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Orientational ordering of point dipoles on a sphere
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Arrangement of interacting particles on a sphere is historically a well known problem, however,
ordering of particles with anisotropic interaction, such as the dipole-dipole interaction, has remained
unexplored. We solve the orientational ordering of point dipoles on a sphere with fixed positional
order with numerical minimization of interaction energy and analyze stable configurations depending
on their symmetry and degree of ordering. We find that a macrovortex is a generic ground state,
with various discrete rotational symmetries for different system sizes, while higher energy metastable
states are similar, but less ordered. We observe orientational phase transitions and hysteresis in
response to changing external field both for the fixed sphere orientation with respect the field, as
well as for a freely-rotating sphere. For the case of a freely rotating sphere, we also observe changes

of the symmetry axis with increasing field strength.

I. INTRODUCTION

Minimal energy distributions of interacting parti-
cles on a sphere is a well known problem both for
its historical significance and contemporary relevance.
Since J. J. Thomson proposed his model of an atom
in 1897 and in turn sought configurations with mini-
mal energy for N same-charged particles on the sur-
face of a sphere [I], the problem has been generalized
to different interparticle interactions, most notably,
different long-range power-law [2] and logarithmic [3]
interactions, Tammes problem of the packing of hard
circles [4], and arrangement of connected charges [5].
Active research on different interaction potentials and
geometric aspects of solutions continues to this day
[6HIO]. Investigation of sphere-bound particles un-
der effect of generalized interactions gives insights into
the symmetry and geometry of the resulting organiza-
tional order, and yields descriptive models of various
types of self-organized matter, such as arrangement of
proteins in capsids [IT], [12], fullerene patterns in car-
bon clusters [13], and distribution of solid particles in
Pickering emulsions [14].

In contrast with the body of research on
isotropic particles, ordering of discrete particles with
orientation-dependent interactions on a sphere has re-
mained relatively unexplored. Anisotropy can be a
consequence of non-circular hard particles [I5], di-
rected motion in dynamical systems [I6HIS], short-
range nearest neighbor couplings, such as approxi-
mate models of spin lattices, or in general, induced
by anisotropic long-range interactions. A natural
anisotropic extension of the Thomson problem, which
has not been considered before, is to extend the mul-
tipolar expansion to the dipolar term, so that in ad-
dition to position, orientation of a polarization vector
can be varied for each particle. When the repulsive
isotropic interactions between the particles are strong
enough, a restricted problem can be considered, fix-
ing the particle positions and solving for polarization
orientations that minimize the electrostatic energy of
the system.

In this paper, we investigate ground state orienta-

tions of point dipoles on a sphere, positionally fixed
to the Thomson lattice. Different 2D lattices of inter-
acting dipoles have been studied already during the
previous century [I9-21] and it was found that long-
range nature of dipole-dipole interactions has deter-
mining effect on orientational ordering and structural
phase transitions. While the topology of a sphere pre-
vents us from fitting any regular lattice to its surface
[22], these solutions can shed light on what to expect
from dipole systems on a sphere and help with inter-
pretations of the results. The paper is organized as
follows. We start by defining the Hamiltonian, de-
scribe simulation methods used to find the ground
states of dipole systems on a sphere, and introduce
order parameters for quantitative analysis of order.
We present the results of numerical simulations and
show that the ground states have a macrovortex struc-
ture for all numbers of dipoles. We further study the
effects of external field on dipole configurations and
the resulting orientational phase transitions, both for
fixed field direction and for the case of a freely rotat-
ing sphere.

II. SIMULATION METHODS

We consider a system of N dipoles {p;} fixed at
points in space {7;} and in the presence of an exter-
nal field H. Like in the standard Thomson problem,
interactions between all particle pairs are taken into
account. The Hamiltonian of our system is
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where the first term represents dipole-dipole contribu-
tion to energy in units of 1/4mey and the second term
describes interaction of dipoles with the external field.
We denoted 7;; = r; — r; and hat over vector repre-
sents unit vector in the same direction. The positional
order is determined by the solution of the Thomson
problem as one of the representative uniform point



distributions on a sphere. Orientations of dipoles are
parametrized by two angles, azimuthal angle ¢; and
polar angle 6;, in their respective local coordinate
frames. We solve the problem of energy minimization
numerically. Considering the size of the systems we
want to explore (N < 100—higher values show no new
structures compared to lower N), we choose BFGS
minimization algorithm as both an effective and time
efficient method to find ground states and other sta-
ble configurations in zero external field. The results
of the minimization can depend on the initial config-
uration — the system can relax to a metastable con-
figuration (local minimum of the Hamiltonian) that
the minimization algorithm cannot escape, which re-
sults in a large number of end states with different
degrees of ordering. We perform the minimization re-
peatedly from different random initial conditions to
ensure finding the global minimum.

To quantitatively measure the order so that we can
compare various configurations, we need to find ap-
propriate order parameters. The choice of parame-
ters depends on expected ordering of dipoles. Con-
sider results of the energy minimization for 2D lat-
tice dipole systems. For square and hexagonal lat-
tice, the ground state is infinitely degenerate and pe-
riodic [I9]. For angles of rhombicity between o = 50°
and a = 75°, which include the special case of the
triangular lattice at @ = 60°, the ground state is
found to be a macrovortex [2I]. The Thomson lat-
tice locally resembles the triangular lattice — except
for the lattice defects, topologically required by the
Euler characteristic of the sphere, most vertices have
six nearest neighbors. Our calculations indeed show
that the macrovortex structure is also the ground
state of the dipole system on a sphere with positional
order fixed to Thomson positions. Figure [l shows
the ground state configuration for N = 60. The
macrovortex structure stands out even more in the
azimuthal projection in Fig. [Ip, shown in comparison
to the macrovortex on 2D triangular lattice (Fig. [If).
The behavior of 2D lattice dipole systems in external
field also gives indication of expected field response
for dipole systems on a sphere. For example, a hexag-
onal lattice shows a discontinuous orientational phase
transition in the external field [20], leading us to ex-
pect similar behavior for spherical dipolar systems.

To determine axis of rotation and quantify the
macrovortex nature of the ground states, we define
angular momentum
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The amplitude I gives us information on the intensity
of this circulation. To explore the response of the
system to external magnetic field H, we further define
magnetization

1 N
M=% p,
N i=1pz (3)
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Figure 1: (a) 3D visualization of the ground state con-
figuration for N = 60. Macrovortex orientation is formed
where the orientation of dipole moments is characterized
by the direction of angular momentum I', here repre-
sented by blue arrow. (b) The same configuration showed
in azimuthal projection. The direction of I' defines the
north pole of the sphere and lies in the center of the di-
agram. The entire blue circle represents the south pole.
(c) Ground state of dipole system on hexagonal lattice is
also a macrovortex (adapted from [21]).

and susceptibility

dM,
= 4
X= g (4)

where M| denotes the component of magnetization
in the direction of H. For calculations of response
to external field, where the system must stay in the
same local minimum during changes of the field and
starting from the chosen stable configuration, we use
a simple relaxation method (gradient descent) instead
of a global minimization algorithm. Our Hamiltonian
is a quadratic form and relaxation therefore reduces
to iterative application of a linear transformation and
renormalization of dipole moments. As we gradually
increase the amplitude of external field, we calculate
magnetization and susceptibility at each step. This
continuity of states is also important in measuring
the hysteresis response.

III. RESULTS

In this section we present our simulation results,
first focusing on analyzing different stable states
found. We later explore the effects of external mag-
netic field on these states both for fixed direction of
the field as well as for the case of a freely-rotating
sphere.

A. Stable configurations

We perform 1000 minimization simulations at each
N to examine the dependence of ground state en-
ergy and number of all states found on the number
of dipoles (Fig . Initial simulations were performed



with no restrictions to dipole orientations. Neverthe-
less, the results show that in all obtained configu-
rations dipoles orient tangent to the surface of the
sphere. This is in line with expectations as it can be
shown that in the ground state configuration of long-
range interacting dipole system, dipoles orient in the
way that minimizes bulk magnetization M [2I]. On
a sphere this means ordering tangent to the surface.
Subsequent minimization simulations were therefore
performed with dipoles constrained to lying in their
respective tangent planes which reduces the dimen-
sion of the problem from 2N to N and in turn de-
creases calculation times.

We find that the ground state energy decreases
monotonously and can be fitted by a power law curve
Ey o« N233. This exponent value is close to the es-
timate 5/2 we get by taking into account scaling of
the distance between dipoles as r o« N~/2 and en-
ergy as E o« N/r3. The dependence of the num-
ber of different configurations (local minima) on N
is more complicated and strongly connected to the
symmetry of positional order. We notice the trend
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Figure 2: Results of 1000 minimization simulations for all
N between 10 and 61. (a) Energies of all found configura-
tions. Ground state energies are represented by red dots
while excited state energies are shown in black. We also fit
power law curve to ground state energies and determine
scaling as Eo ~ N*?3. (b) Number of different configu-
rations found for each N shows exponential growth trend
(note the logarithmic scale on y-axis). Arrows indicate N
that correspond to symmetric lattices, which show much
smaller number of local minima.

of exponential increase of found local minima with
N (see Fig. ), which is expected as higher number
of dipoles on the sphere allows for more stable but
frustrated local configurations that prevent global or-
dering. Systems with low number of found states can
be linked to high symmetry of positional order. The
cases that stand out the most are N = 12 and N = 22
with only one configuration, N = 32 with 2 configu-
rations and N = 44 with 9 configurations, with icosa-
hedral, tetrahedral, icosahedral and octahedral posi-
tional order symmetries, respectively. Similarly, we
also find lower number of states for other high sym-
metry configurations compared to surrounding values
of N.

We now examine individual cases of stable struc-
tures. First we look at the ground state for N = 12
(Fig. [3h). Macrovortex configuration is formed which
reduces the symmetry of the solution from icosahe-
dral for positional order to the point group C3. The
direction of angular momentum I'" corresponds to the
three-fold rotation axis of the configuration. All of
the dipoles lie on four planes perpendicular to I" with
their dipole moments also parallel to this planes. The
amplitude of angular momentum is I' = 0.795 which
is close to the analytical estimate of w/4 =~ 0.785
for continuous distribution of dipoles arranged in a
macrovortex (the deviation here is the consequence of
discretization). Also possible are configurations with
4-fold symmetry axis, for instance the ground state
for N = 24 shown in Fig.[3p. The amplitude of T" is
again close to the analytical estimate, a characteristic
that emerges also for macrovortex states at other N
and can therefore be used as indicator for the degree
of ordering, with less ordered configurations described
by lower value of I'.

Finally, we look at four different configurations of
N = 72 dipoles where positional order again has icosa-
hedral symmetry (Fig. ) As expected, the num-
ber of all states found in 1000 minimization simula-
tions is 35, low for a system of this size. We use az-
imuthal projection for better visualization. Ground
state (top left panel) and first excited state (top right
panel) show the formation of two distinct macrovor-
tex structures with the former being less symmetric
(two-fold symmetry) than the other (three-fold sym-
metry). As an illustration of possible partially ordered
and disordered states that emerge for higher numbers
of dipoles, we also show configurations for fifth (bot-
tom left panel) and thirty-third (bottom right panel)
excited state. The amplitude of angular momentum
decreases as the macrovortex ordering disappears. In
the first case, approximately one half of dipoles is
already forming a macrovortex, however, the other
dipoles are locked in a different configuration (local
energy minimum). Similarly, the last case shows the
formation of dipole strings that are also metastable.

In general, we find macrovortex ground states for all
values of N. This can also be confirmed by the values
of T' that are close to the analytical estimate of 7 /4
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Figure 3: Visualization of some configurations at different
N. Angular momentum amplitudes characterizes the de-
gree of order in the system with values close to m/4 =~ 0.785
indicating macrovortex structure and lower values related
to less ordered configurations. (a) Ground state config-
uration for N = 12 shows Cs symmetry. All dipoles are
also aligned in planes perpendicular to the direction of
I'. (b) Ground state configuration for N = 24 belongs
to C4 point group. (c) Azimuthal projections for ground
state and three excited states of N = 72 case. The first
two states show different macrovortex configurations—the
ground state configuration has a two-fold symmetry axis
while the first excited state has a three-fold axis. We also
show one of partially ordered states where only approx-
imately half of all dipoles are oriented in a vortex while
the other are disordered, and one of disordered states.

while lower values indicate less ordered configurations.
One should note that in spite of macrovortex struc-
ture, it is possible that the dipole system has no exact
symmetries. The showcased examples benefit from
high positional order symmetry but even that does not
guarantee symmetrical configurations of dipole states,
e.g. the ground state for N = 32 has no symmetries.
On the other hand, we saw that some configurations
also exhibit higher symmetries than the most common
C5 symmetry, for instance Cy for N = 24.

B. Fixed direction of external field

The simulations for determining the response of
stable dipole configurations on a sphere in external
field were performed using relaxation approach that
also models the correct system dynamics under slow
changes of external field. The restriction of tangent
ordering is of course lifted and dipoles are again freely-
rotating. First, we limit ourselves to the case with
fixed direction of the field. The choice of this direc-
tion is has an important impact on the results. We
choose field parallel to angular momentum I' of the
system which represents the characteristic direction of
dipole order for each configuration. While this makes
the comparison of behavior between different config-
urations difficult, it enables us to roughly grasp the
properties of the system in external field.

We start by examining the response for the sim-
plest case of N = 12 (Fig. [dh). Magnetization in-
creases continuously until saturation and similarly,
angular momentum amplitude drops to zero. This
signals that the system undergoes a second-order ori-
entational phase transition from macrovortex to total
alignment with the field. The change in dipole di-
rections can be seen in simulation frames taken at
different external field amplitudes. Continuous orien-
tational phase transition is not a general result and
emerges for N = 12 because of the positional or-
der and configuration symmetry. We observe simi-
lar behavior for other configurations with C,, symme-
try while ground states and excited states that are
not symmetric exhibit different characteristics. Fig-
ure shows dependence of magnetization, suscep-
tibility and amplitude of angular momentum on the
amplitude of the external field for three metastable
configurations for N = 13. The ground state is a
macrovortex while the excited states show non-regular
ordering. We notice that all magnetization curves
have at least one discontinuous jump that reflects
in the divergence in susceptibility, signalling orien-
tational phase transitions. To better understand the
nature of these transitions, we look at the graphs of
angular momentum amplitude where general decrease
of I shows that the dipoles are aligning with the field.
More interesting is the discontinuous jump in I' at
first phase transition where the system relaxes to a
more ordered quasi-macrovortex structure. To bet-
ter imagine how the order of the system changes with
the increasing magnetic field, we use azimuthal pro-
jection to show dipole orientations at different field
amplitudes. The results for the first excited state of
N = 13 are presented in Fig. . We notice that af-
ter the first orientational phase transition (frame 2),
angular momentum shifts away from the direction of
the field to form a new macrovortex configuration. Af-
ter the second phase transition (frame 3) the dipoles
order to form a dipole string and after the third tran-
sition, dipoles align with the external magnetic field.
In the last frame the direction of I is not shown any-
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Figure 4: (a) Magnetization curve (blue) and amplitude of angular momentum (orange) in dependence to the amplitude
of external field. As shown in complementary 3D visualizations at different values of external field amplitude (H = 1.0,
H = 2.5 and H = 5.0), the dipoles gradually reorient from the initial macrovortex configurations and at high amplitudes
fully align with the field. The red arrow shows the direction of external field. Orientational phase transition in this case
is continuous. (b) Magnetization, susceptibility and amplitude of angular momentum for all three stable configurations
of N = 13 dipoles. In contrast to N = 12 case, we notice multiple discontinuous phase transitions that result in
divergences in susceptibility. The jump in I" at first phase transition for two excited states shows that in external field,
some configurations can become more ordered. (c) Azimuthal projection, modified to show normalized projections of
dipole orientations to their respective tangent planes, of configurations for the first excited state of N = 13 case at
different filed amplitudes. We use the blue dot to show the direction of angular momentum I" for depicted configuration
and the red dot to show the direction of external field (aligned with initial T’ of the configuration). In the first frame,
blue and red dot coincide. In the last frame the direction of I' is not shown anymore as the amplitude is too small for
the quantity to be relevant. (d) Magnetization and I" amplitude for different configurations of N = 56. Discontinuous

phase transitions are especially noticeable for the excited states.

more as the amplitude is too small for the quantity to
be relevant.

As an example of higher N we show the magnetiza-
tion and angular momentum amplitude curves for the
ground states and three lower excited states (second,
third and fourth) of N = 56. The results are similar to
ones for N = 13 with second and fourth excited states
undergoing more orientational phase transitions than
the ground state. The configuration of the third ex-
cited state is also a macrovortex and the number of
discontinuous transitions is therefore lower.

At the end of this section we look at the magne-
tization hysteresis loops obtained by decreasing the
field amplitude after the system reaches saturation.
The results for N = 12, the first excited state for
N = 13 and fifth excited state for N = 72 are shown
in Fig. The saturated configuration for N = 12
is metastable which is not the case for N = 13 and
N = 72 states. We see, however, that saturation
curves for both N = 56 and N = 72 are different
than hysteresis curves at least for small amplitudes
of external field which signals that at saturation, the

system loses information on the exact initial dipole
orientations. In general, hysteresis is observed for all
configurations with no symmetry while many sym-
metric states show no differences between increasing
and decreasing field, e.g. ground states for N = 24
and N = T72.

C. Freely-rotating sphere

As discussed, the system’s response to external field
depends on the direction of this field. We chose the
direction of angular momentum as the characteristic
direction of order for each configuration, however we
saw already for the N = 13 case that the direction of
T also changes during the simulations for configura-
tions with no symmetry. This presents the question of
optimal direction of external field at each amplitude —
we seek for the direction that minimizes system energy
(Eq. 1) at every step. This is equivalent to the case of
a freely-rotating sphere which is also more relevant for
potential experimental realization. We solve this by
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Figure 5: Hysteresis loops for (a) the ground state for
N =12, (b) the first excited state for N = 13 and (c) the
fifth excited state for N = 72. High symmetry states as
well as high N configurations show weak hysteresis curves
while non-symmetric configurations exhibit greater differ-
ences between increasing and decreasing field magnetiza-
tion curves. After saturation it is possible that the sys-
tem does not return to the ground state, but a state with
nonzero remanent magnetization.

also minimizing the energy over the field direction. If
we write the interaction Hamiltonian in the form
Hy, = —NH - M, we see that the optimal external
field direction will be parallel to magnetization. With
fixed direction of the field, the alignment between field
and magnetization is not guaranteed and occurs only
at high field amplitudes.

Figure [6h shows susceptibilities and angular mo-
mentum amplitude for the three states of N = 13.
We notice that the excited states undergo an orienta-
tional phase transition to join the configuration with
that of the ground state. To see if the states are ex-
actly the same after the junction we could compare
the optimal direction of external filed for all configu-
rations and notice that they are the same up to the

point group symmetry of positional order. In the sat-
urated configuration, the field is aligned with the sym-
metry axis of the positional order with dipole config-
uration also exhibiting Cq, symmetry. Different zero
field configurations can also stay separated until we
reach higher external field amplitudes as shown for
the case of N = 56 in Fig. [6b. Note that the mag-
netization and angular momentum amplitude curves
for both N = 13 and N = 56 are different from any
of the cases with fixed field direction (Fig.[6p and [6{1)
which means allowing for sphere rotation fundamen-
tally changes dipole states in external field for states
with no symmetry.
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Figure 6: Magnetization and I' amplitude of freely ro-
tating sphere in external field for different states of (a)
N = 13 and (b) N = 56. Compared to the results in
Fig. [4] the behavior of N = 13 states is simplified (the
number of phase transitions decreases) while the phase
transitions for N = 56 become more pronounced. In both
cases the configurations at high field amplitudes are the
same for all initial zero field states. (c) Azimuthal plot for
the ground state of N = 72 at different external field am-
plitudes for the case of the freely-rotating sphere. The plot
is centered to the optimal direction of external field (red
dot) and we can see that the system symmetry changes
from C5 to Cs and ultimately to Cs. In the last frame,
two dipoles on the symmetry axis are not shown as they
are oriented perpendicular to the surface and therefore
have no tangent projection.

For symmetric states where angular momentum is



aligned with the rotational symmetry axis one could
expect that the external field remains parallel to this
axis. This is indeed the case for some states, e.g.
N = 12 where behavior is exactly the same as for the
case with fixed field direction, however, optimal field
direction can change for some symmetric states which
alongside also changes the configuration symmetry.
A notable example is the ground state of N = 72.
Figure [6k shows azimuthal plot of state configuration
at different external field amplitude. The two-fold
symmetry of the configuration becomes unstable and
the system transitions to a three-fold symmetric state
of the first excited state. Finally, at high external
field amplitudes, there is another change in optimal
field direction where the field aligns with one of the
five-fold axes of the positional order. Similar change
of symmetry is also observed for the ground state of
N = 24 that transitions from Cj symmetry to C3 at
high field amplitudes.

IV. CONCLUSIONS

We explored orientational ordering of point dipoles
on a sphere with positional order fixed in the solutions
of the Thomson problem by minimizing the system
energy. Some parallels to the 2D lattice cases can be
drawn, most notably we observe macrovortex ground
state that also emerges for the triangular lattice. We
expect the macrovortex to be the ground state for
other spherical lattices that locally resemble triangu-
lar lattice, such as the solutions of the Tammes prob-
lem, Thomson problem with generalized power law,
and spiral point distributions [3]. Configuration sym-
metries as well as the number of different stable states
found, depend strongly on the symmetry of the under-
lying positional order at each V. The symmetry of the
dipolar system cannot be higher than the symmetry of
the underyling lattice, and in the macrovortex state,
can only have a single rotational symmetry axis. We
find states belonging to Cy, C3 and C4 point groups,
however, many macrovortex ground states show no
symmetries. In external field we discover multiple dis-

continuous orientational phase transitions, especially
for less symmetric states. The direction of angular
momentum that characterizes ordering of dipoles can
also change as we increase external field amplitude.
For the case of freely rotating sphere where the exter-
nal field assumes the direction that minimizes system
energy, we find that configurations of different stable
states merge with increasing field. In the saturation
configuration, the field is aligned with one of the sym-
metry axes of positional order.

Studying dipolar interactions on a sphere is a step
towards understanding and harnessing the role of
anisotropic interactions in stability and structure of
spherical assemblies. Many biological structures, such
as protomers of viral capsids and RNA nanocages, in-
volve electrostatic interactions in addition to chemical
bonds and hard core repulsion. These interactions are
more complex, and are also often screened by ions in
surrounding medium. Generalizations to more com-
plex anisotropic interactions — screened, quadrupolar
or interactions based on empirical models — are there-
fore an important open problems for future investi-
gation. The role of thermal fluctuations can further
be explored through Monte Carlo simulations. An-
other potential research direction is the generalization
of the problem to allow for movement of dipoles along
the surface of the sphere, which corresponds more
closely to possible experimental realizations with in-
teracting particles. Based on expected stable struc-
tures, predicted from simplified models, bottom-up
design of self-assembling nanocontainers can be en-
visioned, with field-effected orientational transitions
and changes in symmetry giving potential for con-
trolled rearrangement or dissolution.
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