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The relationship between polymer topology and bulk rheology remains a key question in soft
matter physics. Architecture-specific constraints (or threadings) are thought to control the dynamics
of ring polymers in ring-linear blends, which thus affects the viscosity to range between that of the
pure rings and a value larger, but still comparable to, that of the pure linear melt. Here we
consider qualitatively different systems of linear and ring polymers, fused together in “chimeric”
architectures. The simplest example of this family is a “tadpole”-shaped polymer – a single ring
fused to the end of a single linear chain. We show that polymers with this architecture display a
threading-induced dynamical transition that substantially slows chain relaxation. Our findings shed
light on how threadings control dynamics and may inform design principles for chimeric polymers
with topologically-tunable bulk rheological properties.

Introduction – The tube and reptation theories un-
derpin our understanding of complex fluids [1, 2]. How-
ever, the seemingly innocuous joining of the polymers’
ends to form rings poses a problem that has been puzzling
the polymer physics community for over three decades [3–
22]. How do topology-specific constraints affect the static
and dynamic properties of a dense solution of such poly-
mers?

Entangled solutions of pure unlinked ring polymers can
now be synthesised [11, 23]. However, the presence of
even a small fraction of linear contaminants dramatically
slows their dynamics through ring-linear interpenetra-
tion [11, 24–27]. This slowing down shares some similar-
ities with the one computationally discovered in systems
of pure rings [28–31], where inter-ring threadings drive a
“topological glass” state due to a hierarchical network of
threadings – ring-specific topological constraints [32–36].
In ring-linear blends the linear chains cannot set up a hi-
erarchical network of constraints and the rings are thus
bound to relax on time-scales comparable to the repta-
tive disengagement of the linear chains [4, 37–39] which
perform most of the threadings: this limits severely any
opportunities for further tuning of bulk rheology by using
pure mixtures of ring and linear chains.

To overcome this limitation, and inspired by quickly
progressing technical advances in topological polymer
synthesis [40–42], here we investigate the behaviour of
polymer architectures that simultaneously display linear
and unknotted and unlinked circular topologies. We dub
these architectures “chimeric” – the name given to any
mythical animal formed from parts of various other ani-
mals (Fig. 1A). The simplest example of a chimeric archi-
tecture is that of a tadpole-shaped polymer – “tadpole”
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FIG. 1: A Chimeric polymers from ring and linear chains fused
together. B Tadpole-shaped polymers are the simplest such chimeric
structure, shown as a schematic with orange “head” and grey “tail”.
C Typical simulated conformation of a tadpole and D an equilibrated
system of 80 tadpoles. Here the circular and linear sections both have
250 monomers, written (C,L) = (250, 250).

for brevity (see Fig. 1B-C) – which has recently been
realised experimentally [43, 44] and has attracted con-
siderable attention in the field of protein folding [45, 46].

While a broader class of polymers (dubbed “topolog-
ical”) has been studied in dilute conditions [47, 48], in
this Letter we focus on entangled, semi-dilute concen-
trations and report the first Molecular Dynamics sim-
ulation (Fig. 1D) of tadpole-shaped polymers in this
regime. Our main finding is that we observe a dynam-
ical transition in which systems of tadpoles with long
enough tails and heads display a markedly slower dy-
namics than a corresponding system of linear chains with
equal mass. This extremely slow dynamics is expected to
arise only at asymptotically large lengths in systems of
pure rings [33, 36], while it cannot be achieved in stan-
dard blends of ring and linear chains [11, 26, 37, 38]
where only a ∼ 2-fold increase in viscosity has been re-
ported [4, 39]; while in blends there is no strategy to
slow down the linear fraction beyond their natural repta-
tive dynamics, in tadpoles this is achieved by a system-
spanning (percolating) set of topological constraints.
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Tadpole Microrheology – We model tadpole-shaped
polymers as bead-spring chains made of a “tail” (linear)
and a “head” (circular) components. The monomers are
connected by finitely extensible (FENE) bonds and we
impose a persistence length lp = 5σ, with σ the size of
a monomer, via a Kratky-Porod potential (see SI). The
junction between head and tail is freely flexible and we
consider athermal solvents in which the beads interact via
a purely repulsive Lennard-Jones (WCA) potential [49].
The systems are made of M chains with N beads each
at the overall monomer density ρ = NM/V = 0.1σ−3

(about 10 times the overlap concentration). With these
choices, the corresponding entanglement length for a sys-
tem of linear chains is Ne = 40 beads [15, 50]; our longest
tadpoles have tails 10Ne long, thus putting them well into
the entangled regime. The simulations are performed
in implicit solvent at fixed volume and temperature by
weakly coupling the dynamics of the monomers with a
heat bath via LAMMPS [51]. The Langevin equations
are evolved using a velocity-Verlet algorithm with inte-
gration step ∆t = 0.012τLJ , where τLJ = σ(m/ε)1/2 is
the Lennard-Jones time (see SI).

To characterise the dynamics of the tadpoles
we measure the averaged mean-square displacement
(MSD) of their centre of mass (CM) as g3(t) =〈
(~ri(t0 + t)− ~ri(t0))2

〉
, where ~ri(t) is the position of the

CM of the i-th tadpole at time t and 〈 · · · 〉 indicates
time and ensemble average (see Fig. 2A). The trajecto-
ries display a subdiffusive regime at short-intermediate
times which appears to scale as g3(t) ∼ t0.4 for our
largest tadpoles (we compute the dynamical exponent
α(t) = d log g3/d log t in SI). We note that this scaling ex-
ponent is distinct from, and smaller than, that of pure en-
tangled linear chains (t0.5) and also pure rings (t0.75) [13]
suggesting that tadpole dynamics appears to follow new
physical mechanisms that are distinct from those of poly-
mers with simpler topologies.

To quantify how the dynamics varies with tadpole de-
sign we compute the large-time diffusion coefficient of
the centre of mass as D = limt→∞ g3(t)/6t (i.e. we con-
strain the dynamical exponent α = 1 and choose a time
range for which this is accurate, see SI) and plot it as a
function of tail length in Fig. 2B. From this one should
notice that the different designs display qualitatively dif-
ferent behaviours: for small head C = 100 the slowing
down with tail length (L) is well fitted by a power law
D ∼ L−2.53(1) similar to that of pure reptating linear
chains [13, 49] – this suggests that the interactions be-
tween tails dominates the dynamics in this case; on the
other hand, the two sets of simulations with C = 250
and C = 400 display a qualitatively different scaling be-
haviour whereby D ∼ L−a with a > 3 and increases with
L, yielding a dynamics slower than reptation. Interest-
ingly, comparing the square sum of residuals reveals that
these two datasets are better fitted by an exponential,
rather than a power law, decay. This change, or transi-
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FIG. 2: A Mean-square displacement of the centre of mass, g3(t), of
the tadpoles. B Log-linear plot of long-time diffusion coefficient D
against tail length L. The data set with C = 100 is well fitted by a
power law ∼ L−a with a = 2.53(1) while tadpoles with larger heads
display a qualitatively different slowing down with a = a(L)
increasing with tail size and compatible with an exponential (shown
as a dashed line as a guide for the eye). C Interpolated heat-map of
D in the 2D parameter space (C,L). D Plot of D against total
contour length and compared with the dynamics of pure linear and
ring polymers. The solid, dashed and dashed-dotted lines are guides
for the eye. The dashed line indicates the known scaling for
asymptotic ring and linear chains [13]. Note that
D(L = 400, C = 400) is an upper bound value as the system has not
reached free diffusion within our longest simulation runtime.

tion, in behaviour can also be qualitatively visualised in
a heat-map of D as a function of tadpole design (C,L):
D decays smoothly for C < 250 and more abruptly for
C > 250 (Fig. 2C).

Importantly, as shown in Fig. 2D, while the dynam-
ics displayed by the system of tadpoles with C = 100
interpolates in between the pure-ring and pure-linear dy-
namics, the two sets with C ≥ 250 are markedly slower
and they follow a qualitatively different trend also as a
function of total length N = C + L. Thus, our find-
ings strongly suggest that via targeted design of tadpole
structure – and in principle other chimeric architectures
– it is possible to achieve a fine control over the bulk
rheology and over a range that is orders of magnitude
broader than the one that can be achieved using sim-
pler architectures within the same window of polymer
length. It should also be highlighted that while adding
linear contaminants to solutions of rings only generates
systems that interpolate between the pure-ring and pure-
linear behaviours [11, 26], with chimeric polymers, due
their fused architecture, we can produce emergent collec-
tive behaviours which have no counterpart in ring-linear
blends. We now show that these observed collective phe-
nomena are due to inter-tadpole “threadings”, i.e. pierc-
ing of a tadpole’s tail through the head of another.

Threading Statistics – Motivated by previous
work [28, 43, 52], we hypothesise that threadings may
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FIG. 3: A Snapshot of two threading tadpoles with their minimal surfaces highlighted in red and green. (Inset) Sketch of the snapshot. B

Distribution of return times Θ(t) as defined in Eq. (1) and representative fit ∼ t−β with β = 1.74± 0.02 for C = 250, L = 400. (Inset) Mapping
to an anomalous Brownian walk in 1D along the tail. C Two time-point correlator χ(t). Dashed lines are representative stretched exponential fits
yielding exponents γ = 0.359(5) for C = 250,L = 400, γ = 0.416(5) for C = 250,L = 250 and γ = 0.459(4) for C = 250,L = 100. (inset) Graphical
sketch of the two-point correlation, stressing that χ(t) is insensitive to threading history. D Threading lengths are uniformly distributed. The

horizontal lines mark inverse tail length, i.e. 1/L, for the three sets. The distributions Pt are normalised so that
∑L
l=1 Pt(l) = 1.

give rise to an emergent slowing down in our entan-
gled tadpoles. To identify threadings we use the concept
of minimal surfaces [21, 31, 53]: we first fix a bound-
ary using the position of the beads forming the heads
and generate an initial triangulated surface; we then
evolve this surface via the Surface Evolver under the ac-
tion of surface tension until the area is minimised [54].
Once a minimal surface is defined per each tadpole head,
we look for intersections between all possible pairs of
tail and head surface (see Fig. 3A). [We choose to ex-
clude self-intersections as they may be ill-defined in some
cases]. This strategy allows us to define a time-dependent
threading matrix as follows: Tij(t) = 1 if tadpole j is
threading tadpole i (i 6= j) and 0 otherwise.

Threadings are stochastic events that last for a certain
time and we quantify the distribution of these threading
lifetimes via the following quantity

Θ(t) = 〈P (Tij(t) = 0|Tij(0) = 1, . . . , Tij(t−1) = 1)〉 (1)

where P (X|Y1, . . . , Yn) is the probability of observing X
conditioned on Y1, . . . , Yn being observed and 〈〉 indi-
cates the ensemble and time average. In practice, Eq. (1)
counts the threadings with life-time exactly t and the re-
sulting curves are reported in Fig. 3B. To discuss these
curves, we should note that Eq. (1) calculation can be
mapped to that of a first return time (or first passage
time) of a Brownian Walk in 1D. In this framework,
the walker represents the intersection of the tail through
the head-spanning minimal surface; the walker moves
along the tail as the threading diffuses in and out the
minimal surface (see inset of Fig. 3B). The distribution
of return times of a Brownian Walk is expected to be
a power law and to scale as ∼ tα/2−2 where α is the
anomalous exponent of the walk [55, 56]. In our case
the tails are expected to follow a Rouse dynamics – con-
firmed by direct tracking of the piercing segment, which
yields α = [0.4, 0.6] (see SI) – and we thus predict the
distribution of return times to scale with an exponent
α/2−2 = [1.7, 1.8] in very good agreement with our best

fits of Θ(t) for L ≥ 250 (see Fig. 3B). [The curves with
L = 100 display a scaling exponent closer to −1.5 as their
Rouse regime is shorter than our sampling time].

Importantly, we note that the slowest return time dis-
played by Θ(t) is still ∼10-fold faster than the longest
relaxation of the tadpoles (106τLJ versus 107τLJ , com-
pare the curves Θ with the crossover time to diffusion
of g3). This suggests that it is collective multi-threading
events that control the long-time dynamics of tadpoles.

In light of this we study the two time-points correlator
χ(t) = 〈Tij(t)Tij(t+ t0))〉− pT , where pT = 〈φ〉/(M − 1)
is the background probability that any two tadpoles are
threading at any given time and 〈〉 is the average over
times t0 and pairs of tadpoles (i, j). We note that
the longest relaxation time of χ(t), i.e. the time at
which χ ' 0, broadly agrees with the crossover time
to free diffusion of the tadpoles (compare Fig. 4C with
Fig. 2A). This quantity is akin to a stress relaxation in
polymeric systems and informs us on the relaxation dy-
namics of inter-tadpole threadings. By assuming that
threadings are monodisperse in length we would expect
χ(t) ∼ e−t/T (l) where T (l) is the typical relaxation time
of a threading of length l. Instead we find that χ(t) de-
creases as a stretched exponential χ(t) ∼ exp (−Atγ) as
expected for a polydisperse solution of entangled linear
polymers [57]. In the case of polymer lengths that follow
a Poisson distribution, the exponent γ can be computed
via a saddle point approximation to be γ = 1/(1 + β)
(where β = 2 or 3 for Rouse and reptation respec-
tively) [57, 58]. In our case, we find that the distribution
of threading lengths, i.e. the portion of tail from the
piercing point to the end of the tail, is instead uniform,
i.e. P (l) ∼ 1/L (see Fig. 3D). Thus, to compute their

relaxation we must calculate χ(t) = (1/L)
∫ L

0
e−t/T (l)dl,

where T (l) = τ0l
δ now depends on the threading length

l through a generic exponent δ. This function can be
computed numerically as a function of τ0 and δ for dif-
ferent choices of C and L. As expected, we find that τ0
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FIG. 4: A The threading relaxation exponent δ increases with tail

length as a power law δ ∼ L0.40(1) for small heads and exponentially

δ ∼ eL/L1 with L1 = 367(13) for large heads. B Average number of
threading tails per tadpole 〈φ〉 as a function of tail length. C
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prefactor proprtional to L3) suggesting that a serial release of 〈φ〉
threadings is needed before all constraints are released. D Comparison
of g3(t) in presence and absence of threading constraints (see text).

is overall independent of either C or L (see SI); on the
other hand, we find that δ – which is also expected to be
insensitive of L within the classic reptation dynamics –
increases as a power law of L for small heads and expo-
nentially in L for large heads (Fig. 4A). This implies that
T (l) diverges even more strongly than an exponential in
the asymptotic limit of large tadpoles. We should note
that the distinct behaviour of T (l) for small and large
heads mirrors the qualitatively distinct regimes observed
in the decay of D (Fig. 2B). This strongly suggests that
threadings play a key role in the dynamics.

The results shown up to now suggest that tadpoles
with large heads have a qualitatively different dynam-
ics with respect to the ones with smaller head; in par-
ticular, they display a much stronger slowing down and
slower threading relaxation. To explain this finding we
note that the head-spanning minimal surfaces scale lin-
early [31] with head length C (see also SI) and, hence,
tadpoles with larger heads are expected to accommodate
more threadings. In particular, we expect that the num-
ber of threadings per head should scale linearly with C
(and hence with N) in the asymptotic limit. From the
time-dependent threading matrix Tij(t) we can extract
the mean number of (passive) threadings per tadpole
as 〈φ〉 ≡ 〈

∑
j 6=i Tij(t)〉, where the average is performed

over time and tadpoles. This quantity is reported in
Fig. 4B and indeed it shows that for small heads the
number of threadings is saturated at modest tail lengths;
on the other hand, larger heads can accommodate up to 5
threadings, on average, and often each threading is made

by more than one piercing (see SI). Importantly, they ap-
pear to saturate at much larger values of tail length and
arguably will scale extensively with L in the limit of large
heads C. A natural consequence of the fact that 〈φ〉 > 1
is that these systems are percolating, i.e. the largest
number of tadpoles connected by threadings is compara-
ble with the system size. In particular we find that the
critical threading length required to set up a percolating
cluster of tadpoles is lc/L = 1/〈φ〉 (see details in SI).

To correlate the mean number of threadings with a dy-
namical quantity we extract a characteristic time from χ
as Tχ =

∫∞
0
χ(t) dt and find that Tχ ∼ 〈φ〉 (Fig. 4C) sug-

gesting that the full relaxation of threading constraints
depends on the number of threadings. This can be ex-
plained by noting that the full relaxation appears to need
〈φ〉 serial release events before (all) the threading con-
straints are released. We also note that the diffusion co-
efficient strongly depends on the mean threading number
(see SI). An exact quantification of the variation of tad-
pole mobility with number of threadings alone is difficult
since D is also a function of total contour length.

To unambiguously detect the role played by threadings
in the dynamics of tadpoles we thus propose a new strat-
egy: we investigate a symmetric (i.e. C = 250, L = 250)
system of tadpoles with phantom (no steric) interactions
between heads and tails, while maintaining standard self-
avoidance between pairs of monomers belonging to two
heads or two tails. This entails that threadings of heads
by tails are no longer topological constraints for the dy-
namics of the tadpoles. In order to fairly compare with
our other results we compress this system 2−fold (in vol-
ume) in order to maintain the effective (self-avoiding)
monomer density at ρ = 0.1σ3. We find that the absence
of effective threading results in a much faster transition
to free diffusion and a 14-fold enhancement of diffusion
coefficient (Fig. 4D). This finding provides independent
and unambiguous evidence that it is indeed the thread-
ings between chains that are responsible for their cor-
related (subdiffusive) dynamics over short-intermediate
times and resulting retarded centre-of-mass diffusion. We
note that in dilute conditions, the dynamics of tadpoles
does not depend on their design; this further confirms
that the observed behaviour is due to collective interac-
tions (see SI Fig. S11).

Finally, we mention that our results are in fair quanti-
tative agreement with experiments [43] (see SI) and that
the zero-shear viscosity obtained from both, experimen-
tal and simulated tadpoles, are best fitted by a power law
with exponent close to η0 ∼ L4.5. Nonetheless, the data
also suggest that both experiments and simulations are
performed in a crossover regime and our analysis strongly
supports the argument that in the asymptotic regime the
tadpoles’ mobility should slow down exponentially in tail
length (Fig. 2B and 4).

Conclusions – In this work we have investigated
the dynamics of entangled systems of tadpole-shaped
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polymers, as the simplest example of a broader family
of “chimeric” polymers formed by the combination of
unknotted and unlinked loops and branches (Fig. 1A).
While similar architectures had been investigated in the
dilute regime [47, 48], here we design entangled systems
with the aim of understanding how to achieve a fine con-
trol over threading topological constraints and, in turn,
over the rheology of the bulk.

Here we have discovered that it is possible to design
polymer architectures that can span a much larger dy-
namical range than that achievable with simpler archi-
tectures at fixed polymer mass. For instance, using
tadpole-shaped polymers, we can explore a dynamical
range that is about two orders of magnitude broader than
the one for linear chains with modest lengths N/Ne = 25
(Fig. 2D). Importantly, this phenomenon cannot be re-
produced using ring-linear blends as their slowing down
due to threading was observed to be of order unity com-
pared with that of linear chains only [4, 11, 26, 38] and
expected to scale only linearly with rings mass [39].

We argue that this marked difference is due to a lack of
a strategy to slow down linear chains more than reptation
in ring-linear blends. On the contrary, the fused archi-
tecture of tadpoles (and of higher order exotic polymers)
together with the emergence of a hierarchical, percolat-
ing set of threading topological constraints, entails that
the process of constraint release imposed by linear tails
on circular heads propagates back to tails too, causing
a dramatic and system-wide slowing down. We feel it
would be very interesting to directly compare the dy-
namics of tadpoles and that of ring-linear blends with
same values of C and L in simulations and experiments.

By using minimal surfaces (Fig. 3) and semi-phantom
interactions (Fig. 4D) we unambiguously demonstrated
that inter-tadpole threadings play a major role in the
dynamics and that this effect is not due to single thread-
ings (Fig. 3B) but to correlated (Fig. 3C) and collective
(Fig. 4C) ones. Interestingly, the more the threadings per
tadpole, the slower is their full relaxation (Fig. 4C), thus
entailing further non-linear slowing down in the large N
limit (Fig. 4B).

We have also showed that the relaxation of thread-
ings can be mapped to that of a polydisperse system of
polymers, with the caveat that here the distribution of
threading lengths is uniform (Fig. 3D) and that the ex-
ponent of the longest relaxation time increases with L
(Fig. 4A). This finding is in stark contrast with simpler
architectures, e.g. linear, for which the relaxation ex-
ponent is insensitive on polymer length, e.g. δ = 3 for
reptation of polymers with any L.

We argue that the phenomenology observed here might
be generically expected across the broader family of
chimeric polymers and that further fine tuning can likely
be achieved by varying the number of looped structures,
as well as their relative lengths. Ultimately, we envis-
age using these exotic architectures to tune the dynamics

of specific polymers that are expensive to synthesise in
large scales. Our results suggest that even a modest poly-
mer mass can display a broad dynamical range and this
property can be harnessed to keep the costs low while
achieving the desired rheology through informed poly-
mer design. Our work might therefore serve to motivate
future theoretical and experimental characterisations of
entangled solutions of higher-order chimeric structures
which may be now feasibly realised via synthetic chem-
istry [23, 40, 44] or DNA origami.
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