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Abstract

Currently, effective control of optical purity by chiral separation of (S) and (R) enantiomers remains

a relevant and highlighted task when designing new chiral organic materials in general, especially

for  self-assembling  materials  possessing  synclinic  and  anticlinic  smectic  phases.  An  efficient

methodology  for  accomplishing  this  task  was  developed  and  verified  with  a  series  of  chiral



fluorinated  liquid-crystalline materials  with lateral  substitution  on the molecular  core.  The self-

assembling behaviour of new racemic materials was established. Upon cooling from the isotropic

phase,  all  materials  possessed  orthogonal,  synclinic  and  anticlinic  smectic  mesophases.  The

materials were available with four fluorine substitution patterns and in racemic and pure (R) and (S)

enantiomer  forms.  Chiral  high-performance  liquid  chromatography  was  accomplished  using

polysaccharide-based  chiral  stationary  phases.  All  separations  were  performed  in  normal

chromatographic  mode,  and the baseline separation of all  enantiomer  pairs  was achieved using

chiral stationary phases based on derivatized amylose and cellulose. The enantiomer elution order

for racemic mixtures was verified by comparing their retention times with those of the respective

pure (R) and (S) enantiomers. Interestingly, two materials demonstrated an unexpected switch in

enantiomer  elution  order.  This  is  very  important  information  that  is  useful,  for  instance,  for

potential utilization in preparative scale chiral chromatography.

Keywords:  high-performance  liquid  chromatography,  self-assembling  behaviour,  fluorinated
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Introduction

Chirality, based on molecular symmetry elements, is present in many regular systems in nature [1],

and it is widely used in artificially designed systems as part of smart functional organic materials

utilized in various applications.  Enantiomers (or stereoisomers) can exhibit  significantly diverse

properties in chiral environment. Moreover, there is growing evidence that chirality can also induce

unique characteristics of artificially designed materials and devices [2, 3] based on such materials.

In reality, starting materials and intermediates available for the synthesis of chiral substances are

often  not  perfectly  optically  pure.  In  most  cases,  a  low percentage  of  the  opposite  enantiomer

(impurity)  is  present.  Moreover,  a  partial  racemization  of  the  intermediates  during  a  specific

synthetic step can be another considerable source of the optical purity decrease. In the past, optical

purity was determined primarily by optical rotation measurements, which does not allow obtaining

sufficiently accurate information on trace amounts of the pollutant stereoisomer. In many cases, the

enantiomeric purity of the compounds was not documented in the literature or with insufficient

precision and accuracy.

High-performance liquid chromatography (HPLC) using chiral stationary phases (CSPs) is a highly

versatile technique broadly applied in the field of chiral separations and analysis of various racemic

mixtures of organic materials. Moreover, chiral HPLC is regularly used for estimation of the optical



purity of chiral materials [4-7]. The main aim of enantioseparation is to separate enantiomers with

sufficient resolution within the shortest possible time, keeping the acquisition and operating costs as

low as possible while obtaining reliable and reproducible results.

Direct  enantioseparation  employing  chiral  stationary  phases  has  become  the  most  often  used

approach for separating enantiomers. The CSP contains well-defined chiral centres, making them

available for stereoselective interactions with enantiomers of analytes. This may result in different

retention of the individual enantiomers on the column and, thus, their separation. Chiral sorbents

based on derivatives of the polysaccharides amylose and cellulose are the most widespread and

highly successfully utilized CSPs; they provide very broad applicability and excellent separation

selectivity  [8].  There  are  numerous  situations  where  it  is  necessary  to  assess  the  enantiomeric

excess of the target material with high precision and accuracy. A practical example of the successful

utilization of chiral HPLC includes the determination of the enantiomeric ratio of lactic acid for the

diagnosis of metabolic acidosis for medical diagnostic purposes [9]. This technique is also widely

used in the pharmacology and pharmaceutical industries [10-18], in agrochemistry to control chiral

pesticides for agricultural needs [19,  20] or in environmental studies to determine the occurrence

and composition of pollutants or their residues in the environment [21-25].

The self-assembling behaviour of liquid crystalline (LC) and fluid materials is highly sensitive to

the presence of optically contaminating impurities [26]. The optical purity of such materials affects

not only the helical pitch but also the order and stability of the mesophases [1, 27-36]. 

Currently, investigation of new chiral LC materials with different ratios of (R) and (S) enantiomers

is an exciting and highlighted topic [5,  6,  31-34.  37]. However, it is necessary to carry out two

multistage syntheses to obtain both pure enantiomers. Unfortunately, this procedure often does not

give high yields of the intermediates and final products, and it can also be very time-consuming. A

way to make this procedure more efficient might be to use the racemic material instead (it is usually

significantly less expensive than the enantiomers) as the initial  material to carry out a synthetic

procedure followed by separation of two enantiomeric forms on the preparative scale by applying a

chiral  column  to  obtain  (R)  and  (S)  enantiomers  in  their  pure  forms.  The  utilization  and

confirmation  of  the  applicability  of  this  concept  is  one  of  the  main  objectives  of  the  present

investigations.

Chiral LC materials possessing the anticlinic phase with polar order are widely studied for their

“smart”  mesomorphic  and electro-optic  properties  [38-41].  Such antiferroelectric  liquid  crystals

(AFLCs) can  be  used as  smart  materials  for  high-definition  micro-displays  and other  photonic

devices. The main advantages of antiferroelectric materials for specific use in display devices are a

fast response, a broad grey scale, and a possibility of a passive matrix scheme and the innovation of



large  flat-panel  displays  [27,  42-47].  The  properties  of  the  self-assembling  materials  might  be

predicted and controlled [48-50]. Unfortunately, AFLC materials suffer from two disadvantages.

First, there is a problem with proper alignment of the antiferroelectric phase while obtaining a high-

quality dark state. The second problem consists of the existence of a “so-called” pre-transitional

effect, which is a weak linear electro-optic effect active under applied fields below the threshold for

the  switching  response  [45,  51-53].  However,  the  first  challenge  can  be  solved  by  designing

multicomponent mixtures from components with the same chiral terminal chain but with opposite

helical twisting [54, 55]. The second problem can be solved by using orthoconic AFLC materials in

which the molecular director tilts by 45° with respect to the smectic layer normal. LCs with lateral

fluorine substitution possess low conductivity, low viscosity and high thermal stability and can be

synthesized both with and without a chiral moiety [28, 56-60], which makes the effective tuning of

the mesomorphic and electro-optic behaviour possible by mixing [37, 38, 61-67].

The enantioseparation of racemic AFLC mixtures by liquid chromatography with chiral stationary

phases is required if the optical purity should be evaluated and guaranteed. There is no doubt that

the mesomorphic properties of AFLC materials  are significantly affected by their  optical  purity

when the chiral centre is present in the molecular structure of the LCs [68-70]. Employing HPLC

with various CSPs is a very efficient separation method suitable for enantioseparation of various

types  of  chiral  compounds  [71-73].  Common  AFLC  materials  are  relatively  large  elongated

molecules  possessing  a  bulky  achiral  section  and a  much  smaller  chiral  moiety;  therefore,  the

enantiomeric recognition of material often remains quite challenging. To the best of our knowledge,

there are only a few works devoted to (i) determining the optical purity of AFLC materials by chiral

HPLC [74-77] and (ii) preparing highly optically pure AFLC materials [38, 64, 78, 79].

It is essential to know the elution order of the enantiomers, which can be determined by comparing

the  retention  times  of  the  racemic  material  with  those  of  the  pure  individual  enantiomers.

Knowledge of the enantiomer elution order (EEO) is required for the determination of the amount

of optical impurities and elucidation of the separation mechanism, and it is also indispensable for

preparative chromatography purposes. Generally, at least three types of EEO reversal phenomena in

chiral chromatography have been previously described: the first type is a sample-load reversal, the

second type is a temperature-induced reversal and the last is a solvent-induced reversal [80,  81].

Recent studies on EEO reversal consider various chemical compounds that are usable as drugs or

agrochemicals [82-85].

Recently, [86], we focused on the development of a chiral separation method suitable for a series of

LC materials possessing both long and short alkyl spacers in the terminal chain of the molecule and

with different positions  of laterally  substituted fluorine atom(s) in the molecule.  Chiral  selector



chemistry, mobile phase composition, and temperature have been optimized. In the present study,

we applied  a  similar  chiral  separation  protocol,  but  the method had to  be modified to  make it

suitable for chiral separation of newly synthesized smectic materials with anticlinic ordering. Chiral

chromatography experiments revealed that materials with two laterally substituted fluorine atoms

exhibited  an  unexpected  switch  of  the  EEO.  This  was  essential  information  important  for  the

determination of the optical purity of AFLC materials. The exact mechanism of this effect is not yet

fully understood.

Materials and methods

Materials under investigation

The general chemical structure of the designed racemic materials and the specification of the lateral

substituent (X1X2) type and position are presented in Table 1. A series of structurally similar LC

materials was designed and synthesized, specifically in the racemic form, denoted as 6.X1X2(RAC).

Pure (R) and (S) enantiomers, denoted as 6.X1X2(R) or 6.X1X2(S) were designed recently [56, 87].

For all materials, the number of carbons in the alkyl spacer of the non-chiral terminal chain of the

molecule was equal to six (Table 1).

The  efficient  synthetic  procedure  leading  to  (R,S)  4’-(1-methylheptyloxycarbonyl)biphenol,  an

intermediate  product  for  racemic  mixtures,  was  described  in  detail  in  ref.  [58].  Commercially

available  (R,S)-2-octanol  with  a  purity  of  99.5%  was  used.  The  synthetic  protocol  for  the

preparation of the final racemic mixtures is described in refs. [28, 88] and is similar to the synthetic

route for pure enantiomers [56, 57, 87, 89-91].

The  purity  of  the  precursors  was  checked  by  an  HP-6890N  gas  chromatograph  with  an  MS

HP5973N detector (both Agilent Technologies, USA) using a Zebron ZB-5 (Phenomenex, USA)

chromatographic column with a 30 m length, 0.25 mm i.d., and 0.25 μm film thickness. The puritym film thickness. The purity

of LC esters was evaluated using a Prominence HPLC chromatograph coupled with a 2010EV mass

spectrometric detector equipped with an electrospray ionization source (both Shimadzu, Japan). The

chromatographic conditions used were as follows: the mobile phase consisted of methanol  with

water 90/10 (ν/ν), and the flow rate was 0.2 mL·min-1. The separation was carried out with a Luna

C18 column (150 × 4.6 mm i.d., 3 μm film thickness. The puritym, Phenomenex, USA) at 40 °C.

Mesomorphic behaviour



The mesomorphic properties, i.e., the sequence of mesophases of the newly synthesized esters were

studied by observation of characteristic textures and their changes in an Eclipse E600POL (Nikon,

Japan) polarizing optical microscope (POM) on planar 12-μm film thickness. The puritym-thick cells in bookshelf geometry.

The cells (two glass slides with ITO transparent 5 × 5 mm electrodes on the inner side) for texture

observations were supplied by the Military University of Technology (Warsaw, Poland). The cells

were  filled  with  the  studied  materials  in  the  isotropic  phase  by means  of  capillary  action.  An

LTS E350 (Linkam, UK) heating/cooling stage equipped with a TMS 93 temperature programmer

was used for the temperature control, enabling temperature stabilization within ± 0.1 °C.

The phase transition temperatures were determined precisely by differential scanning calorimetry

(DSC)  using  a  DSC 8000  calorimeter  (PerkinElmer,  USA).  Samples  of  approximately  3-7 mg,

hermetically  sealed  in  aluminium  pans,  were  placed  into  the  calorimeter  chamber  filled  with

nitrogen.  Temperature  and  enthalpy  change  values  were  calibrated  on  the  extrapolated  onset

temperatures and the enthalpy changes of the melting points of water, indium and zinc. Calorimetric

measurements were performed on cooling/heating runs at a rate of 5 °C·min-1.

Chiral separation experiments

Two columns with chiral  selectors  based on derived amylose were used for chiral  separations,

specifically a Lux 3u Amylose-2 (LA) column (150 × 4.6 mm i.d., 3 µm. Phenomenex, USA) with

amylose  tris(5-chloro-2-methylphenylcarbamate)  and  a  Chiralpak  AD-3  (CP)  column

(150 × 4.6 mm i.d., 3 µm, Daicel, Japan) with amylose  tris(3,5-dimethylphenylcarbamate) as the

chiral selector. Both columns were equipped with appropriate guard columns. One column with a

chiral selector based on derived cellulose was employed, a Chiralcel OJ (OJ) column (250 × 4.6

mm i.d.,  10 µm, Daicel,  Japan) with cellulose  tris(4-methylbenzoate)  as the chiral  selector  and

without  a  guard  column.  Mobile  phases  (MPs)  were  filtered  using  a  filtration  set  from Sigma

Aldrich (Sigma Aldrich, Czech Republic) and MS PTFE membrane filters (Membrane Solutions,

Japan) with a pore size of 0.45 μm film thickness. The puritym. All chiral separations were accomplished with an HPLC system

equipped  with  an  Alpha  high-pressure  pump  (ECOM,  Czech  Republic),  a  CT050  column

temperature  controller  (AZ Chrom,  Slovak  Republic),  and an  ECDA2000 diode  array  detector

(Watrex, Czech Republic). All samples were prepared at 0.1 mg·mL-1 concentrations in MP, and the

injection volume was 20 µL. The flow rate of the MP was set at 1.0 mL·min-1, and the columns

were maintained at 20 °C for the amylose-based chiral stationary phase and 40 °C for the cellulose-

based  chiral  phase.  Chromatograms  were  acquired  at  a  wavelength  of  272 nm,  which  is  the

absorption  maximum  of  the  analysed  materials  dissolved  in  the  MP.  Clarity  Chromatography

Station (DataApex, Czech Republic) was used for data acquisition and evaluation. Mixtures of n-



hexane (Hex) with isopropyl alcohol (IPA) in a 98/2 (ν/ν) ratio with or without added trifluoroacetic

acid (TFA) were used as the mobile phase.

Results and discussion

Mesomorphic properties of LC materials

For  newly  designed  chiral  liquid  crystalline  racemic  esters,  the  sequences  of  phases  were

determined by observation of characteristic textures and their changes in POM. The phase transition

temperatures and transition enthalpies were evaluated with high accuracy from DSC heating and

cooling runs. Specifically, the sequence of phases and phase transition temperatures, the measured

cooling,  melting point m.p., and clearing point,  c.p.,  measured heating and the respective phase

transition enthalpies, ΔHH, obtained by DSC for all studied compounds are summarized in Table 2.

The  mesomorphic  behaviour  of  the  related  (R)  and  (S)  enantiomers  is  also  shown,  and  the

comparison of the mesomorphic behaviour of the racemic materials and enantiomers reveals a very

good correspondence  of  the  existing  mesophases.  The minor  difference  in  the  phase transition

temperatures can be explained by a slight difference between the purity of the racemic materials and

the purity of the corresponding enantiomers.

The  DSC  plots  on  heating/cooling  runs  for  selected  compounds,  namely,  for  6.HH(RAC),

6.HF(RAC), 6.FH(RAC), and 6.FF(RAC) racemic materials are presented in Figure 1.

All  four  newly  designed  racemic  ester  materials  possess  orthogonal  SmA,  synclinic  SmC and

anticlinic SmCA phases. Similarly, for pure enantiomers, the temperature range of the SmA phase

was found to be very narrow, ranging over a few degrees. The synclinic SmC and the anticlinic

SmCA phases exist over a broad temperature range (up to 100 °C and below room temperature). The

highest clearing point was found for non-substituted racemic material in comparison to that of other

compounds studied in this work. Nevertheless, the lateral substitution by fluorine atoms definitely

suppresses the phase transition temperatures (Table 2). The lowest melting and clearing points were

detected  for  6.FH(RAC)  and  6.HF(R)  materials.  With  the  exception  of  the  lowest  temperature

region, the sequence of mesophases was the same when comparing (RAC) racemates and the (R)

and (S) enantiomers. In the case of 6.HF(RAC) and 6.FH(RAC), only the phase transition from the

synclinic  phase  to  the  anticlinic  phase  was  detected  by  the  POM because  the  intensity  of  the

corresponding DSC peaks was extremely low, approaching the DSC device resolution. This is a

common occurrence [38, 40], as the phase transition between two tilted phases is characterized by a

very minor structural change. For all racemic materials, the highly ordered smectic phase of crystal

modification (which was presented for some of the enantiomers) was absent.



Several  examples  of  the  characteristic  textures  obtained  with  POM  for  the  6.HH(RAC)  ester

material is presented in Figure 2. The width of all microphotographs is approximately 250 μm film thickness. The puritym. On

cooling, the alignment was considerably better (larger smectic fans) and homogeneous than that

obtained on the heating cycle. The birefringence changed considerably with decreasing temperature.

The  orthogonal  SmA  phase  exhibited  typical  fan-shaped  texture,  while  the  tilted  mesophases

possessed the broken fan-shaped texture, which appears due to smectic layer shrinkage at the phase

transition from the orthogonal to tilted phases [92, 93].

Chiral separation of (R) and (S) enantiomers of LC materials

Chromatographic conditions similar to those of an earlier developed method [86] were applied for

the enantioseparation of the new liquid crystalline esters on three different chiral columns. In the

case of the LA column, the chromatographic method was not as successful as in the case of the CP

and OJ columns. The studied materials contain fluorine in their structure at two different positions:

(i) on the aromatic ring in the molecule core and (ii) at the terminal chain of the bulky achiral part

of the molecule. We speculate that the reason for the inferior results from the LA column relates to

the repulsion between two electronegative elements, the fluorine within the structure of the analyte

and the chlorine that  is  part  of the column chiral  selector,  which led to weaker stereoselective

interactions between the stationary phase and the studied compounds. The LC materials interacted

more with tris(3,5-dimethyl-phenylcarbamate)-modified amylose used in the CP column and tris(4-

methylbenzoate)-cellulose  used  in  the  OJ  column  than  with  the  tris(5-chloro-2-methylphenyl-

carbamate) selector utilized in the LA column.

The resolution  (Rs)  for  two enantiomers  of  a racemic  mixture reflects  the quality  of the chiral

separation. The Rs parameter can be defined by equation:

R s=1.18 (tR2−tR 1) /( W b1+W b2 )

where  tR1 and  tR2 are the retention times of the respective enantiomers and  Wb1 and  Wb2 are the

corresponding peak widths at a half peak height, measured in the same units as tR1 and tR2. Values of

Rs equal to or higher than 1.5 are considered baseline separation, which is generally accepted as the

minimal resolution required for accurate  and precise determination of the ratio of the separated

enantiomers.

Separation with the LA column in a MP consisting of 98/2 (ν/ν) Hex:IPA for all  6.X1X2(RAC)

materials were not satisfactory; Rs varied in the range of 0.08–0.2. Thus, the enantiomers were only

partially separated. The elution order of the enantiomers was verified in all cases by using pure

individual (R) and (S) enantiomers. It was found that the (S) enantiomer was eluted first in all cases



where EEO could be assessed. The addition of TFA as an MP modifier did not improve the chiral

separation.

The results obtained with the CP column were much better that those of the LA column (Figure 3).

Baseline separation (Rs>1.5) was successfully achieved for the 6.FF(RAC) and 6.FH(RAC) racemic

materials.  For  6.HH(RAC),  baseline  separation  was  almost  obtained  (Rs=1.25).  The  racemic

material 6.HF(RAC) was only partially separated under the given conditions. An unexpected change

in EEO in the chromatograms for 6.HH(RAC) and 6.HF(RAC) materials was detected, where the

first  eluted  peak belonged  to  the  (R)  enantiomer.  This  effect  was  not  observed  in  the  case  of

6.FH(RAC) and 6.FF(RAC) materials.

The addition of TFA as a MP modifier did not have any considerable effect on the chiral separation.

The potential influence of the separation temperature on EEO reversal at 10 °C and 35 °C was

evaluated  for  the  6.HH(RAC)  and  6.HF(RAC)  racemic  materials.  Chiral  separations  at  10  °C

exhibited the same EEO as at the optimal separation conditions (20 °C). Enantiomeric resolution

values  obtained for the  two materials  at  35 °C were close to  zero,  and the EEO could not be

determined.

OJ was employed as the third column to separate 6.HH(RAC) and 6.HF(RAC),  which were not

baseline separated with the CP column. The OJ column indeed provided baseline separation for

both 6.HH(RAC) and 6.HF(RAC) using the MP 98/2 (ν/ν) Hex:IPA. However, at least partially due

to the longer  column,  the analysis  time was approximately  65 minutes  for  6.HH(RAC)  and 80

minutes for 6.HF(RAC). The separations were then performed at elevated temperatures (40 °C), and

very good results in a reasonable amount of time were obtained. Complete enantioseparation with

Rs>2.0  was  achieved  for  both  samples  while  shortening  the  analysis  time  to  under  35  and  50

minutes for 6.HH(RAC) and 6.HF(RAC), respectively (Figure 4). The other fluorinated materials

were also separated on an OJ column under optimized conditions, but the obtained results were

worse than those obtained with the CP column. The EEO was S, R for all the materials on the OJ

column. The addition of TFA to the mobile phase had no substantial effect on the enantioseparation.

Moreover,  regarding  the  effect  of  analyte  structure,  interesting  trends  were  observed.  Adding

fluorine to the phenyl ring of the LC materials led to shortening of the retention times (6.HF(RAC),

6.FH(RAC) and 6.FF(RAC) vs. 6.HH(RAC)) on the amylose-based CP column. However, on the

cellulose-based  OJ  column,  the  longest  retention  times  were  observed  for  6.HF(RAC)  and

6.FF(RAC),  indicating  that  fluorination  at  the  X2 position  increased  the  in-column  retention.

Fluorination at the X1 position had a detrimental effect on the enantioselectivity when utilizing the

OJ  column,  as  shown  by  comparing  the  chromatograms  for  6.HH(RAC)  vs.  6.FH(RAC)  and

6.HF(RAC) vs. 6.FF(RAC).



Conclusions

Several new self-assembling materials were successfully designed, and they can potentially be used

as functional dopants while tuning the properties of multicomponent mixtures [38, 54, 61-63] with

definite properties, such as those that are orthoconic [38,  58,  87]. These types of self-assembling

materials  are very promising for different opto-electronic and photonic applications. A series of

semi-fluorinated racemic materials differing in the position of the fluorine atom on the aromatic

molecule core was synthesized, and the mesomorphic properties of all materials were studied by

POM and DSC. All the designed materials possessed the orthogonal SmA, the synclinic SmC, and

the anticlinic SmCA phases over a reasonably broad temperature range. The mesomorphic properties

of  the  designed racemic  materials  were in  good agreement  with those  of  the pure (S)  and (R)

enantiomers [56, 57, 87].

The feasibility  of enantioseparation  of the newly synthesized  materials  using chiral  HPLC was

studied with two amylose-based and one cellulose-based chiral stationary phase. Two of the studied

racemic  materials,  6.FH(RAC)  and  6.FF(RAC),  were  successfully  baseline  separated  using  a

tris(3,5-dimethyl-phenylcarbamate) amylose CSP, while the 6.HH(RAC) and 6.HF(RAC) materials

were  baseline  separated  with  a  tris(4-methylbenzoate)  cellulose  chiral  selector.  All  baseline

enantioseparations were achieved by employing a simple mobile phase consisting of hexane with

isopropanol,  98/2  (ν/ν),  with  no  additives.  Concerning  the  elution  order  of  the  (R)  and  (S)

enantiomers,  a  surprising  effect  was  found  for  the  tris(3,5-dimethyl-phenylcarbamate)  amylose

CSP, where the elution order was dependent on the presence and position of the lateral fluorine

substituent in the molecular core. This phenomenon was discovered and described for the first time

for this type of material. However, a precise explanation of the observed effect will require further

studies.

Effective  chromatographic  methods  for  optical  purity  control  were  developed  and  successfully

tested on synthesized LC materials. The obtained results and gained information will contribute to a

better understanding of the process of chiral separation in general that can be of high interest for a

broader organic chemistry and soft matter communities.
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Table(s) with caption(s)

Table  1. General  chemical  structure  of  the  designed  LC  materials and  their  purity.  Lateral

substitution  with  a  fluorine  atom  was  executed  at  the  X1 and  X2 positions  as  indicated.

Abbreviations (RAC), (R), (S) represent the racemic material, (R)-enantiomer and (S)-enantiomer,

respectively.

Acronym X1 X2 Optical purity Refs

6.HH(RAC) H H - -

6.HH(R);

 6.HH(S)

H H > 99 %;

99.99 % 

[87];

[56, 57, 87]

6.HF(RAC) H F - -

6.HF(R);

 6.HF(S)

H F > 99 %;

98.95 % 

[87];

[56, 57, 87]

6.FH(RAC) F H - -

6.FH(R);

 6.FH(S)

F H > 99 %;

99.35 % 

[87];

[56, 57, 87]

6.FF(RAC) F F - -

6.FF(R);

 6.FF(S)

F F > 99 %;

98.5 % 

[87];

[56, 57, 87]



Table 2. Sequence of phases and phase transition temperatures, T (°C), measured during cooling (5 °C·min-1); clearing point, c.p. (°C) and melting 
points m.p. (°C), measured during heating (5 °C·min-1) and the corresponding phase transition enthalpies, ΔHH [kJ·mol-1], obtained by DSC for the 
studied ester racemates. All the data on related (R) and (S) enantiomers [56, 57, 87] are given for comparison.

Acronym m.p. c.p. phase T
[ΔH]H]

phase T
[ΔH]H]

phase T
[ΔH]H]

phase T
[ΔH]H]

phase T
[ΔH]H]

Iso Refs

6.HH(RAC) 59.8
[+31.3]

128.6
[+4.4]

Cr 1.6
[-8.4]

▬ SmCA 103.9
[-0.3]

SmC 124.4
[-1.2]

SmA 127.5
[-4.3]

Iso -

6.HH(R) 62.5
[+23.0]

127.1
[+3.7]

Cr 10.5
[-11.4]

▬ SmCA* 88.6
[-0.01]

SmC* 124.5
[-1.3]

SmA* 125.8
[-3.6]

Iso [56, 57, 87]

6.HH(S) 62.2
[+22.7]

127.4
[+3.9]

Cr 10.3
[-11.3]

▬ SmCA* 87.7
[-0.04]

SmC* 124.5
[-1.3]

SmA* 125.9
[-3.6]

Iso [56, 57, 87]

6.HF(RAC) 56.6
[+37.3]

106.1
[+4.4]

Cr 19.7§

[-30.5]
▬ SmCA 70.0

[@]
SmC 104.0

[-0.8]
SmA 105.1

[-4.2]
Iso -

6.HF(R) 44.6
[+32.5]

104.5
[+4.9]

Cr 20.5§

[-30.2]
▬ SmCA* 68.9

[-0.04]
SmC* 102.1

[@]
SmA* 102.8

[-4.8]
Iso [56, 57, 87]

6.HF(S) 43.6
[+30.9]

105.5
[+4.9]

Cr 18.5§

[-30.4]
▬ SmCA* 67.3

[-0.03]
SmC* 104.0

[-
0.07]

SmA* 104.3
[-5.0]

Iso [56, 57, 87]

6.FH(RAC) 29.9
[+15.2]

115.3
[+4.5]

Cr -5.0
[-8.7]

▬ SmCA 72.0
[@]

SmC 108.9
[-0.9]

SmA 114.1
[-4.4]

Iso -

6.FH(R) 58.6
[+23.1]

113.9
[+4.0]

Cr2 -7.1
[-2.5]

Cr1 9.7
[-

11.8]

SmCA* 73.6
[-0.01]

SmC* 108.5
[-1.2]

SmA* 112.4
[-3.9]

Iso [56, 57, 87]

6.FH(S) 58.6
[+22.5]

113.8
[+3.8]

Cr2 -6.9
[-3.7]

Cr1 33.6
[6.5]

SmCA* 64.7
[-0.01]

SmC* 108.6
[-0.9]

SmA* 112.6
[-3.7]

Iso [56, 57, 87]

6.FF(RAC) 70.8
[+23.6]

115.0
[+4.3]

Cr 39.7
[-20.4]

▬ SmCA 100.4
[-0.02]

SmC 110.3
[-0.9]

SmA 113.7
[-4.2]

Iso -

6.FF(R) 63.0
[+21.9]

113.8
[+3.9]

Cr2 33.4
[-16.5]

Cr1 42.6
[-0.4]

SmCA* 80.1
[-0.03]

SmC* 110.4
[-1.0]

SmA* 112.5
[-3.8]

Iso [56, 57, 87]

6.FF(S) 64.3
[+22.5]

113.9
[+3.8]

Cr 34.1
[-17.7]

▬ SmCA* 77.8
[-0.04]

SmC* 110.8
[-1.0]

SmA* 112.8
[-3.7]

Iso [56, 57, 87]

Notes and abbreviations: “–” - the phase does not exist; “§”– indicates that the peak corresponding to crystallization appeared in a further heating cycle; “@” –
indicates that the phase transition possessed an enthalpy value under the resolution of the DSC apparatus and was detected by POM only; “Cr/Cr1/Cr2” – are the
rigid crystal/liquid crystal modifications.
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Figure captions

Figure 1. DSC plots of the heating/cooling runs (red/blue curves, respectively) for: 6.HH(RAC) (a),

6.HF(RAC) (b), 6.FH(RAC) (c) and 6.FF(RAC) (d) ester-based racemic materials. Vertical arrows

indicate the peaks corresponding to phase transitions.

Figure 2. Microphotographs of the characteristic textures obtained from the cooling cycle for the

6.HH(RAC) ester material: (a) the Iso-SmA phase transition at approximately 127.5 °C; (b) the fan-

shaped texture of the SmA phase at approximately 125.0 °C; (c) the SmA-SmC phase transition at

approximately 124.5 °C; (d) the broken fan texture of the SmC phase at approximately 110.0 °C;

and (e) the anticlinic SmCA phase at approximately 50.0 °C. The width of all microphotographs is

approximately 250 μm film thickness. The puritym.

Figure 3. Chiral separations of 6.HH(RAC) (a), 6.HF(RAC) (b), 6.FH(RAC) (c) and 6.FF(RAC) (d)

ester-based racemic materials on a CP column under the following separation conditions: mobile

phase, hexane:IPA (98/2, ν/ν); flow rate, 1.0 mL·min-1; and temperature, 20 °C.

Figure 4. Chiral separations of 6.HH(RAC) (a), 6.HF(RAC) (b), 6.FH(RAC) (c) and 6.FF(RAC) (d)

ester-based racemic materials on an OJ column under the following separation conditions: mobile

phase, hexane:IPA (98/2, ν/ν); flow rate, 1.0 mL·min-1; and temperature, 40 °C.


