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Abstract: We present a unified theoretical framework for paraxial and wide-angle beam
propagation methods in inhomogeneous birefringent media based on a minimal set of physical
assumptions. The advantage of our schemes is that they are based on differential operators with a
clear physical interpretation and easy numerical implementation based on sparse matrices. We
demonstrate the validity of our schemes on three simple two-dimensional birefringent systems
and introduce an example of application on complex three-dimensional systems by showing that
topological solitons in frustrated cholesteric liquid-crystals can be used as light waveguides.
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1. Introduction

The beam propagation method (BPM) is one of the most wide-spread simulation toolbox for
light propagation together with the Finite-Difference-Time-Domain (FDTD) method. These two
methods allow the simulation of the propagation of optical fields in complex three-dimensional
geometries and are thus highly relevant for photonics applications. While FDTD fully solves
Maxwell equations and does not rely on any approximation other than numerical discretization,
it generally requires a high number of mesh points over the distance of a wavelength in order to
be accurate, which put constraints on the size of the computational mesh. On the other hand,
BPM allows accurate simulation of light propagation on much coarser meshes provided that
light don’t deviate too much from a given reference direction of propagation. BPM is very well
established in isotropic media, with a number of sub-class of methods based on Finite-Difference
[1], Finite-Element [2] or Fast-Fourier-Transform [3]. Among these methods, paraxial BPM
makes use of the Slowly-Varying-Amplitude-Approximation to yield methods which are very
efficient but limited in terms of accuracy, while wide-angle BPM is a class of methods which are
more accurate (but a bit more expansive) [4]. In isotropic media, one of the major advantage
of BPM in comparison to FDTD is that it is generally based on easy-to-invert sparse matrices
representing differential operators on 2Dmeshes, thus leading to very efficient numerical schemes
even in complex 3D systems.
In birefringent media such as liquid crystals, the anisotropic nature of the permittivity tensor

complicates the derivation of paraxial and wide-angle BPM. Some approaches assume that some
components of the permittivity tensor are zero [5] or the existence of translational invariance
axis [6] to simplify the derivation, while other approaches do not make any assumptions on
the permittivity tensor but use the Slowly-Varying-Amplitude-Approximation to get paraxial
schemes [7]. In our opinion, the most general method that was proposed for light propagation in
birefringent media is the wide-angle BPM of Vanbrabant et al. [8], which only assumes slow
variation of the permittivity tensor along the reference propagation direction. The latter scheme
is unfortunately based on very complicated nonsparse matrices, which limit the efficiency of the
method and make its numerical implementation a delicate task.

In this paper, we present a unified theoretical framework for paraxial and wide-angle coherent
beam propagation in inhomogeneous birefringent media. Our main contribution is to show that
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with a minimal set of physical assumptions, one can retrieve efficient BPM schemes based on
sparse matrices representing 2D operators with an elegant physical interpretation, without having
to make strong assumptions on the symmetry properties or smoothness of the permittivity tensor.
The plan of the paper is as follows. In Sec. 2, we derive the paraxial and wide-angle

propagation equation for optical fields in anisotropic media and also present a method to take
care of the continuity equation for electric and magnetic fields at interfaces of discontinuity of
the permittivity. In Sec. 3, we validate our scheme by calculating the computational error on
three simple birefringent systems, and then present a more complex example of application by
demonstrating that topological solitons in frustrated cholesteric liquid crystal can be used as light
waveguides for integrated liquid-crystal-based photonics circuit. Last, we give our concluding
remarks and suggest possible extensions of our work with application to microscopy, photonic
bandgap and nonlinear optics.

2. Beam propagation methods and continuity equations

2.1. General propagation equations and approximations

We consider the time-harmonic Maxwell electric field E(x, y, z) exp (−ik0ct) (with k0 the wavevec-
tor in empty space) propagating dominantly along the z direction, and explicitly split the
longitudinal degree of freedom (Ez) from the transverse degrees of freedom (Ex and Ey). Using a
compact notation based on dimensionless space coordinates {X = k0x,Y = k0y,Z = k0z} and
Einstein’s convention on repeated Greek indices α, β ∈ {X, Y} (i.e. Greek indices are only used
for the transverse degrees of freedom), we find that the well-known wave equation for E [8] can
be expressed under the following form:[(

∂2Z + ∆⊥
)
δαβ − ∂α∂β + εαβ

]
Eβ + [εαz − ∂α∂Z]Ez = 0, (1)

[
εzβ − ∂Z∂β

]
Eβ + [∆⊥ + εzz]Ez = 0, (2)

where ε is the permittivity tensor, δαβ is the Kronecker delta and ∆⊥ ≡ ∂2X + ∂2Y .
Similarly to the general procedure in isotropic media [9], we want to eliminate Ez from Eqs. (1)

and (2) to obtain a simple propagation equation involving only the transverse field Eβ . Before
doing this, let us split the birefringent media in a series of slabs normal to the z-direction and
assume that the permittivity tensor is z-independent in each slab – thereby greatly simplifying the
derivation of the propagation equation in each slab. This approach is valid only if a sufficiently
high number of slabs is chosen (an estimate of the computational error as a function of the slab
thickness ∆z will be given later on) and if the continuity equations for the electric field at the
interface between each slabs are properly taken into account. In this section, we will only consider
the propagation equations inside a slab, while the jump interface conditions are described later in
a dedicated subsection. The geometry of the problem is schematically represented on Fig. 1.
Eliminating Ez from Eqs. (1) and (2), we therefore obtain after elementary algebra:

0 =
[
I∂2Z + S∂Z + R

]
E⊥, (3)

Ez = H−1
[
∂Z∂β − εzβ

]
Eβ , (4)

where I is the identity matrix and E⊥ is the vector {Ex,Ey}. Equations (3) and (4) introduce the
differential operatorsH , S and R, which only depends on the transverse coordinates X and Y and
acts on arbitrary functions symbolized by a bullet • in the following. These operators are defined
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Fig. 1. Schematic representation of the geometry of our computational scheme: the
arbitrary birefringent system is split into a set of slabs normal to I and we assume that
in each slab the permittivity is I-independent; inside a slab, forward and backward
propagating modes have their evolution controlled by two independent Schrödinger
equations; continuity equations allow the calculation of the transfer of these modes
through interfaces between different slabs.

In all equations involving differential operators, we assume right-associativity (�1�2 • ≡
�1 (�2 [•]) with �1,2 two differential operators) and non-commutativity of operators involving
the permittivity tensor (which can vary in space).

The reader can easily guess that the numerical discretization of the differential operators S and
R cannot be done efficiently with simple sparse matrices, since their definitions involve multiple
operator products and inverses. The authors of Ref. [8], who obtained a propagation equation
similar to our Eq. (3) in the framework of a finite element BPM, made the same observation
and deduced that the complex non-sparsity of the involved differential operators is the price to
pay to get an accurate propagation method which takes into account the full anisotropy of the
permittivity tensor & . Here, we will show that an efficient and sparse BPM can be retrieved under
a minimal set of approximations while retaining all effects related to the anisotropy of & .
More specifically, we will assume in the remainder of this article the following physical

limitation:

(H1) The permittivity contrast [ is small: ∃ nref s.t. [2 � 1 with [ ≡ ‖& − nrefI‖∞ /nref .

where ‖•‖∞ is the uniform norm (maximum over all components and all space points of a tensor
field) and nref represents an average permittivity. Hypothesis (H1) is not very restrictive if light
propagation is considered in pure birefringent media such as liquid crystals: even in liquid
crystals of high birefringence [ is still small (e.g. we calculate [ < 0.3 in high birefringence
isothiocyanato tolane liquid crystals [10], while in common liquid crystals used in display
applications [ is typically of the order of 0.1 [11]). In LC-based photonics devices confined with
isotropic media, (H1) is still valid as long as the refractive indices of the confining materials
have values comprised between (or similar to) the extraordinary and ordinary indices of the LC
(which is true for typical thermotropic liquid crystals and silica glasses [12]).

Using (H1), the definitions of the differential operators R and S can be simplified to:

S = 2 (W +W′) + O
(
[2

)
, R = &̃ + L + O

(
[2

)
, (8)

where W′, defined in Eq. (S1) of the Supplemental Document, is an unimportant differential
operator which will be neglected later on with an additional physical assumption, and the new

Fig. 1. Schematic representation of the geometry of our computational scheme: the arbitrary
birefringent system is split into a set of slabs normal to z and we assume that in each slab the
permittivity is z-independent; inside a slab, forward and backward propagating modes have
their evolution controlled by two independent Schrödinger equations; continuity equations
allow the calculation of the transfer of these modes through interfaces between different
slabs.

as:
H • = [εzz + ∆⊥] •, (5)

Sαβ • =
[
δαγ + ∂α

1
εzz
∂γ

] [
∂γH−1εzβ + εγzH−1∂β

] •, (6)

Rαβ • =
[
δαγ + ∂α

1
εzz
∂γ

] [
δγβ∆⊥ − ∂γ∂β + εγβ − εγzH−1εzβ

] • . (7)

In all equations involving differential operators, we assume right-associativity (D1D2 • ≡
D1 (D2 [•]) with D1,2 two differential operators) and non-commutativity of operators involving
the permittivity tensor (which can vary in space).

The reader can easily guess that the numerical discretization of the differential operators S and
R cannot be done efficiently with simple sparse matrices, since their definitions involve multiple
operator products and inverses. The authors of Ref. [8], who obtained a propagation equation
similar to our Eq. (3) in the framework of a finite element BPM, made the same observation
and deduced that the complex non-sparsity of the involved differential operators is the price to
pay to get an accurate propagation method which takes into account the full anisotropy of the
permittivity tensor ε . Here, we will show that an efficient and sparse BPM can be retrieved under
a minimal set of approximations while retaining all effects related to the anisotropy of ε .
More specifically, we will assume in the remainder of this article the following physical

limitation:

(H1) The permittivity contrast η is small: ∃ εref s.t. η2 � 1 with η ≡ ‖ε − εrefI‖∞ /εref.
where ‖•‖∞ is the uniform norm (maximum over all components and all space points of a tensor
field) and εref represents an average permittivity. Hypothesis (H1) is not very restrictive if light
propagation is considered in pure birefringent media such as liquid crystals: even in liquid crystals
of high birefringence η is still small (e.g. we calculate η<0.3 in high birefringence isothiocyanato
tolane liquid crystals [10], while in common liquid crystals used in display applications η is
typically of the order of 0.1 [11]). In LC-based photonics devices confined with isotropic media,
(H1) is still valid as long as the refractive indices of the confining materials have values comprised
between (or similar to) the extraordinary and ordinary indices of the LC (which is true for typical
thermotropic liquid crystals and silica glasses [12]).
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Using (H1), the definitions of the differential operators R and S can be simplified to:

S = 2 (W +W′) + O
(
η2

)
, R = ε̃ + L + O

(
η2

)
, (8)

where W′, defined in Eq. (S1) of Supplement 1, is an unimportant differential operator which will
be neglected later on with an additional physical assumption, and the new differential operators
W, L and ε̃ are defined as:

W =
[
I +W(1)

]−1
W(0), (9)

W (0)αβ =
1
2

[
∂α
εzβ

εzz
+
εαz
εzz

∂β

]
, W (1)αβ =

δαβ∆⊥ − ∂α∂β
εref

, (10)

Lαβ = δαβ∆⊥ − ∂α∂β + ∂α 1
εzz
∂γ ε̃γβ , ε̃αβ = εαβ −

εαzεzβ

εzz
. (11)

In Eq. (8) and in the rest of the article, we abusively use the Bachmann-Landau notation O (
η2

)
— usually used to characterize the asymptotic behavior of scalar functions — for differential
operators using the following rule: for any differential operator M, we write M = O (µ) with µ a
small parameter if and only if ME⊥ = O (µ)E⊥.

The hypothesis (H1) can also be used to transform the second-order wave Eq. (3) into a simpler
first-order Schrödinger-like equation (i∂Z + T)E⊥ = 0. To find the expression of the differential
operator T, we inject the formal solution of the previous Schrödinger equation into the original
wave Eq. (3), and find that T must be a solution of the following quadratic equation:

−T2 + iST + R = 0. (12)

Since R = O (1) and S = O (η) we can use a perturbative approach by first neglecting S and then
finding a first order correction in S – which involves a continuous Lyapunov equation whose
formal solution can be find in Ref. [13]. We find that two solutions are allowed:

T(±) ≡ ±
√
ε̃ + L + iW + iW′′ + O

(
η2

)
, (13)

where√ corresponds here to the functional square root. The functional square root of a differential
operator A is defined as any operator B verifying B2 = A. Here, we impose the additional
constraint that the eigenvalues of B must have positive real part. The differential operator W′′ is
defined in Eq. (S2) of Supplement 1, and its complicated form should not frighten the reader,
as we will show in a moment that similarly to W′ it can be absorbed in a O (

η2
)
term using an

additional physical assumption. For now, let us take a bit of distance from the mathematics and
try to summarize our results by giving physical meaning to the involved differential operators.
Since we found two solutions for the differential operators T, there exists two class of

propagating solution in the birefringent slabs introduced earlier: forward propagating modes E(+)⊥
and backward propagating modes E(−)⊥ which obey the following Schrödinger-like equation:

∂ZE(±)⊥ = iT(±)E(±)⊥ . (14)

These two types of mode are represented schematically in Fig. 1.
The definitions of the operators T(±) in Eq. (13) involves three operators with very clear

physical meaning:

• ε̃ is the dominant contribution to the evolution of the optical phase in Eq. (14), and
for this reason will be called phase operator. It does not contain any derivatives and is
therefore a pointwise matrix operator: [ε̃E⊥](r) only depends on the value of E⊥ at point r.
Interestingly, this operator also appears in the context of the well-known Jones method
(see Eq. (2) in Ref. [14] with kx = ky = 0).

https://doi.org/10.6084/m9.figshare.12713021
https://doi.org/10.6084/m9.figshare.12713021
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• L is spectrally equivalent to a Laplacian (for homogeneous isotropic media, it can even be
verified that L is the transverse Laplacian), and therefore will be called diffraction operator
by analogy to the formalism of beam propagation in isotropic media [9]. It is responsible
for the redistribution of energy in the transverse plane as light is propagated along z (e.g.
the natural spread of a Gaussian beam as it is transmitted through a homogeneous medium).
It fully includes the effect of the anisotropy of the permittivity tensor up to order 1 in η.

• Finally, W is associated with terms of the type εαz∂β in Eq. (14), which impose that
energy and phase do not flow in the same direction when εαz , 0 – a typical property of
birefringent media. For this reason, W will be called walk-off operator in the following.
Similarly to the diffraction operator, W is accurate up to order 1 in η.

Figure 2 shows the typical physical effect associated with these three operators. As for the
operator W ′′ (which is defined as a function of W′), it can be viewed as a correction to the
walk-off operator W which starts becoming relevant when the optical fields have non-negligible
high-frequency spatial components and when εxz and εyz have sharp variations or discontinuities
(in which case the commutator terms in the definition of W′ and W′′ becomes non-negligible).
This can be shown by expanding the definition of W ′′ in Supplement 1 as a series of derivatives
of increasing order, and observing that the lowest order for the derivatives is 3 – contrary to W
which is associated with a first-order derivative at the lowest order.

Fig. 2. (a) Color-graded representation of the real part of Ey when a plane wave propagates
through a system of birefringent slabs with homogeneous permittivity tensor. In this particular
system, our formalism in the main text is fully equivalent to the simple Jones method and
solely relies on the phase operator ε̃ . (b) Same as (a) with a Gaussian beam propagating
through a uniaxial media with tilted optical axis n; the Poynting vector Sp is not aligned with
the wavevector k due to the action of the walk-off operator W in the propagation Eq. (14).
(c) Natural spread of the intensity of a Gaussian beam in a homogeneous birefringent media,
which is physically modeled by the diffraction operator L in the propagation Eq. (14). In
(a,b,c), the white bar represents 0.5 µm, and in (a,c) the optical axis is normal to the plane of
the figure.

Since the numerical implementation of W ′′ is not possible using sparse matrices – contrary to
ε̃ , L, and the operators W(0,1) defining W – we will chose to neglect this operator as mentioned
previously either by assuming that the optical fields do not have high-frequency components
(paraxial regime of propagation, see Sec. 2.2) or by assuming arbitrary optical fields and smooth
variations of εxz and εyz (wide-angle regime of propagation, see Sec. 2.3).

2.2. Paraxial scheme

In this subsection, we assume that the optical fields propagate paraxially along z. Based on the
angular spectrum approach [15], this assumption is fully equivalent to the following physical
limitation:

https://doi.org/10.6084/m9.figshare.12713021
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(H2.a) Optical fields have negligible high-frequency spatial components in the x and y directions
(whose typical order of magnitude can be evaluated using the uniform norm of the transverse
gradient ∇⊥ = {∂x, ∂y} of the transverse field): ρ ≡ ‖∇⊥E⊥‖∞ /[k0 ‖E⊥‖∞] � 1.

Using hypothesis (H2.a) and the main result of Ref. [16] to expand
√
ε̃ + L around

√
ε̃ , we find

that the expressions of the forward and backward propagation operators T(±) are simplified to:

T(±) = ±
(√

ε̃ + L′
)
+ iW(0) + O

(
η2, ρ3

)
, (15)

where we introduced the rescaled diffraction operator L′ =
[
ε̃−1/2L + Lε̃−1/2

] /4.
Here, we should emphasize that the obtained paraxial beam propagation operator in Eq. (15)

does not depend on the choice of a reference index – contrary to most paraxial BPM in isotropic
media [1,9] and anisotropic media [5,7]. In all of these cited documents, the choice of a reference
index nref for the phase evolution is done in order to skip the use of a square root in the beam
propagation equation, but can lead to inaccurate results when multiple modes with different
effective indices propagate in the considered structure [9]. In our formalism, the

√
ε̃ terms in

the definition of L′ can be viewed as a structure-dependent local reference index allowing to get
an accurate diffraction of the fields. In addition and as already mentioned in Fig. 2, the phase
evolution based on

√
ε̃ in Eq. (15) is fully equivalent to the Jones method, which gives exact

solution of Maxwell equations for plane waves propagating in homogeneous birefringent systems.
This is a major advantage in comparison to schemes using a reference index, since such schemes
cannot provide an exact evolution of the optical phase even in homogeneous birefringent systems.

Numerically, optical fields are propagated in each slab using a Strang splitting of the evolution
operators associated with Eq. (14), accurate at order 3 [17] in the renormalized slab thickness
∆Z = k0∆z (∆z being the slab thickness). For the sake of brevity, we only give the evolution
equation for forward-propagating modes (similar expressions for the backward propagating modes
can be obtained by using the definition of T(−) in Eq. (15)):

E(+)⊥
��
Z+∆Z = P(ε )P(diff)P(ε )E(+)⊥

��
Z + O

(
η2, ρ3,∆3Z

)
, (16)

where the evolution operators P(ε ) and P(diff) are defined as:

P(ε ) = exp
[
i∆Z
2
√
ε̃

]
, P(diff) = exp

[
i∆Z

(
L′ + iW(0)

)]
. (17)

The phase evolution operator P(ε ) can be calculated analytically using the Cayley-Hamilton
theorem since ε̃ is a pointwise 2x2matrix operator. The numerical implementation of the evolution
operator P(diff) is more tricky but can nevertheless be done efficiently using a combination of
finite-difference discretization, (1,1) Padé approximant for the exponential, and alternative
direction implicit (ADI) splitting identical to Ref. [9]. The advantage of the ADI method,
accurate at order 3 in ∆Z in this context, is that it is associated with a very efficient linear
complexity O(N) (with N the number of degrees of freedom in the transverse place) based on the
Thomas matrix inversion algorithm. Note that our numerical implementation includes transparent
boundary conditions as described in Ref. [18] in order to avoid reflections on the sides of the
mesh.

2.3. Wide-angle scheme

We now examine the wide-angle regime of propagation by removing any constraints on the
variations of the optical fields (which are therefore allowed to propagate at any angle with respect
to z) and replacing (H2.a) with the following physical assumption:
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(H2.b) There are no discontinuities or sharp variations of εxz and εyz in the x and y directions:
∀ α ∈ {x, y}, ∆⊥εαz − εαz∆⊥ = O

(
η2

)
.

Using (H2.b) allows us to absorb the complicated operator W′′ (correction to the walk-off
operator) in the O (

η2
)
term in Eq. (13):

T(±) ≡ ±
√
ε̃ + L + iW + O

(
η2

)
. (18)

The hypothesis (H2.b) put a rather stringent constraint on the optical axis orientation at interface
of discontinuity of the permittivity. Nevertheless, for LC-based photonics devices based on
simple planar or homeotropic anchoring at the confining parallel plates, (H2.b) can be always
made true by rotating the sample in the simulation such that εxz = εyz = 0 at the sample plate
interfaces. For more complicated systems in which such a simplification is not possible (e.g.
patterned anchoring such as in Ref. [19], or localized defects with nonzero εxz and/or εyz inside
the core), hypothesis (H2.b) is broken and wide-angle corrections to the walk-off operator will be
inaccurately modeled if our scheme is still used, but the other operators for the diffraction and
phase evolution are still accurately modeled. More precisely, an error of order O (

η′ρ3
)
will be

introduced in Eq. (18) if hypothesis (H2.b) is not fulfilled, with η′ = max
[‖εxz‖∞ , ‖εxz‖∞

] /εref
and ρ ≡ ‖∇⊥E⊥‖∞ /[k0 ‖E⊥‖∞]. For localized structures such as defects, we expect that the
impact of this error term will be negligible if the beam size is much bigger than the width of the
defect.

Similarly to the paraxial scheme, the evolution equation for the optical fields relies on a Strang
splitting, which we only give for forward-propagating modes for brevity:

E(+)⊥
��
Z+∆Z = P(wP(r)P(w)E(+)⊥

��
Z + O

(
η2,∆3Z

)
, (19)

where the evolution operators P(w) and P(r) are defined as:

P(w) = exp
[
−∆Z

2
W

]
, P(r) = exp

[
i∆Z
√
ε̃ + L

]
. (20)

The numerical implementation of P(w) is based on finite-difference discretization and a (1,1)
Padé approximant of the exponential accurate at order 3 in ∆Z :

P(w) =
[
I +W(1) + ∆Z

4
W(0)

]−1 [
I +W(1) − ∆Z

4
W(0)

]
+ O

(
∆
3
Z

)
. (21)

The numerical implementation of P(r) is also based on finite-difference discretization and a
(1,1) Padé approximant for the exponential, supplemented by the rotated branch cut rational
approximation of the square root [20] and the factorization of the Padé approximant into simpler
terms linear in R ≡ ε̃ + L [21]. The action of matrix inverses of the form (I + A)−1 (where
A can be a linear combination of W(0) and W(1) or a term proportional to R) are iteratively
calculated using a BiCGStab solver with a naive preconditioner of the form I − A. We recall that
preconditionners are mathematical tools allowing to boost the convergence of iterative matrix
inverse solver by providing an easy-to-calculate estimation of the matrix inverse; here, our naive
preconditioner simply corresponds to a first-order Taylor expansion of matrix inverses of the
form (I + A)−1. In all numerical experiments performed for this paper, the order of the rotated
branch cut rational approximation of the square root functional was 4, which ensured an accurate
evaluation of the evolution operator P(r). Similar to the paraxial scheme, we include transparent
boundary conditions in the numerical implementation of the evolution operators.
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2.4. Interface conditions for the optical fields

In the last two sub-sections, we presented the general formalism allowing to propagate optical
fields inside each birefringent slab of Fig. 1 in two separate regimes – paraxial and wide-angle.
Since discontinuity jumps of the permittivity are allowed at each interface between the birefringent
slabs, all that remains to do is formulate the continuity equations for the optical fields at these
interfaces. Such continuity equations allows the calculation of the forward/backward modes
of the (n + 1)-th slab as a function of the forward/backward modes of the n-th slab. From the
continuity of the transverse electric and magnetic fields at a slab interface, Maxwell-Faraday
equation (ik0cB = ∇ × E) and Eqs. (4) and (14), we obtain the following set of equations:

E(+)n + E(−)n = E(+)n+1 + E(−)n+1, (22)

N(+)n E(+)n − N(−)n E(−)n = N(+)n+1E
(+)
n+1 − N(−)n+1E

(−)
n+1, (23)

where a subscript n (resp. n + 1) denote a quantity associated with the n-th slab (resp. (n + 1)-th
slab). The operators N(±) are defined in Eqs. (S3) and (S6) of Supplement 1, here we will simply
mention that they simplify to

√
ε̃ (i.e. the phase operator) when the optical and permittivity fields

are invariant by translation in the x and y directions.
Physically speaking, the operators N(±) in Eqs. (22) and (23) play the role of effective index

in the direction normal to the interface for the forwards and backward propagating modes, and
allow to generalize the well-known Fresnel equations for arbitrary optical fields (not simply
plane waves) at interfaces between arbitrary anisotropic media (to the best of our knowledge,
such a generalisation was only done for isotropic media, see for example Ref. [9]). For example,
assuming an interface between two anisotropic media 1 (input media) and 2 (output media) with
an incident (Ei), reflected (Er) and transmitted field (Et), we calculate from Eqs. (22) and (23):

Et =
[
N(+)2 + N(−)1

]−1 [
N(+)1 + N(−)1

]
Ei,

Er =
[
N(+)2 + N(−)1

]−1 [
N(+)1 − N(+)2

]
Ei,

which directly gives thewell-known Fresnel amplitude coefficients t = 2n1/(n1+n2) (transmission)
and r = (n1 −n2)/(n1 +n2) (reflection) in the case of a normally incident plane wave and isotropic
media of indices n1 and n2.
Note that the current numerical implementation of our BPM schemes takes into account

Eqs. (22) and (23) only at the entrance and exit of the birefringent sample (interfaces between
an isotropic external medium and the birefringent medium), where we make the approximation
N(±) ≈ √ε̃ mentioned above (no significant variation of the fields in the x and y directions) and
where we assume zero backward-propagating fields on the output side of the interface. In the
bulk of the birefringent medium we assume E(+)n ≈ E(+)n+1, i.e. that the birefringent medium do
not significantly contribute to reflections. This approximation is valid only if the permittivity
tensor is smoothly varying along the z direction, which we will assume in the remainder of this
article. In the future, it would be interesting to fully implement Eqs. (22) and (23) in the bulk of
the birefringent sample by using the bi-directional beam propagation scheme described in Ref.
[9], thereby allowing to model light propagation in sample with photonics bandgap or significant
reflective properties (e.g. Fabry-Perrot or Distributed Bragg mirrors).

3. Numerical results and discussion

Now that our two beam propagation schemes — paraxial and wide-angle — for birefringent
media are introduced, we discuss associated numerical results for liquid-crystal-based photonics
systems. We first validate our methods by calculating the computational error inside homogeneous

https://doi.org/10.6084/m9.figshare.12713021
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birefringent samples and one-dimensional diffraction gratings, and then show a real-life example
of application of our numerical code by demonstrating that topological solitons in frustrated
cholesterics can be used as light waveguides.

3.1. Validation of the scheme

To validate the two schemes introduced in Sec. 2, we calculate the computational error between
numerically calculated optical fields and reference solutions on three systems:

• System A: homogeneous birefringent layer with optical axis n = ex and input beam
polarisation ex + ey;

• System B: 1D diffraction grating with in-sample-plane rotation of the optical axis n =
cos(2πy/p)ex + sin(2πy/p)ey and input beam polarisation ex + iey;

• System C: 1D diffraction grating with cholesteric-like rotation of the optical axis n =
cos(2πy/p)ez + sin(2πy/p)ex and input beam polarisation ex.

For each system, the wavelength in empty space is λ = 500 nm and the input profile for the
transverse optical fields is a diffraction-limited highly-focused profile for system A and a Gaussian
profile with a waist of 1 µm for system B and C. We assume that x is an axis of invariance for the
optical and permittivity fields and propagate the optical fields along the z-axis on a computational
box of sizes Ly = 6 µm and Lz = 3 µm. The computational error µ is calculated with the following
formula:

µ ≡ ||E(num)
⊥ − E(ref)

⊥ | |2/| |E(ref)
⊥ | |2, (24)

where an index “(num)” (resp. “(ref)”) indicates a numerically calculated (resp., reference)
solution. For system A, the reference solution is calculated analytically from Maxwell equations
in Fourier space (which is possible because system A is homogeneous). For system B and C, the
reference solution is calculated from a Finite-Difference-Time-Domain (FDTD) simulation on a
very fine mesh (∆y = ∆z = 6 nm), since no known analytical solution are readily available on
these systems. In every simulations, the permittivity tensor is assembled from the optical axis
field assuming uniaxial birefringence: ε = n2oI + (n2e − n2o)n ⊗ n, with ne = 1.75 (no = 1.5) the
extraordinary (ordinary) index. All FDTD simulations were performed using the open-source
softwareMEEP developed by the MIT [22] with MPI parallelisation. Paraxial and wide-angle
beam propagation simulations were run on a custom-developed C++ code based on the schemes
of Sec. 2 and parallelized with OpenMP. Transparent (resp., perfectly matched layer) boundary
conditions ensured that outgoing fields were absorbed on the side of the computational box in
BPM (resp., FDTD) simulations. Finally, analytical solutions of Maxwell equations in Fourier
space were calculated directly using the Python library numpy.
The error µ can include two contributions: numerical error due to the finite-difference

discretization of BPM or Yee-lattice discretization of FDTD, and scheme error due to the
approximations (H1) and (H2) made in Sec. 2. For system A and B, the latter error is exactly zero
for our wide-angle scheme because the optical axis is z-independent and always orthogonal to the
propagation axis z; this can be verified either by repeating the calculations of Sec. 2 with εαz = 0
and observing that no error terms are needed to reach the final propagation equation, or simply
comparing our final propagation equation with the exact wave equation in planar liquid-crystal
structures [23]. Note that this means that whenever the walk-off operator W is exactly zero and
the permittivity tensor is z-independent, our wide-angle scheme is expected to be identical to
the exact wave equation in birefringent media without having to assume hypotheses (H1) and
(H2.b). We conclude that in system A and B, the computational error in wide-angle simulations
is only due to the numerical discretization, while for system C — for which the walk-off operator
is nonzero — the error µ also includes a O (

η2
)
in addition to the discretization error, as shown
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in Eq. (19). Paraxial simulations always include a scheme error in addition to the discretization
error since for this class of BPM, hypothesis (H2.a) is always needed whatever the system in
consideration.
In Fig. 3, we show color-graded images of the optical field solutions and plots of the

computational error as a function of the mesh spacing ∆y for systems A, B and C. Note that we
impose ∆z = ∆y/3 for beam propagation simulations and ∆z = ∆y for FDTD simulations. We
used smaller axial steps for BPM because we empirically noticed that the naive preconditioners
of the wide-angle scheme were more efficient in this case. Figure 3(d) shows that the numerical
error scales quadratically with the mesh spacing for the FDTD and wide-angle beam propagation
simulation, as expected for centered finite-difference and Yee-lattice discretization [22]. In
Fig. 3(e), this quadratic scaling is only seen transiently for systems B and C because the error µ
includes constant contributions from the reference FDTD simulation (which is only approximate
even with very fine computational meshes) and from the scheme error as discussed above
for system C. As for paraxial simulations, they are always less accurate than the wide-angle
simulations and saturates for small mesh spacings because they rely on an approximation
(see hypothesis (H2.a)). Nevertheless, our two schemes allows to reach computational errors
comparable to 1–5 %, even in systems where the propagation equations derived in Sec. 2 are not
exact but rely on approximations. This validates the accuracy of our two schemes.

Fig. 3. (a,b,c) Color-graded plot of the real part of Ex in systems A, B and C respectively.
The optical axis variations are represented schematically with cylinders below the plots, and
the axes orientations on the right apply to all plots. The white bars represent 0.5 µm. (d)
Computational error µ as a function of the mesh spacing ∆y for system A. The reference
solution for the calculation of the error is analytical. (e) Same as (d) for systems B and C.
The reference solution is calculated from a FDTD simulation on a very fine mesh. In (d,e),
dashed (dotted) curves correspond to wide-angle (paraxial) beam propagation simulations
and the solid curve correspond to a FDTD simulation.

We did not make a full theoretical analysis of the stability of our schemes, but can at least point
out that our paraxial scheme was always found stable in our numerical experiments (including
a wide range of geometries such as topological solitons, non-local optical solitons, cholesteric
droplets, photo-patterned liquid crystal samples. . .). This is expected since this scheme is based
on an exact calculation of the phase evolution and a mature ADI scheme already widely used
for isotropic media [9]. The situation is a bit more complex for our wide-angle BPM, which
necessitates some tweaking of the scheme parameters to get stable propagation when the mesh is
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very fine (typically ∆y<0.1 µm). We believe the stability of this scheme could be improved with
better preconditioning for the iterative solvers and more robust absorbing boundary conditions
such as perfectly matched layers [24].
We conclude this section by giving typical computational running times of our numerical

schemes. With a threshold accuracy of 1 %, the typical running time for our wide-angle scheme
is ∼ 10 s for the systems studied here, while the running time of the FDTD code MEEP was
∼ 1300 s. These times were obtained on a state-of-the-art computational station with 12 CPU
cores (i7-7800X), and are typically multiplied by a factor 10 for three-dimensional simulations.
Of course, these results highly depend on the hardware on which the codes are running, but as a
general rule, our wide-angle beam propagation scheme runs ∼ 100× faster than the FDTD code
MEEP, and our paraxial scheme is ∼ 5× faster than our wide-angle scheme — but is limited in
terms of accuracy as shown in Figs. 3(d) and (e). We deduce that our two schemes are particularly
suited for efficient BPM in anisotropic media, as long as the optical fields propagates dominantly
along z. Typically, we found that our paraxial scheme can reliably propagates fields up to an
angle of deviation of 5◦ with respect to z, while our wide-angle scheme is accurate up to angles
of 20 − 30◦, depending on the mesh spacing. Thus, users of our beam propagation schemes
should always choose the reference propagation axis z in order to minimize angular deviation and
keep these angular limits in mind when evaluating the accuracy of their simulations.

We remark that these angular limits for both our schemes were obtained from the simulations
on system A by imposing a threshold of accuracy of 5 % and calculating the errors of individual
transverse Fourier modes, which correspond to tilted plane waves in a homogeneous birefringent
slab. In principle, higher angles of deviation could be covered with higher-order Padé approximant
in our wide-angle scheme; however, for extremely fine mesh and highly non-paraxial fields, the
simple preconditioners used in our wide-angle scheme are not robust enough to efficiently invert
the matrices of propagation. This technical limitation could be lifted in principle with better
preconditioning.

3.2. Waveguides based on topological solitons

Now that the validity of our code was established on simple 2D simulations, we turn our focus
to a more complex 3D system. The goal of this section is to show that topological solitons in
frustrated cholesterics can be used as light waveguides. In usual unconfined cholesterics — a
chiral liquid crystal phase with orientational order — the director field (which here is identical to
the optical axis n) rotates around a unique spatial direction, thus forming the so-called cholesteric
helix texture. When confined between two plates treated for an homeotropic anchoring (n
constrained to be normal to the plate), the equilibrium cholesteric helix cannot be formed and
more complicated states emerge. Among these frustrated states, we will focus here on cholesteric
fingers of the second kind (CF2), which correspond to line-like structures embedded in a uniform
homeotropic background [25]. These structures can be addressed as topological solitons because
they cannot be continuously deformed into the homogeneous homeotropic state, and typically
appears in samples with a ratio h/P ∼ 1, with h the sample thickness and P the cholesteric pitch
— the periodicity of the equilibrium cholesteric helix texture in unconfined domains. We will
first consider straight CF2 associated with an axis of invariance, and will give some preliminary
results with curved CF2 at the end of this section.

Since CF2s are associated with a localized modulation of the permittivity tensor ε , they make
good candidates for the guiding of light. In Fig. 4(a), we show the director field profile of a
straight CF2 in a plane orthogonal to the axis of invariance z, as calculated from a minimization
of the free energy of the cholesteric phase [26] using the material constants of the liquid crystal
E7 at ambient temperature [27,28]: K1 = 11 pN, K2 = 7 pN, K3 = 18 pN, ne = 1.746, no = 1.522.
We also assumed that the confining plates sandwiching the cholesteric layer had a refractive
index np = 1.51, as measured for typical crown glasses [29]. In all simulations of this section, we
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always impose h/P = 1. Note that since CF2s do not contain any topological defects, they are
scale-invariant and only depends on the ratio h/P. As a consequence, the profile of Fig. 4(a) can
be used to model arbitrarily-thick samples with the appropriate scaling operation as long as the
sample thickness and cholesteric pitch fulfill h/P = 1.

Fig. 4. (a) Representation of the transverse profile of the director field of a z-invariant CF2
with cylinders. The thickness of the liquid crystal layer is h and homeotropic boundary
conditions are imposed on the top and bottom confining surface along x. Light eigenmodes
are calculated inside the dashed region. Color-graded representation of Re Ex (b), Im Ex (c),
Re Ey (d) and Im Ey (e) are shown below for the fundamental eigenmode in a 30 µm-thick
sample.

We calculated eigenmodes of the wide-angle propagation operator T(+) defined in Eq. (18)
using the ARPACK++ library. We restricted the calculation of eigenmodes in the dashed region
of Fig. 4(a) by imposing zero field values outside this region, for a reason that will become
clear later on. A typical result of this calculation for a sample of thickness h = 30 µm is shown
in Figs. 4(b)–(e), where we plotted color-graded representations of the transverse optical field
components for the fundamental eigenmode, i.e. the eigenmode with the highest eigenvalue.
As visible, light is confined inside a banana-shaped domain which correspond to the dark-blue
cylinders in Fig. 4(a). The polarisation of this eigenmode is mostly-aligned with the director field
along ex, as expected since the birefringence is positive here (ne>no) and since index-gradient
type waveguides rely on permittivity profile with a negative curvature — in other words, the
effective refractive index must be at its highest value at the center of the guided mode.

However, we emphasize that the eigenmodes calculated inside the dashed domain of Fig. 4(a)
are not eigenmodes of the full liquid crystal sample because of the artificial zero-field boundary
conditions that we imposed. When calculating eigenmodes on the complete computational mesh
rather than the localized dashed domain of Fig. 4(a), we noticed that the optical fields always
contained a small fraction of intensity scattering out of the CF2, which suggest that the calculated
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eigenmodes are not strictly speaking waveguide modes but rather leaky modes, i.e. confined
modes of light which slowly loose energy when propagating along the axis of invariance z. This
suggestion is reinforced by the fact that the εxx-profile along the y-axis in the mid-plane of the
sample has a W-shape, a specific shape which is known to lead to leaky waveguides and leaky
modes in isotropic media [30]. To definitely demonstrate that the fundamental eigenmode shown
in Figs. 4(b)–(e) is indeed a leaky mode, we used it as input for a typical wide-angle beam
propagation simulation along the z-axis. By denoting E(0)⊥ the transverse optical field at the input,
we then calculated the fraction φ(z) of lost intensity for the fundamental mode after a distance of
propagation z:

φ(z) ≡ 1 −
�����
∫

E⊥(x, y, z)∗ · E(0)⊥ (x, y)dxdy∫
E(0)⊥ (x, y)∗ · E(0)⊥ (x, y)dxdy

�����
2

. (25)

In Fig. 5(a), we plot φ as a function of z for samples of different thicknesses. After a transient
regime delimited by a dashed line on Fig. 5(a), the fraction of lost intensity φ is approximately
linear in z, which indicates that the fundamental mode of Figs. 4(b)–(e) is linearly loosing energy.
The magnitude of this energy leaking depends on the sample thickness: the thinner the sample,
the higher the linear loss. To better characterize this thickness-dependence effect, we introduce
the linear scattering loss Γ:

Γ ≡ − d
dz

[
10 log10(1 − φ)

]
. (26)

Note that Γ can be well-approximated by (10/log 10)(dφ/dz) since φ � 1. In Fig. 5(b), we plot
Γ as a function of the sample thickness h. As shown, numerical data points are well-fitted with
an exponential law of the type Γ0 exp(−h/l0), with Γ0 ≈ 94.5 db/cm and l0 ≈ 4.28 µm. Note that
this law is very similar to the well-known expression of the transmission coefficient of a quantum
particle tunneling through a rectangular potential barrier. We also remark that the typical order
of magnitude of the scattering loss Γ is small with respect to losses due to thermal orientational
fluctuations of the director field (typically 40 db/cm [31]), which indicates that the leaky modes
calculated here should in principle be visible in actual experiments.

Fig. 5. (a) Fraction of lost intensity of the fundamental eigenmode as a function of
propagation distance z inside a straight CF2. From right to left, h = 10–30 µm by increments
of 2 µm. The dashed line symbolizes the transition to the linear loss regime. (b) Scattering
loss Γ as a function of sample thickness h. The error bars are obtained from the standard
deviation of the slope of f above the dashed line of (a). The solid line correspond to a fit
with an exponential law.

We close this section by providing an outlook on possible applications of CF2-based light
waveguides. Up until now, we focused on CF2 with an axis of invariance along z, but more
complex geometries are entirely possible since Ackerman et al. developed an experimental
technique allowing to write in real-time cholesteric fingers with arbitrary shapes in the yz plane
using scanning lasers [32]. This technique makes CF2s a very attractive target for writing in
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real-time photonics circuits such as directional couplers, provided that losses due to curvature of
the CF2 are not too important. We provide here a few preliminary results concerning the role of
the curvature which could guide future work in this line of research. In Fig. 6, we show how light
is guided inside sine-like CF2s with various in-plane curvature in a sample of thickness h = 30
µm. In this figure, each bended section of the CF2 has a length πR/9 with R the in-plane radius
of curvature. The optical micrographs in Figs. 6(a)–(c) were simulated using the open-source
software Nemaktis (see https://github.com/warthan07/Nemaktis) which is based on our paraxial
BPM to propagate optical fields in virtual birefringent samples as in a real polarised optical
microscope. As shown in Figs. 6(d)–(f), light is well confined as long as the radius of curvature of
the CF2 is greater than ∼ 2h, but this lower bound can be extended to smaller radius of curvature
if the length of the bended part of the CF2 is reduced. We also expect that the quality of light
confinement should be greatly increased when using high-birefringence liquid crystals.

Fig. 6. (a–c) Simulated crossed-polarizers optical micrographs of sine-like CF2s with a
typical radius of curvature of 100 µm, 70 µm and 40 µm respectively. (d–f) Associated
x-averaged beam intensity when the fundamental eigenmode of Figs. 4(c)–(e) is sent inside
the CF2s of (a–c). The white bars represent 30 µm.

4. Conclusion

We introduced a general theoretical framework for modeling beam propagation in arbitrary
birefringent media, and derived a paraxial and wide-angle BPM from this framework assuming
two reasonable mathematical hypotheses based on physical limitations (small index contrast,
paraxial propagation or smooth variations of the longitudinal components of the permittivity
tensor). One of the main attractive feature of our methods is that they are based on 2D differential
operators with a clear physical interpretation and easy numerical implementation based on sparse
matrices. The current numerical implementation of our schemes is only based on forward-
propagating modes, but we also theoretically showed how the continuity equations for the electric
and magnetic fields at interfaces of discontinuity of the permittivity can be taken care of.
We validated the accuracy of our schemes by showing that the computational error scales

quadratically with the mesh spacing in systems where our beam propagation equations are
expected to be exact, and showed that the computational error is still reasonably low in systems
where our framework is only approximate. Finally, we applied our wide-angle beam propagation
scheme to a promising system for tunable light waveguiding and manipulation, namely topological
solitons in frustrated cholesteric liquid crystals. We showed that light is efficiently guided along
straight topological soliton with low scattering loss, and examined how the curvature of these
topological solitons — whose trajectory can be written on-demand with scanning lasers —

https://github.com/warthan07/Nemaktis
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affects the confinement of light. This study therefore provide the first step towards reconfigurable
topological-soliton-based photonics components such as directional couplers.
We also underline once again that when the walk-off terms are inexistent (εαz = 0, i.e. the

optical axis is orthogonal or parallel to z), our wide-angle scheme is rigorously exact up to
discretization errors. A very interesting consequence of this observation, as brought forward by
one of the referee, is that our wide-angle scheme can also be used to model high index contrast
LC devices (e.g. with silicon cladding) as long as the hypotheses (H1) and (H2.b) of Sec. 2 are
fulfilled in the bulk of the liquid crystal and the optical axis is almost orthogonal or parallel to z
at the interface between the LC and the confining isotropic media.
We finally mention possible extensions and applications of our work. First, implementing

bi-directional BPM based on the continuity equations of Sec. 2.4, as mentioned previously,
would facilitate the study of photonic bandgap in birefringent media. Other possible extensions
of our work include more efficient preconditionners for the evolution operators — an interesting
challenge for specialists in numerical analysis — and perfectly matched layers to better absorb
outgoing fields on the side of the computational box [24]. Second, we mention that our schemes
can also be used to model nonlinear optics based on the elastic response of liquid crystals to
optical perturbations [23,33]. Last, we emphasize that our paraxial scheme is particularly suited
for microscopy simulations, since typical microscopy objectives with low numerical aperture
filter-out spatial high-frequencies — which therefore do not need to be modeled accurately. We
plan to provide a detailed description of this application to microscopy in a future paper.
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