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The adsorption transition and the structure of semiflexible adsorbed macromolecules is studied by
Molecular Dynamics simulation of a coarse-grained bead-spring type model. Varying chain length N
and stiffness κ (which is proportional to the persistence length ℓp in d = 3 dimensions) as well as the
strength ǫwall of the adsorption potential, the adsorbed monomer fraction, orientational bond order
parameter, and chain linear dimensions are studied. In the simulations excluded volume interactions
normally are included but can be “switched off”, and thus the influence of excluded volume (leading
to deviations from predictions of the wormlike chain model) can be identified. It is shown that the

variation of the adsorption threshold ǫcrwall with ℓp is compatible with the predicted law ǫcrwall ∝ ℓ
−1/3
p .

Near the transition the decay length of orientational correlations along the chain contour increases
gradually from ℓp to 2ℓp. While the latter value is expected for strictly two-dimensional chains from
the Kratky-Porod model, this model is inaccurate for the description of lateral chain dimensions of
long strongly adsorbed semiflexible polymers due to its neglect of excluded volume. The significance
of these findings for the interpretation of pertinent experiments is briefly discussed.

I. INTRODUCTION

Adsorbed polymers on surfaces are of great interest for applications in materials science and in bio-
logical context, and find extensive attention since decades [1–5]. For instance, DNA oligonucleotides
adsorbed on graphene and graphene oxide are of interest also for applications for new sensors and re-
lated devices [6]. Already the conceptually simplest case, adsorption of fully flexible linear chain-like
neutral macromolecules, has turned out to be a challenging problem of statistical thermodynamics,
due to the interplay between surface-monomer and monomer-monomer forces with the configura-
tional entropy of the polymers [7–15]. However, for many real polymers the effect of their bending
rigidity matters, causing nontrivial bond-angle correlations over the scale of the persistence length
[16–19]. While for simple synthetic polymers such as polyethylene or polystyrene the persistence
length ℓp is only of the order 1nm, i.e., a few bond lengths ℓb along the chain backbone, more com-
plex synthetic polymers exhibit significantly larger [18] ℓp. Particularly important is this local chain
stiffness for many biopolymers, e.g. double-stranded (ds) DNA, filamentous (F)-actin, microtubules,
etc. For ds-DNA ℓp is roughly 50nm, and the effective diameter of this molecule (which in a coarse-
grained view is locally rod-like) is about [20] D = 2nm (but note that DNA carries electric charges,
and it may be better to use an effective diameter depending on the salt concentration in the solution
[21]). For F-actin, typical [22] values are ℓp = 17µm, D ≈ 8nm, and contour lengths can be of the
order of L = 10µm: note that the mechanical rigidity of these molecules is often crucial for their bi-
ological function, e.g., actin filaments form the cytoskeleton of cells, and adsorption of actin or DNA
on membranes has been widely studied [22–26]. Of course, also adsorption of these molecules on
various inorganic substrates (glass surfaces, graphite, mica, etc) is of interest [27–32] in the context
of atomic force microscopy (AFM) measurements on these polymers. Particularly intricate is the
problem of adsorption of polymers with more complex architecture, such as bottlebrush polymers
[33–36] or dendronized polymers [37].
Varying grafting density and/or chain length of the side chains of bottlebrushes, their persistence

length (together with their effective diameter) can be varied [38], but understanding this variation is
difficult [19, 35, 39]. Likewise, the persistence length and effective diameter of dendronized polymers
depends on their generation number, but again understanding this dependence is a challenge [40–43].
These problems are no surprise, since even for stiff polymers with much simpler chemical architecture
estimates for ℓp from complementary methods often differ by as much as a factor of two [18]. When
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adsorbed semiflexible polymers are studied with the intention to understand their persistence length
in bulk solution [27–34, 37], clearly the effect of adsorption on the conformation of semiflexible
polymers needs to be understood, and clarifying this problem is one aim of the present paper.
For flexible linear polymers, the adsorption transition has been described as a critical phenomenon

in the framework of renormalization group theory [2, 12], i.e. various properties in the immediate
vicinity of the transition (which is a sharp transition only in the limit where the chain lengthN → ∞)
are characterized by singular behavior involving universal critical exponents. However, for a full
description of the transition (including how its location depends on the nature of the substrate-
monomer interaction, non-universal prefactors of the various singular quantities, etc.) extensive
numerical simulations (e.g. [12–15]) are required. A popular choice for this purpose in the case of
flexible polymers is the self-avoiding walk (SAW) on a lattice [44]. For an extremely short-range
adsorption potential (acting only on monomers in the first lattice plane adjacent to the substrate)
of strength ǫwall, it is clear that the adsorption transition occurs when the entropy per monomer (of
order kBT ) is of the same order of magnitude.
If one extends such a lattice model to semiflexible polymers by introducing an energy cost ǫb

when two subsequent bonds along the chain form on angle [45–47], for ǫb ≫ kBT a chain confor-
mation, roughly speaking, is a sequence of straight pieces of the order of the persistence length
(ℓp ∝ exp(ǫb/kBT ) in this limit. When such a piece is bound to the substrate, an energy of order
ℓpǫwall is won, while the entropy loss still is only of order kBT . Thus, the critical temperature Tc of
the adsorption transition scales as [45–47] ǫwall/kBTc ∝ ℓb/ℓp.
While such a model may provide a qualitatively realistic description of chain stiffness for alkane-like

polymers [48], where it is a good approximation to treat the bond angle of two successive carbon-
carbon bonds as a discrete variable (controlled by the torsional potential [49]), it is not appropriate
for biopolymers such as DNA, F-actin etc., where on the scale of ℓp a large number of C-C-bonds
contribute, and chain bending occurs essentially continuously due to many small increments per
covalent bond [48].
This situation is traditionally modelled by the Kratky-Porod (KP) wormlike chain (WLC) model

[50], where a single energetic parameter (the bending stiffness κ) controls the polymer conformation
locally, with ℓp ∝ κ. For the adsorption of WLCs a very different scaling of the adsorption transition
temperatures with stiffness is predicted, namely [51–53] ǫwall/kBTc ∝ ℓb/(∆

2ℓp)
1/3, provided the

range ∆ of the adsorption potential is small, ∆ ≪ ℓp. Only for the (unphysical) case of a square-well
adsorption potential of range ∆ > ℓp a different law is predicted [53], ǫwall/kBTc ∝ ℓbℓp/∆

2.
The different scaling of WLCs and semiflexible chains on lattices can be qualitatively understood

invoking Odijk’s [54] deflection length concept. While on the lattice a piece of the chain, when it
wins an energy ǫwall per monomer, must be strictly parallel to the surface, this is not true for a KP
chain. In fact, when a piece of a chain is confined within the range ∆ close to the surface, one can
show that typical conformations resemble straight pieces of length λ misaligned by an angle of order
∆/λ relative to the surface. The KP model yields [54] the deflection length λ as (∆2ℓp)

1/3, and the
adsorption transition occurs when the energy won by the adsorption of the number of monomers
nd = λ/ℓp belonging to the deflection length is of order kBT , i.e., ǫwall(∆

2ℓp)
1/3/ℓb = kBT.

However, the KP model completely neglects excluded volume interaction between the monomers,
and while in d = 3 dimensions for large ℓp and not too large contour length L (L/ℓb ≪ (ℓp/ℓb)

3) this
is a good approximation [55–57] it clearly fails in d = 2, since topology forbids chain intersection
strictly. Simulations [58–60] show that near L/ℓp = 1 a smooth crossover occurs from rod-like
behavior (mean square end-to-end distance 〈R2〉 ≈ L2 for L < ℓp) to self-avoiding walk behavior

(〈R2〉 ∝ L3/2ℓ
1/2
p for L ≫ ℓp; note that the Flory exponent ν = 3/4 in d = 2 dimensions [61])

rather than the Gaussian chain behavior [16, 17] 〈R2〉 = 2Lℓp implied by the KP model. E.g., for
L = 20ℓp the KP model underestimates 〈R2〉 by about a factor of two. Near the adsorption transition,
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chain conformations change continuously from three-dimensional to two-dimensional, and hence it
is relevant to clarify the extent to which excluded volume effects are important here.
Another intriguing problem is the fact that the effective persistence length, that controls the

exponential decay predicted for the tangent-tangent correlation function with the distance along the
chain backbone, is ℓp = κ/kBT in d = 3, according to the KP-model, but 2κ/kBT in d = 2. This
doubling of the decay length occurs because in d = 2 there is only one direction transverse to the
chain backbone, while in d = 3 there are two directions. A chain near the adsorption transition,
however, is somewhat “in between” the dimensionalities (Fig. 1): Parts of the chain exist then in
sequences of monomers that are adsorbed already (the so-called “trains” [1]), other monomers belong
to “loops” and “tails” that extend out into the d = 3 space. Thus, it needs to be clarified what the
concept of a persistence length means for such an incompletely adsorbed polymer chain. This is also
an issue that we wish to clarify in the present study.

FIG. 1: Snapshot picture of an adsorbed chain with N = 500 monomeric units for the choice of parameters kBT = 1, κ = 16,
ǫwall = 0.65. The monomers are depicted as spheres of diameter σ = ℓb = 1, and are shown in dark blue color when they belong
to trains, and in yellow when they belong to loops or the tail. The chain is grafted by one end at the surface (green-shaded).
In the upper part, a qualitative sketch explaining the notion of tails, trains and loops is given. For the simulated model shown
here, the adsorption transition occurs at ǫcrwall ≈ 0.53, so the shown state is about 20% off the transition into adsorbed phase.

The outline of our paper is as follows: in Sec. II, we summarize the pertinent theoretical back-
ground. In Sec. III, the model and simulation technique are briefly described. Sec. IV describes our
methods to locate the critical value ǫcrwall/kBT (varying ǫwall at fixed T , rather than varying T at fixed
adsorption energy) where the adsorption transition occurs. The adsorption of fully flexible chains is
also briefly considered as a special case. Sec. V describes the properties of adsorbed chains. Finally,
Sec. VI summarizes our conclusions. A preliminary account of our result was given elsewhere [62].

II. POLYMER ADSORPTION: THEORETICAL BACKGROUND

For flexible polymers, polymer adsorption is a continuous transition [2] for which very close to
the transition a scaling description applies. When the chain length N tends to infinity, and the
relative distance from the adsorption threshold τ ≡ (ǫwall − ǫcrwall)/ǫ

cr
wall tends to zero, quantities like

the components of the mean square end-to-end distance 〈R2〉 and gyration radius 〈R2
g〉 parallel (||)

and perpendicular (⊥) to the surface, or the fraction of monomers f that are within the range ∆ of
the adsorption potential, do not depend on the two parameters N, τ separately, but in scaled form
[12]

〈R2
g〉|| = N2νF||(τN

ϕ) , 〈R2
g〉⊥ = N2νF⊥(τN

ϕ) (1)

where ν is the Flory exponent [61] in d = 3, ν ≈ 0.588, and ϕ is the so-called crossover exponent.
The precise value of this exponent has been controversial for decades [2, 9, 12–15], the most recent
(and presumably accurate) value being [15] ϕ ≈ 0.48. The scaling functions F||(X), F⊥(X) vary
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with the scaling variable X = τNϕ as follows,

F||(X → −∞) = C−
|| , F||(X = 0) = C0

||, F||(X → +∞) ∝ |X|2(ν2−ν)/ϕ (2)

where ν2 = 3/4 is the Flory exponent in d = 2. Similarly,

F⊥(X → −∞) = C−
⊥ , F⊥(X = 0) = C0

⊥, F⊥(X → +∞) ∝ |X|−2ν/ϕ; (3)

Of course, the last of these relations implies that 〈R2
g〉⊥ becomes independent of N in the strongly

adsorbed phase,

〈R2
g〉⊥ ∝ τ−2ν/ϕ, τNϕ ≫ 1, (4)

so (〈R2
g〉⊥)1/2 measures the thickness of the adsorbed (“pancake”-like) polymer coil. The constants

C−
|| , C

0
||, C

−
⊥ , C

0
⊥ in Eqs.(2,3) need not be further discussed here.

Finally,

f = Nϕ−1f̃(X) (5)

with

f̃(X → −∞) ∝ X−1 , f̃(0) = const, f̃(X → +∞) ∝ X(1−ϕ)/ϕ (6)

In the nonadsorbed phase, the adsorbed fraction (of order 1/N) is just an effect due to the grafted
chain end, while in the adsorbed phase f ∝ τ (1−ϕ)/ϕ ≈ τ 1.08 can be considered as an order parameter
of the transition. Note that for Gaussian chains the same scaling description applies, but then
ν2 = ν = 1/2 and ϕ = 1/2, so f ∝ τ and F||(X → +∞) tends to a constant. Testing for the

attraction strength ǫwall of the adsorbing surface for which a power law decay f ∝ N−(1−ϕ) occurs is
traditionally used as a criterion to locate ǫcrwall; this asymptotic power law is only seen for very large
N , however [15].
The above scaling description can be taken as a justification of another method to locate ǫcrwall,

namely the search for an intersection point of the ratio 〈R2
g〉⊥/〈R2

g〉|| which is a dimensionless quantity
and a function of τNϕ only, when corrections to scaling can be neglected. I.e.

〈R2
g〉⊥/〈R2

g〉|| = F (τNϕ) (7)

with

F (X → −∞) = C−
⊥/C

−
|| , F (X = 0) = C0

⊥/C
0
|| , F (X → +∞) ∝ |X|−2ν2/ϕ. (8)

The scaling function F (X) is universal, apart from a scale factor of its argument. The universal
number F (X = 0) has been estimated as [15] (F (X = 0) = 0.320 ± 0.003; however, for the lattice
model considered in [15] chain lengths N of the order of N = 104 were needed to obtain a reliable
estimate.
In the theory summarized so far, stiffness does not play any explicit role; it would only show up

in the (nonuniversal) prefactor of quantities such as the gyration radius square in the bulk 〈R2
g〉bulk

(and similarly then in 〈R2
g〉||, 〈R2

g〉⊥ for chains grafted to a surface). However, for large stiffness
this asymptotic scaling regime is only reached for extremely large N , hardly of physical interest.
Therefore, it is necessary to analyse this pre-asymptotic regime that occurs for semiflexible polymers
in its own right.
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It is useful to describe a semiflexible polymer in terms of three lengths: its contour length L, its
persistence length ℓp, and its effective diameter D. In terms of a model using effective monomers
of spherical shape, such that subsequent monomers touch each other, the bond length ℓb = D and
L = (N − 1)ℓb). In terms of the variable np = L/ℓp, there occur then three regimes for the mean
square end-to-end distance 〈R2〉, in d = 3 dimensions [55–57], namely, a rod-like regime, Random
Walks (RWs), and Self-Avoiding random Walks (SAWs) regimes:

Rods :〈R2〉 = L2, np ≪ 1; RWs :〈R2〉 = 2ℓpL, 1 ≪ n ≪ n∗
p;SAWs :〈R2〉 ∝ 2ℓ2p

(ℓp
D

)−2/5

n6/5
p , n ≫ n∗

p

(9)
where n∗

p = (ℓp/D)2, and the Flory approximation ν = 3/5 was used.
While the Kratky-Porod model [50] describes the (smooth) crossover at np = 1 explicitly, the

second crossover at np = n∗
p relies only on crude scaling arguments, within the spirit of Flory’s

treatment of excluded volume [55]. Numerical work [57] is in rough argument with this description.
In d = 2 dimensions, however, the intermediate gaussian regime is absent, and a single crossover
from rod-like behavior to self- avoiding walk behavior occurs [58–60]

〈R2〉 = L2, np ≪ 1; 〈R2〉 ∝ ℓ1/2p L2ν2 = ℓ1/2p L3/2, np ≫ 1. (10)

We now summarize the predictions of the Kratky-Porod model in more detail. The wormlike chain
is described by a curve ~r(s) in continuous space, with 0 < s < L a coordinate along this curve. The
Hamiltonian of the chain is then an integral over the squared curvature along the curve,

H =
κ

2

L
∫

0

ds
(d2~r(s)

ds2

)2

. (11)

The tangent-tangent correlation function

C(s− s′) = 〈cos θ(s− s′)〉 , (12)

θ(s) being the angle between the tangent to the curve at site s, can be shown to be a simple
exponential,

C(s) = exp(−s/ℓp), ℓp = κ/kBT, (13)

with kB being Boltzmann’s constant and T the absolute temperature. Eq. (13) refers to d = 3
dimensions, where two transverse directions exist relative to the tangent of the curve in each point.
In d = 2 dimensions, where only a single transverse direction occurs, the decay of C(s) is also
exponential, but the decay length is twice as large

C(s) = exp(−s/2ℓp) , d = 2. (14)

Note that Eqs. (13), (14) fail for large s when the chain diameter D is nonzero, and excluded
volume hence is relevant. Then the asymptotic behavior of C(s) is a power law [63]

C(s) ∝ s−β, β = 2(1− ν) ≈ 0.82 (d = 3), or β = 2(1− ν2) = 1/2 (d = 2). (15)

While for flexible polymers, where ℓp is of the order of the bond length ℓb, Eqs. (13), (14) break
down at distances s corresponding to a few bond lengths only, for semiflexible polymers with ℓp ≫ ℓb,
Eq. (14) holds as long as s ≪ 2ℓp. In d = 3, however, excluded volume matters only for length scales
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s along the chain of the order s∗ = ℓpn
∗
p = ℓ3p/D

2, however, and thus Eq. (13) has a more extended
range of validity. All these relations, Eqs. (13) - (15), assume distances s ≪ L.
When both ℓp andD are large and of the same order (as is the case for bottlebrush polymers [35, 39],

dendronized polymers [41–43], etc.), one observes a slow and extended crossover from Eq. (13) to
Eq. (15).
The end-to-end distance square can be expressed in terms of C(s) as [5]

〈[R(L)]2〉 =
L
∫

0

ds

L
∫

0

ds′C(|s− s′|) (16)

and the gyration radius

〈R2
g〉 = (2L2)−1

L
∫

0

ds

L
∫

0

ds′〈[R(s− s′)]2〉 . (17)

Working out these integrals, one can describe explicitly the crossover from rod-like to Gaussian
behavior [50, 64]

〈[R(L)]2〉/(2ℓpL) = 1− [1− exp(−np)]/np, d = 3 (18)

6〈R2
g〉/(2ℓpL) = 1− 3/np + 6/n2

p − 6[1− exp(−np)]/n
3
p, d = 3, (19)

while in d = 2 the analogous results are [5]

〈[R(L)]2〉/(4ℓpL) = 1− 2[(1− exp(−np/2)]/np, (20)

3〈R2
g〉/(2ℓpL) = 1− 6

np

[

1− 4

np

(

1− 1− exp(−np/2)

np/2

)]

. (21)

As emphasized above {Eq. (9)}, for large ℓp Eqs. (18), (19) do have a well-defined range of appli-
cability, while Eqs. (20), (21) can be used only for the rod-like regime, since a regime of Gaussian
behavior in d = 2 does not occur [58–60].
Given that close enough to the adsorption threshold the polymer configuration is still essentially

three dimensional since the ratio of 〈R2
g〉⊥/〈R2

g〉|| at the threshold is of order unity {Eq. (8)}, it is
plausible that the Kratky-Porod model can still be used to locate the position of the adsorption
threshold. An extensive analytical theory along such lines was presented by Semenov [52], and
later complemented by numerical calculations [53]. These theories assume a square-well adsorption
potential of range ∆ and depth u, and predict that the adsorption threshold then is [53], for ∆ ≪ ℓp

ucr/kBT ≈ 0.7797ℓb/(ℓp∆
2)1/3. (22)

Semenov [52] also predicted that the fraction of adsorbed monomers within the range of the
adsorption potential scales as

f ≈ (ℓp/∆)4/3τ, 0 < τ < τ ∗ = (∆/ℓp)
4/3, (23)
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while for τ > τ ∗ a saturation at f = 1 sets in. However, also in the region τ ∗ ≪ τ ≪ τ ∗∗ long loops
away from the surface still occur, although most of the monomers are attached to the surface, and
τ ∗∗ = (∆/ℓp)

2/3. The crossover at τ ∗∗ then shows up in the decay of the monomer concentration
profile c(z) far from the surface, which is always exponential, c(z) ∝ exp(−z/h), with

h ≈







∆/τ , 0 < τ < τ ∗

∆(ℓp/∆)2/3/τ 1/2 , τ ∗ < τ < τ ∗∗

∆/τ 3/2 , τ ∗∗ < τ.
(24)

In the regime 0 < τ < τ ∗∗ the chains are “weakly adsorbed” which means h < ℓp while τ > τ ∗∗

implies strong adsorption. Semenov [52] predicts a triple layer structure of the adsorbed chains,
for 0 < z < ∆ adsorbed monomers being in “trains”, and in the “proximal layer” flat wormlike
loops nearly parallel to the surface should occur, while in the distal layer (ℓp < z < h) coil-like
semiflexible loops occur. As a caveat we mention, however, that all these predictions apply in the
limit of infinitely long chains and neglecting excluded volume effects only. For finite contour length,
Eqs. (23), (24) should hold approximately for L > ℓp(ℓp/∆)2/3. Clearly, for large ℓp this requires to
consider extremely long chains. For smaller L Semenov [52] predicts a rounding of the transition
over a range that scales inversely with Lucr/kBT . Finally, we mention the power law behavior of
c(z) at the adsorption transition [52]

c(z) ∝ (z/ℓp)
−4/3 , ∆ < z < ℓp. (25)

Of course, due to the neglect of excluded volume the theory cannot (and does not) make any

prediction for the lateral linear dimensions 〈R2
g〉1/2|| of the adsorbed chains.

III. MODEL AND COMMENTS ON THE SIMULATION METHODS

We consider a bead-spring model for a polymer chain where the effective monomeric units interact
with a purely repulsive Weeks-Chandler Andersen (WCA)-type interaction [65]

UWCA(r) = 4ǫ[(σ/r)12 − (σ/r)6 + 1/4], r < rc = 21/6σ, (26)

choosing the strength ǫ = kBT = 1, and the range σ = 1 serves as length unit; UWCA(r > rc) ≡ 0.
This interaction acts between any pair of monomers, a distance r apart, and ensures the presence
of excluded volume (EV). The bonding of subsequent monomers along the chain is ensured by the
finitely extensible nonlinear elastic (FENE) potential [66],

UFENE(r) = −0.5kr20 ln[1− (r/r0)
2], r < r0, (27)

and U(r > r0) = ∞. The constants are chosen r0 = 1.5σ, k = 30ǫ/σ2, as usual. Finally the bond
bending potential is chosen as

Ub(θijk) = κ[1− cos(θijk)] (28)

where θijk is the bond angle formed between the two subsequent unit vectors along the bonds
connecting monomers i with j, and j with k, respectively. For large stiffness κ ≫ kBT this potential
is essentially harmonic in θijk, Ub(θijk) ≈ 1

2
κθ2ijk, and hence the model Eqs. (26), (28) can be viewed

as a discretized version of the Kratky-Porod model, Eq. (11), but extended by allowing for excluded
volume between any pairs of effective monomers through UWCA(r). The effective bond length ℓb
between nearest neighbors along the chain, resulting from the combined effect of UFENE(r) and
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UWCA(r) for bonded monomers, turns out to be very close to unity (a slight dependence of ℓb on
chain length, stiffness, and strength of the adsorption potential is of relative order 10−3 or smaller).
Eqs. (26), (28) have been used to study liquid crystalline ordering in solutions of semiflexible polymers
[67–70]. Studying with this model the orientational correlation function C(s), one finds that Eq. (13)
indeed holds for distances s of order of ℓp, or smaller, provided ℓp ≫ 1. Note that in Eqs. (11), (21)
s is a continuous variable, while in our model only discrete distances sn = nℓb, n = 1, 2, · · · , are
possible. In practice, it is convenient to estimate ℓp from the initial slope of C(s), which in the
discrete case implies to define an effective decay length ℓeffp as

ℓeffp /ℓb = −1/ ln〈cos θijk〉, (29)

where the average 〈· · · 〉 includes both a thermal average and an average over all the bond angles
along the simulated chain. Finally we note that the contour length simply is L = (N − 1)ℓb; the
integer number N of monomers in the chain here is referred to as “chain length”.
When one uses Eq. (29) also in d = 2, one finds [58–60] 2κ/kBT , i.e. twice the value applicable

in d = 3 {Eq. (13)}, as stated in Eq. (14). This doubling of the decay length is straightforwardly
understood in the framework of our model, noting that 〈cos θijk〉 ≈ 1−〈θ2ijk〉/2 for large κ and hence

ℓeffp /ℓb ≈ 2/〈θ2ijk〉. Treating all bond angles as equivalent, we estimate 〈θ2〉 simply by choosing the
z-axis along the direction of the direction of the first bond and use polar coordinate (θ, φ) to write

〈θ2〉 =
2π
∫

0

dφ

π
∫

0

dθ sin θe−Ub(θ)/kBT θ2/

2π
∫

0

dφ

π
∫

0

dθ sin θe−Ub(θ)/kBT (30)

in d = 3, while an equivalent expression in d = 2 is

〈θ2〉 =
π

∫

0

dθde−Ub(θ)/kBT θ2/

π
∫

0

dθe−Ub(θ)/kBT (31)

Recalling Ub(θ) ≈ 1
2
κθ2, the resulting integrals are elementary and readily lead to the decay lengths

ℓp {Eq. (13)} and 2ℓp {Eq. (14)} when Eq. (29) is used.
Eqs. (26) - (28) do not constitute the only possible choice of a coarse-grained model for semiflexible

polymers. Kierfeld et al. [71–73] used the semiflexible harmonic chain model, discretizing the
Kratky-Porod model into a sequence of N − 1 bond vectors ~ti, whose length is controlled by a
(rather strong) harmonic potential, and the bonding potential is also equivalent to Eq. (28). In
the limit where N → ∞ but L/ℓp stays fixed this model must reduce strictly to the Kratky-Porod
model. However, it does neither allow a useful study of the crossover to flexible polymer behavior
as far as excluded volume is not included, nor is it appropriate for stiff chains in d = 2, see Eq. (10).
So this model would not have been useful for our purposes.
A physically very reasonable model similar to Eqs. (26)- (28) was used by van der Schoot et

al. [74, 75]. Using a different choice for the binding potential of subsequent monomers (instead of
Eq. (27)) they obtain ℓb significantly smaller than the bead diameter σ, so the beads strongly overlap
and the local structure of the chain is a flexible rod rather than a chain of tangent spheres. This
model is presumably a very good coarse-grained model for semiflexible biopolymers such as ds DNA,
F-actin, etc.; but it is inconvenient for the study of chains with L ≫ ℓp, or the study of the crossover
to flexible chains. Of course, the choice of a coarse-grained model always necessitates compromises,
and we feel that for the purpose of the present study the model defined by Eqs. (26)- (28) is a
reasonable choice.
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The adsorbing surface is modelled by a planar structureless impenetrable wall located in the xy
plane at z = 0 at which a potential Uwall(z) depending only on the distance from the surface acts,

Uwall(z) = ǫwall

(5

3

)(5

2

)2/3[(σw

z

)10

−
(σw

z

)4]

. (32)

This potential has a minimum of depth Uwall(zmin) = −ǫwall at zmin/σw = (5/2)1/6. The range
∆ of this potential can be defined as the interval ∆z of the regime where Uwall(z) < −ǫwall/2, i.e.
∆/σw = 0.55. For simplicity, we have taken σw ≡ σ(= 1). We feel that the choice Eq. (32) is a bit
more realistic than the square well potential used in most previous work (e.g. [52, 53, 72, 73]). In
particular, a choice, using ∆ as large as of order ℓp can be realized only in exceptional cases, such
as absorption of polymers from solution into polymer brushes, whose height h may be controlled by
the chain length of the polymers forming the brush [76–78]. The present model {Eq. (32)} has been
also found useful for study of solutions of semiflexible polymers confined by attractive walls [79, 80].
Molecular Dynamics (MD) methods [81] are used in the constant temperature ensemble, using a

standard Langevin thermostat [66] as in our previous work on bulk solutions of semiflexible polymers
[68–70]. Note, however, that for simulations of rather long single semiflexible chains it would not
be convenient to us a Lx × Ly × Lz box (with periodic boundary conditions in x, y directions and
a repulsive wall at z = Lz), as done for simulations of confined solutions [79, 80]: one would need
prohibitively large boxes (with linear dimensions Lx, Ly, Lz), to avoid that the chain interacts with
its periodic images, causing significant systematic errors. Thus for N = 250, 500, and 750 we have
used a simulation in “infinite space”, where for the calculation of forces a Verlet linked cell list [81] is
used to identify the monomers a given monomer interacts with. The grafted chain end is put at the
point (x = 0, y = 0, z = 1). Actually one can run N chains in parallel in the same volume, which
simply are not interacting at all with each other, but this allows for a straightforward parallelization
when one uses the HOOMD-blue software [82, 83] on graphics processing unit (GPUs). Typically

N = 50 is used, and the MD time step was chosen δ = 0.002τMD where τMD =
√

mσ2/ǫ = 1
(choosing the monomer mass m = 1) is the relevant time unit.
The length of the MD runs typically was extended up to 10 million MD time units. Note that the

slow relaxation of the chain conformations is a very serious limitation of our simulations, preventing
us to simulate chains longer than N = 750. As is well known, for flexible polymers the relaxation
time τrel scales as [44]

τrel = W−1N2ν+1, (d = 3), τrel ≈ W−1N2ν2+1(d = 2) (33)

where W−1 is the typical time it takes for a monomer to move over a distance of its own diameter
(for simplicity, prefactors of order unity are not considered here). When excluded volume forces
are shut off (NoEV), i.e. in the Gaussian chain limit, ν = ν2 = 1/2 needs to be used in Eq. (33).
However, when chain stiffness is pronounced, the relaxation times get significantly enhanced. Huang
et al. [59] found in d = 2

τrel ≈ W−1κ1/2N5/2 , (34)

and puttingW−1 = τMD, κ = 25, one would find τrel ≈ 28 million times τMD forN = 500. In d = 3, we
profit from the fact that there occurs the intermediate Gaussian regime, for L ≪ L∗ ≈ ℓ3p/ℓ

2
b = κ3ℓb.

So for κ = 25, L∗/ℓb is of order 15000, and hence N = 500 clearly is in the regime where excluded
volume effects should be negligible, and then [84]

τrel ≈ W−1κN2 (35)

which yields about 6 millions times τMD. These estimates imply that indeed 10 millions times τMD

is about enough to have a single well equilibrated chain conformation. Since quantities such as 〈R2〉
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exhibit the problem well-known as [85] lack of selfaveraging, the relative accuracy of N runs of length

τrel to estimate 〈R2〉 is only about
√

2/N (≈ 20% if N = 50). Due to this problem, we do not base
our analysis on numerical data for 〈R2〉; for 〈R2

g〉 the problem fortunately is a bit less serious, but
still relative errors of up to 10% in unfavorable cases still did occur. Only for quantities based on
local observables, such as the adsorbed fraction of monomers f , self-averaging helps and much better
statistical accuracy is reached. Yet also for such quantities well equilibrated chain configurations
(requiring runs of length of the order of τrel) are mandatory.
We add a caveat: in the regime of ǫwall where a long chain is only weakly adsorbed {e.g. Fig. 1},

the conformation contains trains and loops of various sizes. Short loops are predicted [52] to have
monomer coordinates zi ≪ ℓp, while long loops extend far away from the surface. For equilibrating
such structures, the monomers of the trains intermediate between the loops must unbind from
the surface. It is likely that such processes lead to an enhancement of the relaxation times near
the adsorption transition, i.e. a “critical slowing down” occurs, as is familiar from other phase
transitions [86]. However, a study of the (reversible) dynamics of the adsorption transition must
remain a challenge for future work; at this point we draw attention to very interesting work studying
irreversible adsorption of semiflexible polymers [87]. Conformations of irreversibly adsorbed chains
are out of equilibrium, and although this problem may affect some of the experiments, it remains
out of focus here.
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FIG. 2: (a) Conformation of a strongly adsorbed rather stiff chain (N = 500, κ = 64, ǫwall = 0.80) showing the z-coordinates zi
of all monomers i vs monomer index i. Each monomer position is shown by a dot, and subsequent monomers are connected by
straight lines. (b) Projections of selected conformations of strongly adsorbed moderately stiff chains (N = 500, κ = 16, ǫwall =
0.80) into the xy-plane, with excluded volume (left part), and without excluded volume interaction (NoEV) (right part). Loops
are shown in yellow and trains - in dark blue. Typically, the parallel gyration radii components R2

g|| are somewhat smaller in
the NoEV case, and their projections onto the xy-plane exhibit more chain crossings than in the case where EV is included.

The problem of loops versus trains is less relevant for strongly adsorbed chains since then loops
(for large κ) are extremely rare. As an example, Fig. 2a shows the snapshot of the z coordinates of
a typical chain configuration for N = 500, κ = 64 at ǫwall = 0.8. One sees that all z-coordinates zi
of this chain are in the range from about z = 1 to z = 1.9, i.e., no loops at all are present. Typically
z-coordinates move from some local minimum at small z in the range 1 < z < 1.3, a few steps
upwards to reach a local maximum in the range of 1.7 < z < 1.9, and then recede again. We shall
interpret this behavior in terms of the deflection length concept [54] in Sec. V.
In the case of Fig. 2a) we plot z as a function of the monomer index i along the chain (for the sake

of clarity the interval from i = 1 to i = N is divided into three parts) in order to show that z(i)
reaches local minima and maxima, typically separated from each other by several steps. The mean
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distance between such extrema can be taken as an estimate of the deflection length. The average
gyration radius components 〈R2

g〉|| ≈ 1.2× 104, 〈R2
gz〉 ≈ 0.05 also imply that all zi are within a range

of about ∆z ≈ ±0.2 of their average, and typical linear dimensions of this quasi-two-dimensional
polymer are of the order of 102. In contrast, for less stiff chains (Fig. 2b) the xy-projections do reveal
that the conformation of the polymer no longer is rod-like, but rather a loose coil. The snapshots
suggest that in the NoEV case there occur more chain intersections in the chain conformation than in
the case where EV is present (and each intersection point actually means that in three-dimensional
conformation there is a small loop, since strict intersections in the presence of EV are completely
avoided).
The comparison between the cases with EV and without EV in Fig. 2b, illustrates one major

advantage of the simulation approach, namely the effect of particular interactions can be stringently
tested, by switching them on or off, which in an experiment would not be possible. Also individual
chain conformations can be analyzed in detail. Of course, one must not rely in one’s conclusions on
observations of particular conformations only; but the observation that with EV the chain radii are
clearly larger since EV tends to swell the polymer coils emerges also from the averages. For instance,
in the case of Fig. 2b we find 〈R2

||〉 ≈ 6030 with EV and 〈R2
||〉 ≈ 3780 without EV.

Unlike some theoretical studies of detachment kinetics of strongly adsorbed chains [88], where it
is assumed that all monomers of the adsorbed part are strictly localized in the plane z = zmin, we
find, cf. Fig. 2a, that vertical fluctuations in perpendicular direction do occur.

IV. LOCATING THE ADSORPTION TRANSITION

In the summary of the theory (Sec. II) we have emphasized that a sharp adsorption threshold
occurs only in the limit N → ∞. This presents a difficulty for the simulations, which are limited
to rather moderate chain lengths only. As a first test for our procedures, we study next the case of
completely flexible polymers, choosing κ = 0.1 for this purpose. Fig. 3a shows a log-log plot of f vs
N for various choices of ǫwall, and Fig. 3b a plot of 〈R2

g⊥〉/〈R2
g||〉. Note that the precise definition of

the adsorbed fraction that we apply uses the monomer density profile ρ(z) as

f =

∞
∫

0

dzUwall(z)ρ(z)/

∞
∫

0

dzUwall(z) (36)

with the normalization
∞
∫

0

dzρ(z) = 1. As expected, in the non-adsorbed region f(N) decreases for

large enough N towards zero distinctly faster than 1/
√
N , while in the regime of adsorbed chains

the decay slowly bends over in order to ultimately settle down at nonzero asymptotes. For N < 103

neither the asymptotic 1/N decay in the nonadsorbed regime nor the plateau f∞ = limN→∞ f(N)
are clearly reached in the transition regime, but from Fig. 3a a value ǫcrwall ≈ 0.65 seems likely, since
for ǫwall = 0.65 the effective exponent on this log-log plot for large N is close to the theoretical value,
1 − ϕ ≈ 0.52 {cf. Eqs. (5), (6)}. Gratifyingly, the data for f are reasonably well compatible with
the predicted scaling behavior, Eq.(5), see Fig.3c. This estimate is corroborated by the crossing of
the ratios of the radii for different N (Fig. 3b).
Of course, it is clear that for the available not very large N the accuracy with which ǫcrwall can

be located is rather modest, but this is expected in view of the experience with the lattice model
[15] where much longer chains were available. Also the expected change from 〈R2

g〉|| ∝ N2ν to

〈R2
g〉|| ∝ N2ν2 (with ν ≈ 0.59; ν2 = 0.75) in this range of N cannot yet be verified with meaningful
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FIG. 3: a) Log-log plot of f vs N for the case κ = 0.1 and several choices of ǫwall as indicated. Straight lines indicate effective
exponents (quoted in the legend), if one assumes a power-law decay. b) Plot of 〈R2

g〉⊥/〈R
2
g〉|| vs. ǫwall for the case κ = 0.1 and

several choices of N , N = 100, 250, 500 and 750. The horizontal broken straight line indicates the theoretical universal value
F (0) = 0.32 at the transition, where for large enough N all curves should cross. This crossing criterion is compatible with an
estimate ǫcrwall = 0.66±0.01. c) Scaling plot fN1−ϕ of the adsorbed fraction f versus Nϕ (ǫwall− ǫcrwall) for the same four choices
of N as used in (a,b), for the choices ϕ = 0.48, ǫcrwall = 0.66. d) Log-log plot of 〈R2

g〉|| in the adsorbed phase ǫwall = 0.8 and in
the nonadsorbed phase (ǫwall = 0.3), also the case ǫwall = 0.3, κ = 5 is included. Slopes indicate effective exponents

precision (see Fig. 3d), but it is clear that the adsorbed chains have much larger linear dimensions
parallel to the wall than the non-adsorbed ones.
For moderate stiffness (κ = 5, κ = 8) the behavior is still in many respects similar to the case

of flexible polymers (Fig. 4). It is interesting that in this range of κ the location of the adsorption
is hardly distinct from the case of flexible chains: ǫcrwall(κ = 5) ≈ 0.66 ± 0.02 and ǫcrwall(κ = 8) ≈
0.63± 0.01. This range of stiffness hence clearly is outside the range where the theories of Semenov
et al. [52, 53] apply. It is also interesting to note that there the data for 〈R2

g〉⊥/〈R2
g〉|| are clearly

not compatible with a common intersection point at a ratio of 0.32, at least not for the accessible
range of chain lengths. Tentatively one might conclude that a unique intersection point rather could
be found for a ratio in the range from 0.20 to 0.25. One might expect that this behavior reflects
the suggestion that at the adsorption transition, where the chains are still three-dimensional in their
character, excluded volume is not yet felt much, for the available chain lengths. Although, the actual
data for 〈R2

g〉|| in the non-adsorbed phase do not corroborate this suggestion (Fig. 3d), one must be
careful since Eq. (19) implies a very slow crossover from rodlike behavior to Gaussian behavior, and
one decade in N hence may not suffice to clarify any asymptotic exponent.
For κ = 16 and κ = 25 the plots log f vs. log N and 〈R2

g〉⊥/〈R2
g〉|| vs. ǫwall look similar to those

shown for κ = 5 and κ = 8, with the important exception that now a significant reduction of ǫcrwall
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FIG. 4: Log-log plots of f vs N for κ = 5(a) and κ = 8 (b). Broken straight lines indicate power laws with effective exponents,
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g〉|| vs. ǫwall for κ = 5 (c) and κ = 8 (d). Horizontal straight line indicates

the theoretical universal value of the crossing point F (0) = 0.32 {cf. Eq.(8)}, for the case where excluded volume is fully
effective.

occurs. We find ǫcrwall(κ = 16) ≈ 0.53 ± 0.01 and ǫcrwall(κ = 25) ≈ 0.48 ± 0.01. Some data for f vs.
ǫwall for these cases were already given in our preliminary publication [62], and to save space we
do not repeat this material. We only mention that with increasing κ there is a strong tendency
that the curves f vs. ǫwall for different N intersect in a narrow region and their maximum slope
(∂f/∂ǫwall)max occurs in this region and strongly increases with N . Fig. 5 gives some examples for
κ = 32 and κ = 64 (Data for κ = 50 have also been taken, and look similar to those shown, and
hence are not displayed here to save space). We have included here the orientational order parameter
η defined as

η =
3

2
〈cos2 ζ〉 − 1

2
(37)

where ζ is the angle between a bond vector and the z-axis. The average 〈· · · 〉 includes an average
over all the bond vectors of the chain. While η is less useful for flexible chains, since in the adsorbed
phase near the transition many bonds are oriented perpendicular to the surface (and for such a bond
cos2 ζ = 1), for adsorbed semiflexible chains in the adsorbed phase most bonds are approximately
parallel to the surface (and hence cos2 ζ = 0) and this order parameter is certainly useful [62]. E.g., for
the case shown in Fig. 2a η = −0.4855, close to the perfect saturation value −1/2 (while f ≈ 0.99986
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then). On the other hand, for the case shown in Fig. 1 (κ = 16, ǫwall = 0.65, N = 500) η = −0.3943
and f = 0.9332. In the latter case, switching off EV would enhance the order (η = −0.3943
and f = 0.9514); this observation is already an indication that in the transition region from non-
adsorbed mushrooms to weakly adsorbed “pancakes” the description based on the Kratky-Porod
model without EV is not quantitatively reliable.
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FIG. 5: Plots of 〈R2
g〉⊥〉/〈R

2
g〉|| (a), f(b) and orientational order parameter η(c) vs ǫwall for the case κ = 32. Part (d) shows

a plot of f vs. ǫwall for the case κ = 64. Inset of Part (d) shows estimates for the inverse, S−1
max, of the maximum slope

Smax = [∂f/∂ǫwall]
−1
max versus 1/N , for several choices of κ are indicated.

The case of κ = 64 (Fig. 5d) is reminiscent of the behavior of a first-order transition rounded by
finite size, a situation familiar from the Monte Carlo studies of phase transitions [85]. Adapting
the corresponding considerations to the present case, the assumption of a 1st order transition would
imply that the free energy of the adsorbed chain is (c is a constant of order unity)

∆Fads = −cǫwallL− TLsads, (38)

while (neglecting the adsorption enthalpy for the mushroom state) the free energy of the non-
adsorbed chain (n.a) is

∆Fn.a. = −TLsn.a. (39)

Note that for simplicity we disregard here possible slight differences of the energy due to the
bond potential {Eqs. (26), (27)} between both phases, which would not change the essence of the
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argument. Here sads is the entropy due to the deflection fluctuations per unit length of the chain
(i.e., the disorder illustrated in Fig. 2a), while sn.a. is the entropy per unit length in the mushroom
state. If Eqs. (38), (39)} can be used up to the transition point at ǫcrwall, treating near this point sads,
sn.a and the prefactor c in the enthalpic term as constants, one finds ǫcrwall/T = (sn.a − sads)/c. For
finite L, both phases contribute with weights proportional to the corresponding Boltzmann factors,
i.e. wn.a. ∝ exp(−∆Fn.a./T ), wads ∝ exp(−∆Fads/T ), and hence the adsorbed fraction becomes

f = [1 + exp(−Lδ)]−1, δ = c(ǫwall − ǫcrwall)/T (40)

From Eq. (40) one would predict that curves f vs. ǫwall for different N all should intersect at
the point ǫwall = ǫcrwall, f = 1/2, and the maximum slope (which occurs at this transition point) is
proportional to L. The actual data crossing at about f ≈ 0.6 for N = 64, indicates, however, that
the true behavior is less simple. Also the inverse maximum slope S−1

max (cf. inset in Fig.5d) stays
nonzero for N → ∞ but systematically decreases with κ. Indeed, theoretical arguments [52] suggest
that the adsorption transition becomes of first-order strictly only in the limit κ → ∞ (and then
ǫcrwall → 0, however). So it is likely that in a very narrow region of ǫwall around ǫcrwall the sharp entropy

10 100
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1

εcr

w
al

l(κ
)

~ κ− 0.33

Eq.(22)

FIG. 6: Log-log plot of ǫcrwall (dots with error bars) versus κ. Straight line indicates the theoretical slope, −1/3. The broken
line represents the theoretical prediction [53] Eq. (22), when ∆ = 0.55 is used as a corresponding value for the range of our
potential {Eq. (32)}.

jump from sn.a. to the smaller value sads is replaced by a rapid but continuous change. Much longer
chains than available to us would be needed to resolve this.
The estimates ǫcrwall from our analysis still contain relative errors of several percent

ǫcrwall = 0.44± 0.01, 0.38± 0.01, 0.36± 0.01, 0.32± 0.015 (41)

for κ = 32, 50, 64 and 100, respectively. Gratifyingly, these findings are compatible with the theoret-
ical prediction [52], ǫcrwall ∝ κ−1/3, (see Fig. 6). The prefactor predicted for this relation {Eq. (22)}
does not fit our data quantitatively, but this is expected due to the difference between the square well
potential used in the theory [52, 53] and our smooth adsorption potential, Eq. (32). The estimates
for ǫcrwall in our preliminary work, based on a less reliable extrapolation procedure, agree better with
Eq. (22), but we consider the present estimates to be more reliable.

V. PROPERTIES OF ADSORBED SEMIFLEXIBLE CHAINS

We have seen in the previous section that near the adsorption transition the finite size of the chain
length N causes a nontrivial rounding of the singular critical behavior. Outside of the transition
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FIG. 7: Plot of f vs 1/N , for ǫwall = 0.45(a) and 0.40(b) , for several values of κ, as indicated. Both data with (full symbols)
and without excluded volume interactions (open symbols) are included. Note that differences between the EV and NoEV data
are pronounced only close to ǫcrwall, since in the NoEV case ǫcrwall is slightly smaller than in the EV case.

region, however, we expect that a simple extrapolation of all chain properties to the limit N → ∞
should be possible. This idea is tested in Figs. 7 and 8.
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and without excluded volume interactions (open symbols) are included. Note that differences between the EV and NoEV data
are only pronounced close to ǫcrwall, since in the NoEV case ǫcrwall is slightly smaller than in the EV case.

Fig. 7 shows extrapolation for f , Fig. 8 extrapolations of η, choosing ǫwall = 0.45 and 0.40 as
examples. One can see that in the nonadsorbed region both η and f converge towards zero, as
expected, ultimately linear in 1/N . It is observed that close to the adsorption threshold system-
atic discrepancies between the data with EV and without EV occur. We find that without EV the
adsorption threshold is slightly smaller (but the accuracy of Eq.(41 ) does not suffice to reliably
quantify this effect). Conversely, deep in the phase of adsorbed chains, both order parameters con-
verge to nonzero values, again ultimately linear in 1/N . The resulting asymptotic order parameters
fextr = limN→∞ f(N) and ηextr = limN→∞ η(N) are shown in Fig. 9.
We now return to the observation, Fig.2a, that the localization of the chains in the plane z = zmin is

not perfect. This means that the picture of the adsorbed chains as a strictly two-dimensional polymer
is not fully applicable, and this casts doubt whether or not Eqs. (14), (20), (21) are accurate. Indeed,
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FIG. 9: Extrapolated values of the adsorbed fraction (fextr), case (a), and orientational order parameter (−ηextr), case (b),
plotted vs. ǫwall. Note that no meaningful estimates can be found near ǫcrwall(κ). Lines connecting the points are guides for the
eye only. Error bars are only shown when they exceed the size of the symbol.

when we apply Eq. (29) to estimate the effective decay length ℓeffp of orientational correlations, we

find that ℓeffp is only slightly enhanced over κ, even for strongly adsorbed chains, Fig. (10a).
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FIG. 10: (a) Plot of the decay length ℓeff/ℓp = −n/ ln〈cos θ(n)〉 of an adsorbed chain for N = 250 vs. κ, for several choices of
ǫwall, including both choices n = 1 (i.e., the angle between neighboring bond vectors is used) and n = 2 (i.e., the angle formed
between next nearest neighbors bond vector is used). The inset illustrates the geometry of the xy coordinates of two subsequent
bonds where the x-axis is chosen such that the bond from ~rj−1 to ~rj lies in the (x, y)-plane. The angles αj = π/2− ζj are the
complements to the polar angles ζj of the bond with the z-axis. (b) Autocorrelation function C(n) = 〈cos θ(n)〉 plotted versus
the index n characterizing the distance between monomers i, j along the chain (n = j − i), for N = 500, κ = 8 (main panel)
and κ = 16 (inset). In the main panel the (theoretical) initial decay laws exp(−n/κ) and exp(−n/2κ) are included (straight
lines in the semilog plot). (c) Semilog plot of C(n) vs. n for N = 500 and several choices of κ, as indicated, when the excluded
volume interaction is shut off. Straight lines show fits to decay laws C(n) = A exp(−n/ℓeffp ) and the fit parameters for the

amplitude A and the decay constant ℓeffp are quoted in the legend. The inset shows a magnification of the initial part of the
decay for κ = 8, ǫwall = 0.8, comparing the actual data to the three decay laws.

While for a chain in strictly two dimensions the use of Eq. (29) yields ℓeffp /ℓb = 2κ/kBT readily
[59, 60], this is not the case here. We can understand this fact by considering the geometry of two
subsequent bond vectors in more detail (insert of Fig. 10a). Choosing polar coordinates to describe
the bond vectors,

~rj − ~rj−1 = ℓb(− cosαj, 0, sinαj). (42)

~rj+1 − ~rj = ℓb(cosαj+1 cosφ, cosαj+1 sinφ, sinαj+1) (43)
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and noting that for strongly adsorbed stiff chains the angles αj, αj+1 and φ are small, we find that
the angle θ between the bonds becomes

θ2 = φ2 + (αj − αj+1)
2. (44)

Only when all coordinates zj−1, zj, zj+1 are the same, αj − αj+1 ≡ 0, and θ corresponds to a
single degree freedom (φ) transverse to the chain backbone. But when one moves several steps along
the chain, a crossover of the decay of C(s) from an initial decay length ℓp to the two dimensional
value 2ℓp sets in, and this strictly d = 2 value ℓeffp = 2ℓp is only found for strongly adsorbed chains,
but not for weakly adsorbed ones (Fig. 10b,c). It is seen that for non-adsorbed chains (i.e., the
cases ǫwall = 0.4, 0.5, 0.6 for κ = 8) C(n) ≈ exp(−n/κ) describes the first decade of the decay of
C(n) accurately, as expected in d = 3 where excluded volume effects play a role only for very large
distances (the crossover to the power law Eq. (15) is expected to occur when n becomes of order κ3).
For ǫwall = 0.7, however, we have a weakly adsorbed chain with initial decay C(n) ≈ exp(−n/κ) for
n ≤ 5, and then a region of pronounced curvature on the log-log plot starts. This curvature in our
opinion, does not reflect the power law Eqs. (15) that applies to chains that “live” precisely either
in d = 2 or in d = 3. It reflects rather the fact that a weakly adsorbed chain with loops and trains
“lives” in between the dimensionalities. For ǫwall = 0.8, however, the chain is strongly adsorbed, and
in d = 2 the crossover to the power law Eq. (15) sets in when n exceeds ℓeffp ≈ 2κ = 16 distinctly.
Note that the theoretical decay law C(n) = exp(−n/2κ) deviates slightly but systematically from
the actual data also for n < 2κ, since the actual decay starts out as C(n) ≈ exp(−n/κ) for n = 1, 2, 3
and then crosses over to A exp(−n/ℓeffp ) near n = 3, 4 (see Fig. 10c, insert). The insert in Fig. 10b
shows the analogous behavior for κ = 16; there it is the case ǫwall = 0.6 which is “in between” the
dimensionalities (since ǫcrwall ≈ 0.53 for κ = 16, ǫwall = 0.7 then already is a strongly adsorbed case).

0 0.2 0.4 0.6 0.8
ε

wall
/k

B
T

100

<
R

g

2
>

||

k=5
k=8
k=16
k=25
k=32
k=50
k=54

(a)

N=100

0.2 0.4 0.6 0.8 1
ε

wall
/k

B
T

0.0

5.0×10
3

1.0×10
4

1.5×10
4

<
R

2

g
>

||

κ = 5
κ = 8
κ = 16
κ = 25
κ = 32
κ = 50
κ = 64
κ = 100

N = 500

(b)

FIG. 11: Plot of 〈R2

g||〉 vs. ǫwall/kBT for N = 100 (a) and for N = 500 (b) within a broad range of values for κ. In (a) both
data with excluded volume (full symbols) and without it (open symbols) are included. The horizontal region of small ǫwall/kBT
correspond to the d = 3 mushroom case. The region of gradual transition is shaded, and the horizontal plateaus on the right
side (large ǫwall/kBT , are only reached for large enough κ) correspond to the d = 2 strongly adsorbed chains.

In order to disentangle the effects due to EV (which causes ultimately the crossover of C(n) to a
power law, cf. Eq. (15)), and the effects due to adsorption-induced crossover of the decay length ℓeffp
from κ to 2κ {cf. Eqs. (13), (14)}, it is useful to study C(n) for chains where EV interactions are
shut off (Fig. 10c). Restricting attention to the strongly adsorbed case (ǫwall ≥ 0.8), we are always
able to fit an exponential decay law to the data, but it significantly differs from Eqs. (13), (14)

C(n) = A exp(−nℓb/ℓ
eff
p ), largen, (45)

where A is slightly smaller than unity and ℓeffp /ℓb slightly smaller than 2κ, if κ is not extremely
large. Eq. (45) provides a smooth crossover from Eq. (13) to Eq. (14) in the transition region
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of the adsorption transition, and consequently there must occur a gradual transition between the
description of 〈R2

g〉|| in the d = 3 case {Eq. (19)} and the d = 2 case {Eq. (21)}. This gradual

transition is experienced when ǫwall increases (Fig. (11). Note that data for 〈R2
g||〉 where EV is

switched off always fall somewhat below the data where EV is included, and as expected, for the
quasi-two-dimensional strongly adsorbed chains, this effect of EV is more important. Data similar
to Fig. 11 for N = 250 have already been given in our preliminary publication [62]; the smaller N
the broader is the region of ǫwall/kBT over which the transition to the strongly adsorbed state is
rounded; at the same time, the effect of EV becomes less important, since L then is no longer very
much larger than ℓeffp .
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FIG. 12: Plot of 3〈R2

g||〉/(2ℓpL) vs. L/ℓp for κ = 16, 25, 32 and 50, as indicated, and two choices of ǫwall = 0.8 (a) and 0.6
(b). Both data with (full symbols) and without (open symbols) excluded volume interactions are included. Part (a) presents
the same data as log-log plot, to indicate the asymptotic behavior for large L/ℓp: the random walk limit (horizontal plateau)
is approached by the KP model, while the actual data with EV approach the d = 2 self-avoiding walks (SAW) limit. Broken
curves in part (b) are guides to the eye only.

As a consequence of this gradual change in the properties of the chains with increasing strength
of the adsorption potential, which also depends very sensitively both on the intrinsic chain stiffness
(as measured in our model by the parameter κ) and the chain length, great care is needed when
Eqs. (20), (21) are used to analyze experimental data on adsorbed chains. Often AFM data on
adsorbed DNA with contour lengths L in the same range as ℓp are analyzed (sometimes with the
intention to identify subtle effects due to differences in the base pair sequences of ds DNA from
various sources). The present results raise doubts on the validity of such analyses. As an example,
we plot our data for two choices of ǫwall in the adsorbed regime, Fig.12, in the form suggested by
Eq. (21), namely 3〈R2

g〉||/(2ℓpL) is plotted vs. L/ℓp (note that in our model L/ℓp = (N − 1)/κ and

ℓpL = κ(N − 1)〈ℓ2b〉). For L/ℓp ≤ 5 the data follow the KP model, but in this regime the deviations
from the rod limit (which has no information on the actual value of ℓp whatsoever!) are minor. For
L/ℓp > 5 we see that part of the data falls above the KP result and part below it. The enhancement
of 〈R2

g〉|| relative to the KP result can be attributed to excluded volume, and consequently these

deviations become the more important the larger L/ℓp is. The deviations when 〈R2
g〉|| falls below

the KP result, on the other hand, are due to the fact that then the gradual crossover of ℓeffp from ℓp
to 2ℓp has not been completed.
This problem becomes more important the smaller κ is, of course, since then the proximity of

the adsorption transition matters. Therefore in Fig. 12b the data for κ = 16 without EV (dotted
curve) fall distinctly below the KP prediction (full line). With EV, a crossover to the d = 2 SAW is
observed but the prefactor of the power law is smaller than for d = 2 SAW in part (a). For κ = 16
indeed ǫcrwall = 0.53 is close to the studied value ǫwall = 0.60, and the strong depression of these
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data away from the KP results is easily explained because the data still fall in the regime of only
weekly adsorbed chains. Note that it may happen that data fall precisely on top of the KP curve
due to a lucky cancellation of corrections: this happens for the data for ǫwall = 0.6 and κ = 16 near
L/ℓp ≈ 31: if EV is switched off, the data fall below the KP curve. In contrast, for κ = 50 the data
including EV are distinctly larger than the KP result.
To elucidate the crossover to the self-avoiding walk limit for large L/ℓp, we note from Huang et al.

[60] that 〈R2(L)〉 = 0.74L3/2(ℓeffp )1/2 where ℓeffp in strictly d = 2 dimensions is ℓeffp = 2ℓp. Combining
this with the result for the universal ratio [90]

〈R2
g〉/〈R2〉 = 0.14026± 0.00011 (46)

we predict that 〈R2
g〉 = 0.1468L3/2ℓ

1/2
p in d = 2, and this yields the straight line included in the

log-log plot (Fig. 12a) which indeed is compatible with our data.
Already in our preliminary work [62], we have shown that in the nonadsorbed phase, for ǫwall ≪

ǫcrwall, the linear dimension 〈R2
g〉|| is compatible with the result one predicts from the KP result

{Eq. (19)} for d = 3 in the bulk (i.e., 〈R2
g〉|| = 2

3
〈R2

g〉d=3). We do not follow up on this here, because

the coil conformations are not strictly isotropic (for very small ǫwall we find that 〈R2
gz〉 slightly

exceeds 1
2
〈R2

g〉⊥ while 〈R2
gz〉 slightly but systematically decreases (and 〈R2

g〉|| slightly increases) with
increasing ǫwall; so these data do not provide a very accurate test of Eq. (19). Actually, this slight
dependence of the radii in the nonadsorbed phase is also responsible for the gradual decrease of the
ratio 〈R2

g〉⊥/〈R2
g〉|| for medium values of N , long before ǫwall has reached ǫcrwall, see e.g., Fig. 4c, 4d,

5a.

VI. CONCLUSION

Using large-scale Molecular Dynamics simulation of a coarse-grained model for semiflexible macro-
molecules, the effect of chain stiffness on the adsorption transition and the structural properties of
adsorbed chains have been clarified. The adsorbing impenetrable perfectly planar walls were de-
scribed by the wall potential, Eq. (32), which has a strength ǫwall and a minimum at a short distance
from the surface. The semiflexible macromolecules were described as a chain of beads of diameter
σ(= 1) connected by (anharmonic) springs (the distances ℓb between neighboring beads being also
about unity) and stiffness was controlled by a potential {Eq. (28)} of strength κ. For κ ≤ 1 this
model describes fully flexible chains, but for κ > 2 the chains are semiflexible, with persistence length
(computable via Eq. (29) in d = 3 dimensions) ℓp/ℓb = κ/kBT (= κ, since kBT = 1 throughout).
The “chain length” (number of monomer units) N ( and hence the contour length L = (N − 1)ℓb)
was varied from 50 to 750, the stiffness κ from 5 to 100, and simulations were carried out also for the
case where the excluded volume (EV) interaction between non-neighboring beads along the chain
were shut off. In this case, our model constitutes a discretization of the Kratky-Porod (KP) wormlike
chain model, to which it must reduce in the limit where N as well as ℓp/ℓb, are very large. Thus,
our simulations are suited to clearly identify the conditions under which EV matters for semiflexible
polymers.
Varying κ and using suitable extrapolations to the limit N → ∞ (only in this limit the adsorption

transition is a well-defined phase transition in the sense of statistical thermodynamics) we verify
Semenov’s [52] prediction for the variation of the location of the transition with chain stiffness,

ǫcrwall ∝ ℓ
−1/3
p . We also verify the expectation, that strongly adsorbed very stiff chains (κ ≫ 1) behave

like a KP model in d = 2 dimensions, with an effective decay length of orientational correlations
ℓeffp = 2ℓp, i.e., twice as large as in d = 3 dimensions. However, we also show that near the adsorption

transition the change of ℓeffp from ℓp to 2ℓp, takes place rather gradually, and there exists a region
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of weak adsorption where the behavior of the chain is in many aspects “in between” d = 2 and
d = 3 dimensions, e.g. orientational correlations (in the absence of EV) decay with distance s as
A exp(−s/ℓeffp ), with A < 1 and ℓp < ℓeffp < 2ℓp. The extent ∆ǫwall of this region depends both on

N and ℓp, however. This crossover has the effect that parallel linear dimensions 〈R2
g〉|| of the chains

are less than the KP predictions while EV leads to deviations from KP predictions in the opposite

direction (since in d = 2, where chain intersection is strictly forbidden, 〈R2
g〉|| ∝ L3/2ℓ

1/2
p for L ≫ ℓp

rather than the KP prediction 〈R2
g〉|| ∝ Lℓp, cf. Fig. 12a. As a consequence, we conclude that the

interpretation of the variation of 〈R2〉 and 〈R2
g〉 with L is a very subtle problem for adsorbed chains,

and the appropriateness of the KP predictions should be carefully examined.
A very interesting problem concerns the residual three-dimensional character of adsorbed chains,

even in the strongly adsorbed case, the monomers are not confined strictly to the preferred plane
z = zmin, but make excursions above and below it (Fig. 2a). These excursions exhibit an obvious
short-range correlation, over the length scale of Odijk’s [54] deflection length. However, surprisingly
both the adsorption order parameter f and the orientational order parameter η show a pronounced
variation with 1/N as N → ∞ in the regime of strong adsorption (cf. Figs. 7, 8), for very long
chains the order being significantly more perfect (Fig. 9) than for shorter ones. This fact implies
that small-amplitude long wavelength excitations around the contour of an adsorbed chain (which
are the more suppressed the shorter a chain is) must play a decisive role in helping to stabilize a
long chain in the strongly adsorbed state. It remains an exciting problem for the future to clarify
the nature of this phenomenon in more detail, as well as the dependence of the perpendicular linear
dimension 〈R2

gz〉 and the deviation of η from parallel bond orientation (Fig. 8) on chain stiffness.
Thus, we have found that the behavior of semiflexible adsorbed polymers is very rich, and from the
theoretical point of view, not yet fully understood. We hope that the present work will motivate
experiments as well as theoretical studies to provide a full understanding. Acknowledgment: One
of us (A.M.) is grateful to the Alexander-von-Humboldt foundation for financial support and also
thanks the COST action No. CA17139, supported by COST (European Cooperation in Science and
Technology [91]) and its Bulgarian partner FNI/MON under KOST-11.
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[30] N. Mücke, K. Klenin, R. Kirmse, M. Bussiek, H. Herrmann, M. Hafner and J. Langowski, PLoS

ONE 4, e7756 (2009)
[31] J. Moukhtar, C. Faivre-Moskalenko, P. Milani, B. Audit, C. Vaillant, E. Fontaine, F. Mongelard,

G. Lavorel, Ph. St-Jean, F. Argoul, and A. Arnoedo, J. Phys. Chem. B 114, 5125 (2010)
[32] D. Welch, M.P. Lettinga, M. Ripoll, Z. Dogic and G.A. Vliegenthart, Soft Matter 11, 7507

(2015)
[33] N. Gunari, M. Schmidt, and A. Janshoff, Macromolecules 39, 2219 (2006)
[34] M. Sahl, S. Muth, R. Branscheid, K. Fischer, and M. Schmidt, Macromolecules 45, 5167 (2012)
[35] K. Binder, H.-J. Butt, G. Floudas, H. Frey, H.-P. Hsu, K. Landfester, U. Kolb, A. Kühnle, M.
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