in BldC, which is a monomer in solution.
often regarded as a NAP, is controlled by its binding to

L-leucine and other branched-chain amino acids [17,18].

Finally, although FIS (the Factor for Inversion Stimula-

tion) is viewed as a NAP, it can function as a conventional

transcription factor by recruiting RNA polymerase via

protein-protein contacts to initiate transcription [19].

These examples show the challenge in identifying clear

distinctions between NAPs and transcription factors.

This distinction becomes even more blurred because NAPs

are sometimes equivalent to functional domains within

transcription factors: NtrC is a prominent example. NtrC

is the response regulator partner of the cytosolic NtrB sensor

kinase and it activates transcription at s54-dependent pro-

moters in response to nitrogenstress [20]. These interactions

require NtrC to bind to a well-defined enhancer sequence

upstream of the target promoter. The DNA-binding domain

of NtrC is closely related to the NAP FIS, leading to the

proposal, supported by phylogenetic evidence, that FIS

evolved from an NtrC-like transcription factor [21]. The

fis gene probably arrived in E. coli at the same time as dusB
(formerly yhdG), with which it now forms a dusB-fis operon.

The DusB protein is related to NifR3 in Rhodobacter,
Rhizobium and the nifR3 gene is co-transcribed in those

bacteria with ntrB and ntrC. It has been proposed that

dusB/yhdG and fis evolved following horizontal gene transfer

of the nifR3 ntrB ntrC nitrogen metabolism operon followed

by deletion of all but the fis sequences from ntrC [21].

Here we consider the case of BldC, a recently characterized

DNA-binding protein from the Gram-positive bacterium

Streptomyces. Streptomycetes are filamentous bacteria that

differentiate by producing spore-bearing reproductive

structures called aerial hyphae [22,23]. The transition from

vegetative to reproductive growth is controlled by the bld
(bald) loci, which were identified in classical mutagenic

screens. Mutations in bld genes prevent the formation of

aerial hyphae, either by blocking entry into development

(typically mutations in activators) or by inducing precocious

sporulation in the vegetative mycelium (typically mutations

in repressors) [24–26]. One of the classic bld genes, bldC,
encodes a 68-residue DNA-binding protein related to the

DNA-binding domain of MerR-family transcription factors.

Recent transcriptional, biochemical and structural analyses

have revealed the effect of BldC on global gene expression,

how it binds DNA, its wider relationship to previously

characterized transcription factors and NAPs, and the

diverse modes of DNA binding found among BldC-related

proteins. These observations raise further interesting

questions about the distinction  between NAPs and tran-

scription factors, and the evolution of one from the other.

Diverse functions and modes of DNA binding
in the MerR superfamily
Phenotypically, BldC acts to delay entry into develop-

ment to produce a sustained period of vegetative growth,
www.sciencedirect.com 
and so bldC mutants initiate development prematurely

[27��]. BldC binds to hundreds of promoter regions and

has a global influence on the transcription profile of the

cell, exerting positive effects on the activity of some of its

target promoters and negative effects on others [27��].
Bioinformatic analysis suggested [28] and structural stud-

ies demonstrated [29��] that BldC is related to the DNA-

binding domain of MerR family transcription factors like

MtaN (Figure 1) [30], consistent with the transcription

factor-like behaviour of BldC. However, classical MerR

transcription factors bind to palindromic DNA sequences

as homodimers, whereas BldC is a monomer that lacks the

effector domain and dimerization helix of typical MerR

family proteins, raising interesting questions as to how

BldC might bind DNA. Biochemical and structural

analyses answered these questions, showing that BldC

binds DNA in a completely different way to classical

MerR transcription factors, instead involving asymmetric,

cooperative, head-to-tail oligomerization of BldC on

DNA direct repeats, inducing pronounced DNA distor-

tion (Figure 2a) [29��]. The number of direct repeats

present in BldC target promoters is variable, allowing the

cooperative, head-to-tail binding of additional BldC

monomers [29��]. In this way, BldC binding to DNA

results in the formation of a continuous nucleoprotein

filament of variable length (Figure 2c). The BldC-DNA

structures identified two major elements that define the

specificity of BldC binding, a 4-bp AT-rich sequence

followed by a C or G four to five nucleotides downstream.

The consensus direct repeat is 50-AATT(N3-4)(C/G)-30,
but even this degenerate consensus is not critical for

BldC binding. Rather, the AT-rich portion of this direct
Current Opinion in Microbiology 2020, 55:26–33
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Figure 2
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BldC and Xis bind to DNA by cooperative, head-to-tail oligomerization on direct repeats, producing a continuous nucleoprotein filament of variable

length, accompanied by pronounced DNA distortion.

(a) Head-to-tail oligomerization of 4 BldC monomers on the smeA promoter. Each BldC monomer in the nucleoprotein filament forms identical

interactions with the next [29��]. (b) Head-to-tail oligomerization of Xis on the 3 direct repeats present in its binding site. Xis monomers bound to

the X1, X1.5, and X2 sites are coloured dark salmon, green, and blue, respectively [33]. (c) Structure-based model of an extended BldC–DNA

filament. Crystallization of BldC bound to a double-stranded oligonucleotide carrying 2 of the 4 direct repeats found in the BldC-binding site from

the smeA promoter generated a pseudo-continuous helix in the structure [29��]. Two views are shown. Left is an electrostatic representation

showing electropositive and electronegative regions of BldC in blue and red, respectively. Note the continuous protein superstructure also forms a

continuous electropositive stripe that tracks along the DNA. Right is a view looking down the axis of the structure. (d) Structure-based model of

an extended Xis–DNA filament [33] Copyright (2007) National Academy of Sciences, U.S.A. Units of the Xis–DNA crystal structure were stacked

end-to-end to assemble a pseudo-continuous helix with a pitch of �22 nm. Xis is shown blue and the DNA in orange and red.

Current Opinion in Microbiology 2020, 55:26–33 www.sciencedirect.com
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Figure 3
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Results of structural homology searches with the BldC structure.

(a) Overlay of the BldC DNA-binding domain (red) with the DNA-binding domain from the sporulation-specific B. subtilis RacA protein (green)

(rmsd = 2.0 Å for 50 similar Ca atoms) [29��]. (b) Superimposition of the BldC DNA-binding domain (red) with that of the Mycobacteriophage

pukovnik Xis protein [60] (rmsd = 1.6 Å for 41 similar Ca atoms). (c) Overlay of DNA-bound BldC (red) [29��] and DNA-bound lambda Xis (yellow)

[33], showing that BldC and Xis bind DNA in the same head-to-tail manner.
repeat sequence is crucial for binding as BldC recognizes

AT-induced narrowing of the minor groove in lieu of

direct readout of these base pairs [29��]. Further,

BldC binding sites that contain multiple direct repeats

can tolerate individual repeats that diverge from the

consensus provided they are flanked by consensus repeats

[29��]. Such plasticity makes it impossible to predict

BldC-binding sites bioinformatically.

Once the structure of BldC was solved, structural homology

searches revealed that, beyond classical MerR transcription

factors, BldC has high structural similarity to proteins

regarded as NAPs or DNA architectural proteins. These

proteins include RacA (Figures 3a and 4 b), which serves to

anchor the chromosome to the cell pole in Bacillus subtilis
[31]. RacA is similar to canonical MerR proteins in having a

C-terminal dimerization coiled coil; however, its coiled coil

is attached to the N-terminal DNA-binding domain by a

long, flexible linker [32]. RacA is not a transcription factor,

but like canonical MerR proteins, it too binds palindromic

DNA sites as a symmetric dimer [32]. With respect to its

mode of DNA binding, the closest relative of BldC is Xis

from bacteriophage lambda (Figures 2b, d, 3b and c). Xis is

a DNA architectural protein that mediates the formation of

a nucleoprotein complex required for the phage-encoded

Int recombinase/integrase to catalyse the site-specific

recombination event that permits excision of phage lambda

from its integration site on the E. coli chromosome. BldC

(68 residues) consists exclusively of a DNA-binding domain

while lambda Xis (72 residues) consists of a winged helix

DNA-binding domain and a C-terminal module that

recruits the lambda integrase protein. Like BldC, Xis binds
www.sciencedirect.com 
to direct repeats in a head-tail fashion to generate a nucleo-

protein filament with pronounced DNA distortion

(Figures 2b, d and 3c) [33]. In the case of Xis, there are

3 direct repeats in its only binding site on the E. coli
chromosome (Figure 2b). Thus, in the way that it binds

DNA, BldC is more similar to the architectural protein Xis

than to classical MerR transcription factors. Nevertheless,

BldC has many of the characteristics of a transcription

factor, binding almost exclusively to intergenic regions,

positively influencing roughly half of its target promoters

and negatively influencing the other half [27��].

Structural analyses have revealed yet further modes of DNA

binding in the MerR superfamily (Figure 4). The master

regulators of nitrogen metabolism in B. subtilis, TnrA and

GlnR, both have a DNA-binding domain similar to classical

MerR proteins, but they lack the dimerization coiled coil and

behave as monomers in solution. However, TnrA and GlnR

both bind palindromic DNA sequences (Figure 4c and e),

dimerizingonlyuponDNAbindingthroughresidues intheir

N-terminal regions [34]. In summary, different members of

the MerR superfamily exhibit a diverse range of oligomeric

states, modes of DNA binding, and functions (transcription

factors, NAPs, architectural proteins) (Figure 4).

When is a transcription factor a NAP?
The difficulty in answering this question satisfactorily

suggests that it may address a false dichotomy. Historically,

investigators who were studying processes other than

transcription discovered the NAPs [35]. For example, FIS

was characterized initially as an architectural protein

that promotes DNA inversions through site-specific
Current Opinion in Microbiology 2020, 55:26–33
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Figure 4
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Comparison of the DNA-bound structures and modes of DNA binding among MerR-related proteins.

(a) BldC-DNA [29��]. (b) RacA-DNA [32]. (c) TnrA-DNA [34]. (d) MtaN-DNA [30]. The green subunits are shown in the same orientation to highlight

the very different dimers and DNA-binding modes for each protein. Note that in the case of the RacA-DNA structure, the RacA dimerization

domain has been omitted so the DNA-binding domain can be seen clearly. (e) Summary of the oligomeric states and modes of DNA binding of

different MerR-family proteins.
recombination  [36,37]. IHF was discovered by investigators

of the lifecycleofbacteriophage lambdabecausethisprotein

is essential for the integration into and excision from the

E. coli chromosome through site-specific recombination  at

theatt l site [38].Bothproteinsalsoplay important structural

roles in the initiation of chromosome replication [39,40].

These structural observations predisposed the field to con-

sider NAPs from an architectural perspective first, with

discoveries of their involvement in transcription control

following later. The history of our understanding of the

CRP transcription factor follows this path in reverse: its

contribution to the control of transcription initiation

preceded the observation that its mechanism of action
Current Opinion in Microbiology 2020, 55:26–33 
involves DNA remodelling [41]. The same is true of many

other transcription factors that are now known to remodel

DNA structure through bending (CRP), kinking (BmrR),

wrapping (VirB) or bridging (LacI) [41–44].

In this context, it is interesting that BldC is related struc-

turally to Xis [38]. Despite being named ’excisionase’, Xis is

not an enzyme and it is not a transcription factor: it is a

structural element in a site-specific recombination reaction

[45] and its function can be partially replaced by the FIS

NAP [38]. Does this define Xis as a NAP? Considering its

involvement in one recombination system, probably not,

but it illustrates the difficulty in assigning a protein with a
www.sciencedirect.com
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NAP-like function (DNA architectural element) to one

functional class. Its similarity to BldC is probably a more

reliable guide to its biological significance: that of a jobbing

DNA-binding domain.

There is an interesting analogy between the relationship of

BldC to MerR and the relationship of FIS to NtrC. As noted,

FIS is a 98-residue nucleoid-associated protein that is closely

related to the DNA-binding domain of the much larger NtrC

protein [21,46,47]. Like BldC, FIS prefers binding to

A + T-rich DNA and its interaction with DNA is affected

by the width ofthe minorgroove [48]. FIScan function in the

cell as an architectural protein in the nucleoid, but it can also

function as a transcription factor [49,50]. Like BldC, FIS

exerts a global influence on the transcription profile of the

cell and can have positive or negative effects on the activity

of its target promoters [51]. FIS does not bind a ligand and it

is not known to be controlled by post-translational modifica-

tion. Instead, its influence appears simply to reflect FIS

protein concentration, which is high in early log phase but

low at other growth stages. In the future, it will be interesting

to determine if the activity of BldC is controlled post-

translationally, or whether BldC function is more akin to

that of nucleoid-associated proteins like FIS.

The evolution of one from the other
FIS, HU, IHF, H-NS and other NAPs are important

contributors to the life cycles of mobile genetic elements

in addition to bacteriophage [35]. These include transpo-

sons, conjugative plasmids, horizontally acquired genetic

islands and cellular defence systems that limit their spread,

such as CRISPR-Cas [52��,53]. Like the boundary between

transcription factors and NAPs, the distinctions  between

many of these genetic elements are also blurred: for

example, bacteriophage Mu replicates via transposition

[54], bacteriophage P1 replicates as an autonomous plasmid

[55], transposons of the Tn7 class harbour CRISPR systems

[56]. All these mobile elements possess site-specific recom-

bination systems that depend on NAPs to function. The

involvement of NAP-like proteins in the management of

gene flow in bacterial populations points to a role for

them in guiding the processes that underlie genome

evolution. This point is reinforced by the observation that

mobile genetic elements often encode their own NAP-like

proteins that facilitate the establishment of the newcomers

in a novel host background [52��,57]. MerR, the

transcriptional regulator that resembles BldC, is encoded

by self-transmissible plasmids and by transposons that

specify resistance to mercury [58]. As noted, BldC also

resembles the chromosome anchoring protein, RacA

(Figures 3a and 4b).

Taken together, the proteins that structurally resemble

BldC and their functional analogs comprise a collection of

DNA-binding molecules involved in important aspects of

genome management. Some are very specific, such as the

Xis directionality determinant that guides lambda
www.sciencedirect.com 
excision but has no known influence on gene expression

and is not known to bind a signalling ligand. In contrast,

MerR can restructure DNA through altering its twist in

response to binding a heavy metal and thus toggle a

promoter between its inactive and active conformations.

Xis has some NAP-like features: it is expressed to high

levels at prophage induction (although its DNA

interactions are restricted to lambda) and it is recruited

to its functional binding site by FIS [59]. One of the

motivations for considering BldC as a potential NAP is

its promiscuity as a regulator of transcription in

Streptomyces. NAPs like FIS, H-NS and IHF control very

large regulons while conventional transcription factors are

regarded as being more circumspect in their regulatory

relationships with the genome. However, the classic

transcription factor CRP has been found to control a large

regulon yet exhibits a NAP-like degree of promiscuity in

its genome-wide DNA-binding pattern [5].

In summary, attempting to place DNA-binding proteins

that have the potential to influence transcription into

strictly circumscribed categories is likely to be futile. A

capacity for flexible reassignment of DNA-binding proteins

across regulatory and structural roles has potential selective

advantages, perhaps especially in genomes evolving rapidly

thanks to mobile DNA elements and horizontal gene

transfer. Better to have on hand a set of highly adjustable

tools than a toolkit composed of single-purpose items of

limited functional flexibility!

Conflict of interest
The authors declare that they have no conflicts of interest.

Acknowledgements
We thank Reid C Johnson for insightful comments on the manuscript, and
Susan Schlimpert for help with the figures. CJD is supported by Principal
Investigator award 13/IA/1875 from Science Foundation Ireland and EU
Cooperation in Science and Technology action CA17139. The BldC work in
the Buttner lab was funded by BBSRC grant BB/H006125/1 and by BBSRC
Institute Strategic Programme Grant BB/J004561/1 to the John Innes
Centre.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

� of special interest
�� of outstanding interest
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