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We develop a theory describing two-beam energy exchange in a cholesteric liquid crystal (CLC)
stabilized in the planar state by a helicoidal polymer network. The CLC layer is placed between
photorefractive and non-photorefractive substrates and illuminated by two intersecting coherent
light beams. An interference pattern created by the incident beams induces  a spatially periodic
space-charge electric field in the photorefractive substrate. The field penetrates into the adjacent
CLC layer and interacts  with the charges trapped on the polymer fibrils forcing the fibrils to
move  along  the  helicoidal  axis.  At  new positions,  the  fibrils  reorient  the  CLC director  and
therefore induce a director grating. The light beams propagating across the cell couple within the
grating. We calculate the energy exchange between the coupled beams and the gain of the weak
light beam. We analyze the dependence of the gain coefficient on the parameters of the polymer
network and the CLC, and show that  it can reach values greater than those obtained in typical
solid photorefractive crystals.

1. Introduction

Due to a high refractive index modulation of order 0.1-0.2 caused by the liquid crystal (LC)
director reorientation, a very strong energy transfer between coupled light beams is observed in
LC based systems.1–3 The gain coefficient in such systems is more than two orders of magnitude
larger  than  that  in  typical  solid  photorefractive crystals.4,5 A  whole  set  of  analogous
photorefractive liquid crystalline systems is treated in the literature.6-11 In recent years the hybrid
organic-inorganic photorefractives, in which an LC sample is placed adjacent to a photorefractive
or  photoconducting inorganic  layers  have  been  extensively  studied.9-11 The  photo-generated
charges contained in the inorganic layers create a space-charge field, which penetrates into the
LC layer and modulates the LC director creating a director grating and in turn a refractive index
grating. As shown in Refs. 12-14, the Bragg regime can be realized in these systems, where the
coupled light beams generate only first order diffracted beams.

It  has  been proposed that  the  formation  of  a  director  grating  in  hybrid organic-inorganic
photorefractives is governed by the interaction of the space-charge field with the LC flexoelectric
polarization15, rather than by static dielectric anisotropy coupling.16,17 It allowed for a description
of the experimental results obtained for both nematic15 and cholesteric LC cells.18,19 

The gain of the two-beam energy exchange in hybrid organic-inorganic photorefractive cells
depends strongly on the director boundary conditions at the LC cell substrates, i.e., director pre-
tilt  angle  and  anchoring  energy.  In  the  cells  with  a  flexoelectric  mechanism of  the  director
reorientation, the gain becomes negligibly small when there is no director pre-tilt at the LC cell
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substrates. This takes place in the planar state of the cholesteric liquid crystal (CLC) with the
CLC helical axis perpendicular to the cell substrates. However, in recent times, the stable CLC
planar  states  are  obtained  using  polymer  networks.  Such  polymer  stabilization  provides
additional functionalities to the CLC.20-25 In particular,  as was shown in Ref. 26,  the polymer
network can exhibit translational motion in response to an external electric field, and due to the
coupling of the network with the LC this polymer network motion changes the CLC helical pitch.

In  the  present  paper,  we  speculate  that  the  formation  of  the  space-charge  field  in  the
photorefractive  substrate  of  the  CLC  cell  may  control  translational  motion  of  the  polymer
network,  and  therefore  affect  the  director  grating  formation. We  study  two-beam  coupling
enabled by the director grating formed in the planar state of the CLC due to the polymer network.

This paper is organized as follows. In Sec. 2 we introduce a model of the hybrid cell
with the CLC layer stabilized in the planar state by the polymer network, and derive and
solve equations for the CLC director profile under a space-charge electric field. In Sec. 3
we consider propagation and coupling of two light beams in the CLC cell with a director
grating,  derive  expressions  for  the  exponential  gain  coefficient,  and  analyze  the
influence  of  parameters  characterizing  the  polymer  network  and  CLC  on  the  gain
coefficient. In Sec. 4 we present brief conclusions.

2. Director grating induced by the polymer network

Consider  a  CLC  layer  placed  between  photorefractive  (inorganic  crystal)  and  non-
photorefractive substrates, where the CLC is stabilized in the planar state by a helicoidal polymer
network with the helix axis perpendicular  to the CLC layer substrates.  The  z-axis is directed

along the helix axis and the CLC layer is bound by the plane  z=−L/2  from the side of

photorefractive substrate and by the plane at z=L/2  from the side of the non-photorefractive
substrate (Fig. 1). Due to the anchoring, the CLC director and the polymer fibrils are initially
aligned in the same direction.

Two  intersecting  coherent  light  beams   and

 illuminate the hybrid cell. The bisector of the beams is directed along

the z-axis, and the wave vectors lay in the xz-plane. The polarization vectors of the beams,

, lay in the xz-plane at the entrance plane of the CLC cell, z=−L/2 , but they can rotate
as  the  beams  propagate  across  the  cholesteric  cell.  The  beams  produce  a  light  intensity
interference pattern in the photorefractive substrate,

,                                            (1)

where the modulation parameter ,  is the angle between incident

beams in the photorefractive substrate,  ,   are the intensities of the incident

beams, and  is the wave number of the intensity pattern.
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FIG.1. Schematic of the CLC cell, showing light beams incident from a photorefractive medium,

together with associated wave- and polarization vectors. The quantities ,  are defined
in the text. The horizontal lines to spanning the cell depict the CLC helical twist.

The light intensity pattern given by eq. (1) induces a space charge inside the photorefractive
substrate.  The  space-charge  density  is  modulated  along  the  x-axis  with  a  period  equal  to

 and gives rise to the space-charge field with a magnitude , which penetrates
into  the  adjacent  CLC layer. In  particular,  in  an  infinite  photorefractive  medium and  for  a

diffusion-dominated space-charge field  is as follows:27

  ,                         (2)

where   is  the  diffusion  field,   is  the  saturation  field,  and   are  respectively  the

acceptor and donor impurity densities, ε Ph  is the dielectric permittivity of the photorefractive

material, e  is the electron charge, and is the Boltzmann constant.
However, the photorefractive medium is rather semi-infinite and, in general, the

solution for the electric fields in the photorefractive substrate and the LC is actually a complex
coupled problem. Nevertheless,  if  we suppose that  expression (2) remains valid  at  the CLC-
photorefractive medium boundary, we can use eq. (2) as the boundary condition for the electric
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field  in  the  CLC cell. Then,  supposing  that  at  the  non-photorefractive  substrate  the  electric
potential can be chosen to be a zero and solving the Poisson equation, we obtain the following
expressions for the electric field in the CLC bulk:19

,                      (3)
where

      (4)               

Here  ,   is  the  modulation  parameter at  the  entrance  plane

,  and  are the CLC static dielectric constants parallel and perpendicular to the
director.

We confine ourselves to just studying the influence of the polymer network under the space
charge field on the CLC director spatial profile. The polymer network is comprised of uniformly
distributed fibrils aligned during the polymerization in the same direction as the CLC director.
As in Refs. 26 and 28, we suppose that the ions (positive or negative) are trapped on the polymer
fibrils, which therefore can exhibit translational motion in response to the electric field. For the

CLC in the planar state,  we can introduce the director  in the form .  In the
absence of the space-charge field, the CLC director matches the orientation of the polymer fibrils,

which is described by the angle  where  is the initial cholesteric

pitch (i.e. before the fibril translation influences the CLC pitch). Under the component  of
the photorefractive electric field (3), the charged fibrils move along the z-axis to new positions;

the translation of the polymer fibrils along the z-axis under this field is denoted by . The

polymer fibril initially located at  with the twist angle  is moved to the

position where the twist angle of the CLC director is . Because of this translation, there
appears to be a difference in the twist angles of the CLC director and the polymer fibril, such that

.  Due  to  the  anchoring  of  the
director with the polymer fibrils, this difference influences the director spatial distribution. Thus,
following Ref.  26 we can  write  the  contribution  of  the  polymer  network  into  a  free  energy

functional of the CLC cell in the form , where

.              (5)

In eq. (5) the first term is the volume density of the polymer network elastic energy, the second
term is the surface energy of the CLC on the fibrils surface per unit volume, and the third term
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describes  the  interaction  of  the  photorefractive  electric  field  with  the  fibrils  due  to  the  ions
trapped on the fibrils.

In the initial state at zero space-charge field the homogeneous CLC twist does not produce
any flexopolarization;  therefore,  the flexoelectric  effect  contribution  to  the CLC free energy,
which may arise due to the CLC helix deformation will be of a second order in the space-charge
field. Neglecting also the direct action of the photorefractive and light fields on the CLC director,

we must minimize the total free energy functional  where  is the volume
density of the CLC elastic energy, which in the one-constant approximation is as follows,

.                                                     (6)

Then,  minimizing the  functional   we obtain  the  Euler-Lagrange equations for  the

fibril translation  and the director angle :

,                           (7)

                               (8)

Expressions for the polymer fibrils translation  and the director angle  can
be decomposed as follows,

,                                                       (9)

.                                      (10)

Substituting eqs. (9) and (10) in eqs. (7) and (8) we obtain equations for the magnitudes 

and :

,                                  (11)

.                                             (12)

 In eq. (11) we can neglect contribution to the fibril translation magnitude   from the

small angle  in comparison with contribution from the electric field and arrive at
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.                                               (13)   

We accept “soft” boundary conditions at the photorefractive substrate  assuming the
fibril anchoring and the director azimuth anchoring with the substrate to be weak and setting the

fibril translation magnitude at the substrate to be . The fibril translation causes

the director rotation at the photorefractive substrate from the initial angle , and

for the director angle   we accept the free boundary condition:  . As the
photorefractive  field is  localized  near the photorefractive  substrate,  such boundary conditions
allow the photorefractive field to maximize its effect on the charged polymer fibrils, the CLC
director, and therefore on the CLC pitch. The experimental realization of these conditions may be
based  on  a modification  of  a technique suggested  in Ref.  29,  where  a  polymer  network  is
fabricated in the CLC mixture. Due to the photo-initiator embedded in one of the two alignment
layers coating the cell substrates, a polymer network is fabricated in the way that it is localized
close to one surface, but not touching this surface. We also refer to Refs. 30 and 31, where it is
shown  that  the  LC  director  can easily slide  over  the  substrate. At  the  non-photorefractive

substrate   we  suppose  “strong”  fibril  and  director  anchoring:  ,

.

It is plausible to assume the fibril translation magnitude at the photorefractive substrate  to

be proportional to the magnitude of the photorefractive field at this substrate, :
 

,                                                           (14)

where  is a constant, which, in fact, depends on the charge localized on the polymer fibril and
elasticity of the polymer network in CLC.

Now taking into account boundary conditions for the fibril translation magnitude   and eq.

(4) for the solution to eq. (13) takes the form

,    (15)

where

      (16)             
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As it is seen from eqs. (14) - (16) and (5), contribution to the fibrils translation magnitude
arises from the interaction of the photorefractive field with the fibrils in the cell bulk (terms with

coefficient ) and at the boundary of the photorefractive substrate (terms with coefficient ).

Substituting eq. (15) in eq. (12) and using boundary conditions for the director angle ,
we obtain a solution to this angle as follows,

,                                          (17) 
where

                 (18)

and

                      (19)

Eqs. (10) and (17) - (19) describe the director grating induced in the polymer stabilized CLC
by the charged polymer fibrils translation under the photorefractive field. 

For numerical calculations of the fibril translation and the director grating magnitudes we use

the polymer network parameters ,  and the initial CLC

pitch  obtained in Ref. 26 for the cell with thickness . As for the CLC

parameters  we use  the  following typical  numbers and  12 and  set  the  elastic

constant to be . In order to evaluate a magnitude of the space-charge field ,
we follow formula (2) and Ref.  12, where the photorefractive substrate SBN:Ce was used;  the

dielectric  permittivity  of  the  photorefractive  layer  is  given  by   at  temperature

. The value of parameter   is taken to be equal to 0.2 corresponding to the

incident wave amplitudes ratio , which is typical for the experiments
on the two-beam energy exchange.

Below in Figs. 2 – 4 we present results of calculations of the fibrils translation magnitude and
the director grating magnitude for different values of the polymer network parameters. It allows
us to demonstrate an impact on these magnitudes of the fibrils anchoring strength with the CLC
director (A), the polymer network elasticity (B), the photorefractive field interaction with charged
fibrils in the cell bulk (C) and at the photorefractive substrate (D), as well as the CLC elastic
constant K.
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In Fig. 2a, we show a ratio of the fibrils translation magnitude at the photorefractive substrate

to the initial cholesteric pitch, , as a function of the grating spacing  for different values
of the parameter . According to eq. (14), this ratio increases with an increase of the parameter

 and  the  -dependence  of  this  ratio  reproduces  the  corresponding  behavior  of  the  z-

component of the photorefractive field . The value of the parameter  is unknown, therefore

using Fig. 2a we can choose its value to be such that the maximum of the ratio  does not

exceed 0.1. Therefore, for our further calculations, we use values  not exceeding 
.

In Fig. 2b, we present the ratio   as a function of position in the cell for different

values of parameter D for a director grating spacing . It is seen that the polymer fibrils

translation  in  the  cell  bulk,  ,  increases  with  an  increase  of  parameter  D,  but  the  most

significant effect is only near the photorefractive substrate. The plots of the ratio   as a
function of the position in the cell for different values of parameters A and B are shown in Figs.
3a and 3b, respectively.

        
                                      (a)                                                                            (b)
FIG. 2. (a) Ratio of the fibrils translation magnitude at the photorefractive substrate to the initial
cholesteric pitch versus the director grating spacing. (b) Ratio of the fibrils translation magnitude

to the initial cholesteric pitch as a function of position in the cell, . (in ) =
3 - solid line, 5 - dashed, 6 - dotted.

The magnitude of the fibrils translation decreases with an increase of parameter A, which is
caused by retarding of the fibrils motion due to their anchoring with the LC director. At the same

time,  magnitude   increases  with  an  increase  of  parameter  B connected  with  the  term
describing the polymer network elasticity. For the fixed fibril translation at the photorefractive

substrate,  ,  an  increase  of  the  network  elasticity  leads  to  a  more  slowly  decreasing

displacement of the fibrils in the cell bulk. However, a contribution to the magnitude  from
terms describing direct interactions of the photorefractive field with charged fibrils in the cell
bulk [terms in eq.  (16) with coefficient  C] is  negligibly small  due to  the rapid decay of the
photorefractive  field  with  distance  from  the  substrate.  Therefore,  impact  of  the  network
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parameters  A and  B on   is provided mainly in the form of ratio  A/B that  is  seen at  the
comparison of Figs. 3a and 3b.

               
                                         (a)                                                                        (b)
FIG. 3. Ratio of the fibrils translation magnitude to the initial cholesteric pitch as a function of

position in the cell for different values of parameters A and B. (a) A (in ) = - solid

line,  - dashed,   - dotted,  ; (b) B (in  ) =  - solid line,  -

dashed,  - dotted, ; .

The plots of the director grating magnitude described by the angle   as a function of
position in the CLC cell  for different  values of the parameters  D,  A,  B, and the CLC elastic
constant K are shown in Fig. 4a, 4b, 4c, and 4d, respectively. 

       
                                     (a)                                                                             (b)
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                                       (c)                                                                            (d)    
FIG. 4. Director grating magnitude as a function of position in the CLC cell for different values

of the parameters  D,  A,  B and elastic constant  K.  (a)  (in  ) = 3 - solid line,  5 -

dashed, 6 – dotted; (b)  A (in  ) =  - solid line,  - dashed,   - dotted,

, ;  (c) B (in  ) = - solid line,  -  dashed,   - dotted,

,  ;  (d)  K  (in )  =  -  solid  line,  -  dashed,

- dotted.

One can see from Figs. 4a and 4c that as in the case of the fibrils translation magnitude 

the  director  grating  magnitude   increases  with  an  increase  of  the  parameters  D and  B.

Dependence   on the parameter  A, as we can see from eqs. (17)-(19) and Fig. 4b, is more

complicated:  the  magnitude   increases with an  increase  of A in  points  near  the
photorefractive substrate, but rapidly decreases as the distance increases from the substrate. We

also can see from Fig. 4d that smaller elasticity, K, of the CLC promotes greater values of . 
As in the case of the fibrils translation magnitude the terms with coefficient C give negligibly

small contributions to the magnitude ; therefore, at further study of the light beams coupling
on the director grating we do not take into account these terms in eqs. (17)-(19). 

3. Beams coupling and gain of the signal beam

The incident light beams propagate in the CLC cell, where the director grating is induced by
the polymer fibrils translation. The electric field of the light beams in the CLC satisfies the wave
equation

,                                                       (20)              

where  is the CLC dielectric tensor in the optical frequency regime. In the planar CLC it has the
form 

.                                               (21)

Here , and  are the principal values of the dielectric tensor at optical frequency
along and perpendicular to the LC director.

In our case, the director angle  is described by eq. (10). Substituting eq. (10) into eq. (21)

and neglecting  second order  and higher  terms  in the  small  angle  , one  can rewrite  the

dielectric tensor  in the following way:
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 ,                                              (22)

,    ,        (23)

where is a dielectric tensor of the CLC without the director grating.

The electric field vector  in eq. (20) is a superposition of the electric vectors of the two

light beams,  . We study a case when the wavelength of incident light beams   is
outside of the cholesteric gap and the waveguide regime takes place. In this regime the condition

holds, where  ,  are  respectively  the  ordinary  and  extraordinary  wave
refraction indices, and the eigenmodes of electromagnetic waves are nearly circular.32 Then in the

CLC with dielectric tensor , the Cartesian components of each light beam can be written in the
form of the superposition of two waves with opposite circular polarization,19

                                 (24)
and

          
                                  (25) 

 

where are the refractive indices for waves with the left and right circular polarizations,

respectively;  denotes the beams,  are the beams’ incidence angles.
We set the wave vectors of the light beams to be symmetric with regard to the cell normal, so

that  . Since the angle   is small,  the refractive indices for waves with the same

circular polarization may be regarded as equal, , .  

The term   in eq. (22) is responsible for the  coupling between the light
beams in the CLC. We follow a procedure outlined in Ref. 33 and used in our previous papers.18,19

It  involves  setting  electric  field  magnitudes  in  eqs.  (24),  (25)  , ,  and
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assuming these magnitudes vary slowly across the cell. We define beam 1 to be the signal and

beam 2 to be the pump, with the consequence that the pump magnitude  Substituting
the  electric  fields  given  by  eqs.  (24)  and  (25)  into  the  wave  equation  (20)  we  adopt  the
undepleted  pump approximation27,  for  which  the  signal  has  a  negligible  effect  on  the  pump

magnitude. In this case, the pump magnitude  may be regarded as constant and therefore

the set of coupled equations for the electric field magnitudes  and  reduces to a single

equation for the signal beam magnitude ,

,                                                            (26)
where      

                            (27)

The solution to eq. (26) has the form:

.                                              (28)                 

The signal energy gain caused by the CLC layer is defined as

,                                                               (29)
where 
 

.                                             (30)

Substituting  eq.  (30)  into  eq.  (29)  and using  eqs.  (27)  and (17)  for  ,  we arrive  at  the
following expression for the signal gain:

        (31)

Evaluating the integral in eq. (31), we can express the result in terms of the exponential gain

coefficient :
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             (32)

where .
For numerical calculations of the gain coefficient, we use the above mentioned parameters of

the polymer network and the CLC TL205/CB15, a mixture of cyclohexane-fluorinated biphenyls
and  fluorinated  terphenyls  with  a  chiral  agent  4-cyano-4’-(2-methylbutyl)-biphenyl.34,35 The
incident light beams have wavelength λ = 532 nm, ordinary and extraordinary refractive indices

of the mixture TL205/CB15 are  527.10 n  and  744.1en , respectively.12 Additionally, using
expressions  describing  the  refractive  indices  for  the  waves  with  the  opposite  circular

polarization32 we  estimate  the  parameters  in  eq.  (32)   and

. We also can set .

In Fig.  5 the gain  coefficient  versus the grating  spacing,  ,  is  presented at  different
values of the parameters , A, B, and K. As it is seen from eq. (32), the gain coefficient increases
with an increase of  , its dependence on the grating spacing is shown in Fig. 5a for several
values of the parameter D setting parameters A, B, and K to be constant and equal to the values
obtained in Ref. 26. The gain coefficient has a maximum approximately at a grating spacing

 and can reach values that are greater by one order of magnitude or more than those
obtained in solid photorefractive inorganic crystals.

      
                                     (a)                                                                            (b)
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                                      (c)                                                                           (d)      
 
FIG. 5. Gain coefficient versus grating spacing for several values of parameters , A, B, and K.

(a)  (in  ) = 3 - solid line, 5 – dashed, 6 – dotted,  ,

; (b)  B (in  ) = - solid line,  - dashed,   - dotted,  ,

,  ; (c)  K  (in ) =  - solid line,  - dashed,  -

dotted, , ; (d) A (in ) = - solid line,

- dashed,  - dotted, , , .

Plots  in  Figs.  5b,  5c,  and  5d  show the  influence  of  parameters  B,  K, and  A  on  ,
respectively. The gain coefficient increases with both an increase of parameter B (Fig. 5b) and a
decrease of parameter K (Fig. 5c). It can be understood that because the translation of the fibrils
in a more elastic polymer network (i.e. polymer network with greater parameter B) and in a less
elastic CLC (i.e. in CLC with smaller parameter K) induces greater perturbations of the director
field (see Figs. 4c and 4d). However, the influence of parameter  A (Fig. 5d) is more complex:

dependence of the gain coefficient on parameter  A is nonmonotonic. At first,   increases

with  an  increase  of  A,  then  after  reaching  maximum  value   decreases  with  a  further
increase of  A.  This is  connected with a competition  of two processes in  the behavior  of the

director grating magnitude : with an increase of parameter A the maximum of the function

increases, but at the same time the area of considerable values of decreases (see Fig.
4b). Note that as calculations show the gain coefficient increases with an increase of the CLC
pitch, although the influence of the pitch is weak.

4. Conclusions

We have developed a theoretical model describing the energy gain of a weak signal beam
interacting  with  a  strong  pump  beam  at  a  diffraction  grating  in  a  hybrid  photorefractive-
cholesteric cell stabilized in the planar state by the polymer network. Two incident interfering
light beams induce the space-charge field in the photorefractive substrate. This field penetrates
into  the  CLC  cell  and  interacts  with  the  charged  movable  fibrils  of  the  polymer  network.
Translation of the fibrils  under the spatially  periodic space-charge field leads to the spatially
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periodic director deformation (director grating). We show that the dominating contribution into
the director grating magnitude arises from the fibril translation at the photorefractive substrate.
Direct interaction of the photorefractive field with the charged fibrils  in the CLC bulk gives
negligibly small contribution,  because of the fast decrease of the field with distance from the
substrate.

Coupling of the light beams on the induced director grating leads to the energy gain of the
weak signal beam. We calculated the gain coefficient versus the grating spacing and analyzed the
influence of the polymer network parameters and the CLC elasticity on the gain. In particular, it
is  shown that  the  polymer  network with  stronger  elasticity  and the  CLC with less  elasticity
promotes  an increase of  the gain coefficient.  We found out  that  the dependence  of the gain
coefficient on the director anchoring with the polymer network has a nonmonotonic character and
an optimal value of the anchoring energy. Finally, we show that the gain coefficient in the CLC
in the planar state can reach values, which are at least one order of magnitude higher than those
obtained in solid photorefractive crystals. 
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	, (7)
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	Expressions for the polymer fibrils translation and the director angle can be decomposed as follows,
	, (9)
	. (10)
	where
	(16)
	Substituting eq. (15) in eq. (12) and using boundary conditions for the director angle , we obtain a solution to this angle as follows,
	, (17)
	where
	(18)
	and
	(19)
	
	Below in Figs. 2 – 4 we present results of calculations of the fibrils translation magnitude and the director grating magnitude for different values of the polymer network parameters. It allows us to demonstrate an impact on these magnitudes of the fibrils anchoring strength with the CLC director (A), the polymer network elasticity (B), the photorefractive field interaction with charged fibrils in the cell bulk (C) and at the photorefractive substrate (D), as well as the CLC elastic constant K.
	In Fig. 2a, we show a ratio of the fibrils translation magnitude at the photorefractive substrate to the initial cholesteric pitch, , as a function of the grating spacing for different values of the parameter . According to eq. (14), this ratio increases with an increase of the parameter and the -dependence of this ratio reproduces the corresponding behavior of the z-component of the photorefractive field . The value of the parameter is unknown, therefore using Fig. 2a we can choose its value to be such that the maximum of the ratio does not exceed 0.1. Therefore, for our further calculations, we use values not exceeding .
	In Fig. 2b, we present the ratio as a function of position in the cell for different values of parameter D for a director grating spacing . It is seen that the polymer fibrils translation in the cell bulk, , increases with an increase of parameter D, but the most significant effect is only near the photorefractive substrate. The plots of the ratio as a function of the position in the cell for different values of parameters A and B are shown in Figs. 3a and 3b, respectively.
	
	(a) (b)
	FIG. 2. (a) Ratio of the fibrils translation magnitude at the photorefractive substrate to the initial cholesteric pitch versus the director grating spacing. (b) Ratio of the fibrils translation magnitude to the initial cholesteric pitch as a function of position in the cell, . (in ) = 3 - solid line, 5 - dashed, 6 - dotted.
	
	The magnitude of the fibrils translation decreases with an increase of parameter A, which is caused by retarding of the fibrils motion due to their anchoring with the LC director. At the same time, magnitude increases with an increase of parameter B connected with the term describing the polymer network elasticity. For the fixed fibril translation at the photorefractive substrate, , an increase of the network elasticity leads to a more slowly decreasing displacement of the fibrils in the cell bulk. However, a contribution to the magnitude from terms describing direct interactions of the photorefractive field with charged fibrils in the cell bulk [terms in eq. (16) with coefficient C] is negligibly small due to the rapid decay of the photorefractive field with distance from the substrate. Therefore, impact of the network parameters A and B on is provided mainly in the form of ratio A/B that is seen at the comparison of Figs. 3a and 3b.
	
	(a) (b)
	The plots of the director grating magnitude described by the angle as a function of position in the CLC cell for different values of the parameters D, A, B, and the CLC elastic constant K are shown in Fig. 4a, 4b, 4c, and 4d, respectively.
	Substituting eq. (30) into eq. (29) and using eqs. (27) and (17) for , we arrive at the following expression for the signal gain:
	(31)
	where .
	In Fig. 5 the gain coefficient versus the grating spacing, , is presented at different values of the parameters , A, B, and K. As it is seen from eq. (32), the gain coefficient increases with an increase of , its dependence on the grating spacing is shown in Fig. 5a for several values of the parameter D setting parameters A, B, and K to be constant and equal to the values obtained in Ref. 26. The gain coefficient has a maximum approximately at a grating spacing and can reach values that are greater by one order of magnitude or more than those obtained in solid photorefractive inorganic crystals.
	
	
	(a) (b)
	
	
	(c) (d)
	
	FIG. 5. Gain coefficient versus grating spacing for several values of parameters , A, B, and K. (a) (in ) = 3 - solid line, 5 – dashed, 6 – dotted, ,; (b) B (in ) =- solid line, - dashed, - dotted, ,, ; (c) K (in) = - solid line, - dashed, - dotted, , ; (d) A (in ) = - solid line, - dashed, - dotted, , , .
	Plots in Figs. 5b, 5c, and 5d show the influence of parameters B, K, and A on , respectively. The gain coefficient increases with both an increase of parameter B (Fig. 5b) and a decrease of parameter K (Fig. 5c). It can be understood that because the translation of the fibrils in a more elastic polymer network (i.e. polymer network with greater parameter B) and in a less elastic CLC (i.e. in CLC with smaller parameter K) induces greater perturbations of the director field (see Figs. 4c and 4d). However, the influence of parameter A (Fig. 5d) is more complex: dependence of the gain coefficient on parameter A is nonmonotonic. At first, increases with an increase of A, then after reaching maximum value decreases with a further increase of A. This is connected with a competition of two processes in the behavior of the director grating magnitude : with an increase of parameter A the maximum of the function increases, but at the same time the area of considerable values of decreases (see Fig. 4b). Note that as calculations show the gain coefficient increases with an increase of the CLC pitch, although the influence of the pitch is weak.
	4. Conclusions
	We have developed a theoretical model describing the energy gain of a weak signal beam interacting with a strong pump beam at a diffraction grating in a hybrid photorefractive-cholesteric cell stabilized in the planar state by the polymer network. Two incident interfering light beams induce the space-charge field in the photorefractive substrate. This field penetrates into the CLC cell and interacts with the charged movable fibrils of the polymer network. Translation of the fibrils under the spatially periodic space-charge field leads to the spatially periodic director deformation (director grating). We show that the dominating contribution into the director grating magnitude arises from the fibril translation at the photorefractive substrate. Direct interaction of the photorefractive field with the charged fibrils in the CLC bulk gives negligibly small contribution, because of the fast decrease of the field with distance from the substrate.
	Coupling of the light beams on the induced director grating leads to the energy gain of the weak signal beam. We calculated the gain coefficient versus the grating spacing and analyzed the influence of the polymer network parameters and the CLC elasticity on the gain. In particular, it is shown that the polymer network with stronger elasticity and the CLC with less elasticity promotes an increase of the gain coefficient. We found out that the dependence of the gain coefficient on the director anchoring with the polymer network has a nonmonotonic character and an optimal value of the anchoring energy. Finally, we show that the gain coefficient in the CLC in the planar state can reach values, which are at least one order of magnitude higher than those obtained in solid photorefractive crystals.
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