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ABSTRACT
Motivated by the chromosomes enclosed in a cell nucleus, we study a spherically confined system of a small number of long unknot-
ted and nonconcatenated polymer rings in a melt and systematically compare it with the bulk results. We find that universal scal-
ing exponents of the bulk system also apply in the confined case; however, certain important differences arise. First, due to con-
finement effects, the static and threading properties of the rings depend on their radial position within the confining sphere. Sec-
ond, the rings’ dynamics is overall subdiffusive, but anisotropic along the directions parallel and perpendicular to the sphere’s radius.
The radial center of mass displacements of the rings are in general much smaller than the angular ones, which is caused by the
confinement-induced inhomogeneous radial distribution of the whole rings within the sphere. Finally, we find enhanced contact times
between rings as compared to the bulk, which indicates slow and predominantly coordinated pathways of the relaxation of the
system.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0013929., s

I. INTRODUCTION

Nonconcatenated and unknotted ring polymer melts have been
fascinating physicists for years, and still a complete understanding of
their properties is lacking. Static properties of linear chains in melt
are to a good approximation Gaussian,1 and dynamic properties are
well-described by tube and reptation theories.2,3 However, joining
the two ends of each chain, while keeping the created rings unknot-
ted and nonconcatenated, makes it difficult to treat the system with
analytical techniques.4 Therefore, different theoretical models have
been developed to tackle the problem under simplifying assump-
tions, such as treating a ring as in the lattice of fixed obstacles formed
by the other rings,5–9 assuming tree-like conformations,10–12 or var-
ious other.13–15 Along these ideas, computer simulations13,16–22 have
been an indispensable tool for testing the assumptions and verifying

the experimental results23–32 under perfectly controlled conditions.
This joint effort has proven to be successful and has generated a
range of interesting results that highlight how permanent topological
constraints of rings impact equilibrium properties, which turned out
to be dramatically different from their linear counterparts. In partic-
ular, the melt of rings exhibits a power-law stress relaxation modulus
with the absence of the rubbery plateau typical for the linear polymer
melts.19,23 Rings, significantly longer than the entanglement length
Ne, adopt compact conformations characterized by the scaling rela-
tion R ∼ Nν between their mean size R and their polymerization
degree N with the exponent ν = 1/d = 1/3, where d = 3 is the dimen-
sion of the space. Furthermore, the probability of two monomers
separated by the contour distance s being in mutual proximity in
space is also a power-law P(s) ∼ s−γ with the exponent γ ≃ [1.05,
1.17].18,21 The values of the exponents ν = 1/3 and γ close to unity
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describe the so-called crumpled (fractal) globule ensemble that char-
acterizes melts of long polymers under unknotted and uncrossable
topological constraints.

The above-mentioned conformational properties and the cor-
responding exponent values have sparked further motivation to
study these systems in the context of genome folding. The fractal
globule model is consistent with the population average ensem-
ble of the chromatin fiber configurations in cell nuclei of higher
eukaryotes.8,34–36 In contrast to rings, the chromosomes do have
ends, but the rationale behind such connection is the slow chromo-
somal reptational relaxation mechanism. Due to temporary topo-
logical constraints, the reptation is much slower than the rel-
evant biological time scales.36 If the chromatin fiber is mostly
uncrossable with very slow or inhibited reptation but other-
wise random, the crumpled globule ensemble arises naturally.
An account of topological constraints has proven to be use-
ful in finding detailed genome conformations from experimental
data.37

Nevertheless, the above-outlined correspondence is based on
the results of bulk simulations of many rings subject to periodic
boundary conditions. Chromatin fiber, on the other hand, is con-
fined in the nucleus and, in the case of human diploid cells, con-
sists of 46 chromosomes only. Hence, the majority of chromosomes
is affected by the confinement geometry, and their conformations
result from the competition between the confinement and the com-
pression due to topological constraints. In this direction, the work38

studied a single long ring in cubic confinement and found that the
conformations of the ring’s subchains are consistent with the crum-
pled globule picture in terms of ν = 1/3 but found γ ≃ 0.9. The
value of γ < 1 cannot be a true asymptotic value of the exponent
for conformations with ν = 1/3 because 1 ≤ γ ≤ 1 + ν for geo-
metric reasons as detailed in Refs. 35 and 39. No dynamics was
reported in Ref. 38, as the simulations had been carried out using
Monte Carlo sampling with non-local moves. Single ring static prop-
erties have also been investigated in biaxial confining geometry,
which leads to the extension of the ring in the third dimension,
markedly different from a linear confined chain.40–42 The impact
of a cylindrical confinement on the static properties of semiflex-
ible rings has been studied experimentally in Ref. 32. In contrast
to the approximate view of the rings as tree-like objects, that work
confirms significant inter-ring threadings observed previously in
the bulk simulations.43–45 The model-independent threading differ-
ences between the effective tree-like model21 and the accurate molec-
ular dynamics simulations have been quantitatively analyzed in
Ref. 46.

Here, we investigate the impact of confinement, ring topol-
ogy, and a small number of polymer chains on static and dynamic
properties of the system. We simulate a spherically confined set of
M = 46 rings of lengths N = 200, 400, 800, and 1600 with the
same model parameters as in Ref. 18 detailed below (see the system
snapshot in Fig. 1). We find and characterize global structural orga-
nization of the confined rings as well as differences in their single
chain static properties with respect to the bulk results. Additionally,
we report mean inter-ring threading properties, which are impor-
tant for the dynamics of systems with long rings.44,47–53 We find that
they are similar to the bulk systems but vary with the rings’ radial
position within the confining sphere. Finally, we report dynamic
properties of the system, which, inter alia, exhibit anisotropic

FIG. 1. System snapshots. Left panel: the system with N = 800 rings. Right panel:
the same system when only five rings are shown. The compact and territorial ring
arrangement can be observed.

mean-squared displacements of the ring’s center of mass within
the enclosing sphere caused by the confinement-induced density
variations.

II. MODEL
We used the well-known polymer model54 in which the

excluded volume interaction between any two monomers is
described by a purely repulsive and shifted Lennard-Jones
potential,

ULJ(r) = (4ε[(σ
r
)

12
− (σ

r
)

6
] + ε)θ(21/6σ − r), (1)

with θ(x) being the Heaviside step function. The polymer bonds
were modeled by a finitely extensible nonlinear elastic (FENE)
potential,

UFENE(r) = −
1
2
r2

maxK log[1 − ( r
rmax
)

2
], (2)

where K = 30.0ε/σ2 and rmax = 1.5σ. These parameters make the
chains essentially uncrossable. Additionally, we used the angular
bending potential

Uangle = kθ(1 − cos(θ − π)), (3)

with kθ = 1.5ε to induce higher stiffness that corresponds to a lower
entanglement length Ne = 28 ± 1 at the studied monomer density
ρ = 0.85σ−3.55 The ring lengths therefore correspond to the
range from 7 to 57 entanglement lengths. The interaction between
monomers and the structureless confining sphere was also purely
repulsive and given by ULJ(R − r), where R is the radius of the
sphere, r denotes here the distance between the monomer and
the sphere’s center, and ULJ is the same as in (1). The simula-
tions were performed in the NVT ensemble using the large-scale
atomic/molecular massively parallel simulator (LAMMPS) engine56

using the integration time step Δt = 0.012τ, where τ = σ(m/ε)1/2.
To maintain the constant temperature T = 1.0ε, all monomers
were weakly coupled to a Langevin thermostat using a coupling
constant γ = 1.0τ−1. The Langevin thermostat in spherical con-
finement induces stochastic values of angular momentum that can
obscure the real dynamics. To prevent that, we zero the total
angular momentum every ten steps by subtracting the appropri-
ate value of the rotational component of the velocity of each
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TABLE I. Size and shape properties of the confined rings. R is the radius of the
confining sphere, ⟨R2

g⟩ is the mean-square radius of gyration, ⟨R2
e⟩ is the mean-

square distance between two monomers separated by the contour length N/2, and λi ,
i = 1, 2, 3, are the eigenvalues of the gyration tensor ordered such that λ1 ≥ λ2 ≥ λ3.
The value in the parentheses indicates the standard error.

N R/σ ⟨R2
g⟩/σ2 ⟨R2

e⟩/σ2 ⟨λ1⟩/⟨λ3⟩ ⟨λ2⟩/⟨λ3⟩

200 13.72 26.4(0.2) 73.4(0.6) 5.64(0.04) 2.25(0.01)
400 17.29 44.4(0.7) 120.7(2.5) 5.24(0.08) 2.14(0.02)
800 21.78 73.1(1.1) 195.4(3.8) 4.93(0.10) 2.06(0.01)
1600 27.44 120.5(2.8) 320.2(10.4) 4.89(0.12) 2.03(0.02)

monomer. After the subtraction, the velocities are rescaled to main-
tain the set temperature. Performing this procedure every step
is computationally more costly, and as we checked, this has no
effect on the dynamics, as seen in Fig. S10 of the supplementary
material.

A. System preparation
Initially, a set of M neighboring rings was extracted from the

prepared bulk sample of Ref. 18 and placed in the confining sphere
that just enclosed all rings. Then, a short (∼104τ) simulation was run
to compress the sphere to reach the target monomer density. The
confining sphere radius R is reduced in steps that are much shorter
(about 1%) than the equilibrium bond length and thus allow ther-
malization and equilibration on local scales. The final values of R
for each system are listed in Table I. After reaching the final den-
sity, the systems have been further equilibrated for over 106τ (N
= 200 and N = 400) or 107τ (N = 800 and N = 1600). From Ref.
18 and by computing the radius of gyration autocorrelation func-
tion, we know that this is long enough to reach equilibrium. Addi-
tionally, we checked by computing the linking number between all
pairs of rings that during the system preparation, the rings had not
linked. Only afterward, production runs were run with a total dura-
tion over 2 ⋅ 107τ for all N considered. Configurations were sampled
every 1200τ.

III. RESULTS
A. Conformational properties

We characterize the ring’s shape and size by computing the
eigenvalues λi (i = 1, 2, 3, arranged as λ1 ≥ λ2 ≥ λ3) of its gyration
tensor,

Gij =
1
N

N

∑
n=1
(r(n)i − Ri)(r(n)j − Rj), (4)

where r(n)i is the ith component of the position vector r(n) of the
nth monomer and R is the center of mass position of the ring.
Then, the ring’s mean-square radius of gyration ⟨R2

g⟩ can be com-
puted as ⟨R2

g⟩ = ∑3
i=1⟨λi⟩ with the brackets ⟨⋯⟩ standing for the

time and ensemble averaging. Certain population average confor-
mational properties are listed in Table I. As shown in Fig. 2(a),
both the confined and bulk systems of rings approach the scal-
ing of the radius of gyration with N with exponent ν = 1/3 [see

FIG. 2. Scaling of the confined rings’ radius of gyration. (a) The mean-square
radius of gyration ⟨R2

g⟩ as a function of the ring length N on a log–log scale for
the bulk and the confined systems. The bulk data were adapted from Halver-
son et al.18 The dashed lines represent power-laws with the marked exponents
ν. Inset: relative decrease in the ⟨R2

g⟩ in the confined system with respect to the
bulk one (x-axis is the same as in the main plot). (b) Probability distributions of
⟨R2

g⟩. Dashed curves of the same color correspond to the bulk systems. Inset: the
same distributions as in the main plot but scaled by the mean.

also Fig. S1(a) for the scaling of eigenvalues and Fig. S2(c) for
⟨R2

g⟩ normalized by N2/3]; however, the confined rings are on aver-
age 10%–15% smaller than their bulk counterparts [see the inset
of Fig. 2(a)]. This shows that the compression due to topological
constraints is “softer” than by the hard walls. Furthermore, as seen
in Fig. 2(b), the normalized probability distributions of the rings’
radius of gyration overlap fairly well for different polymerization
degrees.

Additionally, we probed the structure of the subchains of the
rings by measuring the mean-squared internal distance ⟨d2(s)⟩ for
each segment length s as the squared distance between the endpoints
of the segment averaged over the segments position within the ring
and averaged over rings. It shows a range of various scaling regimes
from the exponent 2 (straight segments below the persistence length)
through 1 for random walk-like configurations to the exponent 2/3
characterizing the compact fractal structure (Fig. 3), in full analogy
to the bulk results.18

As detailed later on in the text, the confinement in this relatively
small system of rings causes significant structural rearrangements in
comparison to the bulk that, as a consequence, have a pronounced
effect on the rings’ conformational properties with respect to their
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FIG. 3. Conformational properties of the subchains of the rings. Mean-square inter-
nal distance ⟨d2(s)⟩, computed for each segment length s as the squared distance
between the endpoints of the segment averaged over the segments position within
the ring and averaged over rings. For each N, ⟨d2(s)⟩ is normalized by the ring’s
mean-square end-to-end distance defined as ⟨R2

e⟩ = ⟨d2
(N/2)⟩.

radial position within the sphere. In particular, the rings located at
the periphery tend to be more compact than the ones positioned
more centrally, as shown in Fig. 4. To quantify this in more detail, we
divided the rings into a subset of outer ones, whose center of mass is
located at r > 2R/3, and inner ones, for which r < 2R/3. 2R/3 is the
median of the radial ring’s distribution [see Fig. 8(a)]. We find that
the size of outer rings, being closer to the bulk ones, is about 25%
larger than the size of the inner ones. Both subsets approach the size
scaling with ν = 1/3 for larger N (see Fig. S2). This bias shows that the
compression by an external potential and that by topological con-
straints are not equivalent. The external potential is sometimes used
to model compact conformations when the topological constraints
are neglected.57 Moreover, from the eigenvalues of the gyration ten-
sor, we compute a range of other shape parameters that are reported
in the supplementary material (see Figs. S1–S4). For instance, we
observe that the rings located closer to the confining wall are more
aspherical and oblate (see Figs. S3–S4).

FIG. 4. Distribution of the rings’ radius of gyration within the sphere. Probability
density of finding a ring of size Rg with its center of mass located at a distance r
from the center of the confining sphere of radius R for the system with N = 800.
Other systems have very similar distributions (see Fig. S4).

The contact probability P(s) represents the probability that two
monomers of a ring, separated by a contour distance s, are in con-
tact in 3D space. It is computed for each segment length s as the
fraction of times the segments endpoints are within a cutoff distance
rc averaged over the segments position within the rings and averaged
over rings. We have found that P(s) remains nearly unaffected by the
confinement and, for bigger contour distances, scales as P(s) ∼ s−γ
with the scaling exponent γ = 1.12 ± 0.02 (Fig. 5). The exponent γ is
related through the relation γ = 2 − β to another exponent β charac-
terizing the scaling of the number of surface monomers of a segment
nsurf(s) ∼ sβ.18,35 The surface of a segment consists of monomers that
neighbor the confining wall or monomers from other segments. For
space-filling polymer conformations, that is the ones characterized
by ν = 1/3 in three dimensions, the exponent β also gives the fractal
dimension db of the segment’s surface by db = β/ν. As opposed to
the bulk system, the smooth confining wall induces db = 2 at least
for some segments. The fact that we recovered the bulk value of γ
suggests that the number of the segments with db = 2 is inferior to
the other segments with higher db. Note that this is not a trivial con-
sequence of the fact that the system size scales as R ∼ N1/3 because
the segments aligning the wall smoothly could induce such a smooth
surface also in other segments deeper inside the confining volume.
We support the analysis by measuring directly the scaling of surface
monomers. We find the value of the exponent β = 0.95 to be the same
as in the bulk case.18 We further looked if the smooth surfaces of the
outer rings affect the properties of the single chain structure factor.
As shown in Ref. 18, the structure factor of a segment of length s
follows

S(q) ∼ sβ−1/q(2−β)/ν. (5)

See also Refs. 58 and 59 for a more refined discussion of this result.
For β = 1 and ν = 1/3, the scaling gives S(q)q3 ∼ const, as evi-
denced by the plateau in Fig. 6(a). The inset highlights differences
for the inner and outer rings, discriminated by their radial position
with respect to 2R/3 that is the median of the radial distribution
[see Fig. 8(a)]. This difference could be attributed to smaller β of
the outer rings due to partly smoother surface in comparison to

FIG. 5. Contact probability P(s) as function of the segment length on a log–log
scale. The power-law with the marked exponent value is consistent for all ring
lengths. For computing P(s), we used rc = 21/6σ (results for other values of rc do
not differ substantially).
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FIG. 6. The single-chain static structure factor. (a) S(q) multiplied by q3. Inset:
S(q) for N = 1600 differentiated by the radial position of rings. (b) S(q) rescaled by
N1−βq(2−β )/ν motivated by the relation (5).

the inner rings. It is, however, difficult to confirm this because the
inner rings also show a bit more open conformations and, therefore,
smaller effective ν at these scales. Another option is to consider the
scaling of the contact probability for the outer and inner rings sep-
arately. In contrast, we systematically see the opposite trend with γ
being smaller (and, therefore, β higher) for the outer rings (Fig. S7).
Additionally, only for N = 200, γ of the outer rings is below unity
and close to 0.9, which is consistent with the findings of Ref. 38.
This is the consequence of the conformational change due to the
presence of the wall, since it is not found for the inner or bulk
rings. More work is necessary to determine the correct scaling of
the structure factor and the contact probability for such “hybrid”
conformations, where the surface roughness is affected by a smooth
interface. Nevertheless, we get a better overall collapse of the struc-
ture factor (5) when β ≃ 0.95 is used [Fig. 6(b)], similar to the bulk
results.18 The remaining small inconsistency in the numerical verifi-
cation of the theoretical relation γ + β = 2 is an open question noticed
already for the bulk. A part can be attributed to finite-size scaling
corrections.18,58,59

The presence of the confinement induces local monomer den-
sity variations in the wall’s proximity (Figs. 7 and S8). The small
differences between the different systems arise from the different
curvature with respect to the local scale. More importantly, the con-
finement also significantly affects the global ring positioning within
the sphere [Fig. 8(a)]. This shows very little variation for different

FIG. 7. Monomer density variations. Radial monomer density profiles as a function
of the radial distance from the confining wall for systems with rings of different
length N. The gray dashed line indicates the mean monomer density ρσ3 = 0.85.

N. Even at dilute conditions, ring polymers are stronger depletants
than linear chains42 due to enhanced effective repulsion between
rings that stems from additional topological uncrossability con-
straints.60,61 At high concentrations, the rings become compact due

FIG. 8. Global system order. (a) Radial density profile (multiplied by R3) of the
ring’s center of mass within the confining sphere of radius R. The gray line shows
ρCM(r)R3 for the melt of linear chains with N = 200 at the same mean monomer
density ρσ3 = 0.85. In all cases, shaded regions indicate error bars. The black
dotted line located at about r = 2R/3 indicates the median point of the radial rings’
probability distribution within the sphere, PCM(r) = 4πr2ρCM(r). (b) The mean num-
ber of neighbors K1(a) of a ring for different threshold a values as a function of N.
The green and yellow lines differentiate K1 by the rings position within the sphere:
inner rings are located at r < 2R/3, while outer ones at r > 2R/3.
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to topological interactions, and their internal density distribution
exhibits a deeper correlation hole in comparison to linear chains.18

The rings are more compact at the wall, and therefore, their correla-
tion hole there is even deeper. As a result, the fluid is more structured
at the wall, similar to other effective colloidal particles such as multi-
arm stars.62 In the present system, the positional distribution of the
rings’ center of mass exhibits a single maximum of the radial distri-
bution at about 2/3 of the radius from the sphere’s center, while the
density minimum close to the center of the sphere is much deeper
than in the case of the linear chains. This effect arises from the com-
pact conformation of the rings and their resulting deeper correlation
hole. The density profiles collapse well on each other when the length
scale is normalized by the confining radius R [see Fig. 8(a)], despite
the fact that monomer density variations penetrate deeper into the
sphere with decreasing N (see Fig. S8). To study relative arrange-
ment of rings within the sphere, we measured their mean number
of neighbors K1(a) [Fig. 8(b)]. Two rings are considered as neigh-
bors if their centers of mass are located within a certain distance a.
The mean values for the longest ring lengths are about 30% lower
in comparison to the bulk systems.18 This is mostly because of the
rings located close to the wall (r > 2R/3), due to which they are miss-
ing about half of the possible neighbors with respect to the bulk. The
inner rings (r < 2R/3) experience only about a 10% reduction, consis-
tent with the size decrease in this region [Fig. 2(d)]. Here, we selected
the threshold distance 2R/3 because it represents the median of the
ring positional distribution, that is, it is equally likely to find a ring
in the regions with r < 2R/3 and r > 2R/3.

B. Threading properties
The rings cannot cross and therefore link, but they can thread

as one ring pierces through the eye of another ring. The mutual
ring threading is an important multi-ring property that due to the
topological constraints is believed to strongly affect the dynam-
ics of the system.43,44,46–53,63,64 To analyze threadings, we have used
the minimal surface approach. Each ring is considered as a fixed
boundary on which a disc-like surface is spanned and subsequently
minimized using a mean-curvature evolution, as detailed in Ref.
46. Then, the intersection of one ring’s contour with another
ring’s minimal surface represents a threading. This approach has
already been used to clarify the extent and the role of thread-
ings in equilibrium bulk systems. Other approaches are also possi-
ble;44,48 however, the minimal surfaces provide an intuitive geomet-
ric picture of the inter-ring threading, and moreover, the obtain-
able threading statistics is independent of the underlying polymer
model.46

The threadings can be of various depth, which is characterized
by the separation length Lsep defined as

Lsep = min( ∑
i=even

Lti , ∑
i=odd

Lti), (6)

where Lti is the (threading) length between the ith and the (i + 1)th
penetrations of the surface (see Refs. 43 and 46 for details) and its
ratio Q = Lsep/(N − Lsep), which describes the relative fraction of

FIG. 9. Threading statistics. (a) Probability density of the number of the neighbors threaded by a single ring (see the main text for definition); comparison between the confined
(colored lines) and bulk (black lines) systems. (b) Probability density of the number of the neighbors threaded by a single ring that has its center of mass located at r > 2R/3
(top panel) and r < 2R/3 (bottom panel). (c) Mean number of threaded neighbors as a function of the ring length computed from the distributions in the panels (a) and (b). (d)
Mean number of surface penetrations as a function of N. (e) Mean values of Q as a function of N (see the main text for definition).

J. Chem. Phys. 153, 064903 (2020); doi: 10.1063/5.0013929 153, 064903-6

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

the threading ring length on the two sides of the threading ring’s
surface.

In Fig. 9(a), we report the distribution of the number of
threaded neighbors for various ring lengths. We consider a ring as
threaded if at least one threading length is longer than the entan-
glement length Ne. We have chosen this definition because it gives
rise to distributions that are independent of the underlying polymer
model.46 The threading properties also vary with the radial position
of the ring. In general, the rings closer to the center than 2R/3 dis-
play a higher number of threaded neighbors than the rings at the
periphery [Figs. 9(b) and 9(c)], being closer to the bulk values. In
Fig. S9, we also show that qualitatively, the same effect is observed
for the threshold R/2. There, interestingly, the longest central rings
display a slightly elevated number of threaded neighbors in com-
parison to the bulk value. These observations agree with the trend
that more expanded rings are in the interior, and the more expanded
rings thread more likely.43 As can be seen in Fig. 9(c), having fewer
neighboring rings [Fig. 8(b)] in the case of confinement is related to
an overall lower number of threaded neighbors in comparison to the
bulk case. Interestingly, for ring lengths up to N = 800, the distribu-
tion of threaded neighbors is consistent with the one found in the
bulk [Fig. 9(a)], despite the fact that the confined rings have fewer
neighbors on average [Fig. 8(b)]. This is likely because of the fact
that smaller rings on average thread much less than the larger ones,
having only 1–2 out of 10 neighbors threaded. Furthermore, for
N = 200 and N = 400, even the outer rings have around eight neigh-
bors, which provides a sufficient number of possibilities to gain 1
or 2 relevant threadings and thus yields marginal differences in the
threading statistics. On the other hand, longer rings with N ≥ 800
that are located close to the wall have significantly reduced possi-
bilities of potential threadings (it even becomes smaller with higher
N as the number of neighbors grows with N rather very slowly),
and therefore, we observe systematically less threaded neighbors for
outer rings, while the statistics for inner rings is not affected substan-
tially. In Fig. 9(d), we report the number of surface piercings, that is,
how many times a threading ring pierces the surface of the threaded
ring. We consider only piercings that create threading longer than
Ne (see Ref. 46). Interestingly, while ntn is, on average, lower in con-
finement in comparison to bulk, the opposite trend holds for np,
which suggests that the total piercing number ntnnp could be a rel-
evant quantity characterizing the free energy penalty for opening
the tree-like ring conformations. Initially, ntn grows linearly with
N, consistent with findings in Ref. 63, but saturates for longer rings
due to the compact conformations and finite number of neighbors.43

For longer rings, ntn and np grow sub-linearly, but their product
scales with N. In summary, the threading statistics of rings in con-
finement is mainly affected by a decreased threading capability of
those rings located closer to the wall, as well as by a generally slightly
smaller number of neighboring polymer chains. Finally, we confirm
in Fig. S9(c) of the supplementary material that the distribution of
Q exhibits the same universal behavior as in the bulk with an effec-
tive scaling p(Q) ∼ Q−1.35.46 The experimentally measured threading
in a system of confined semi-flexible rings32 also exhibits roughly
linear scaling of minimal surface area with ring length and the num-
ber of piercings of a minimal surface with its area. However, note
that rings in that work are only up to two Kuhn segments long
and that our estimate of the entanglement length of that system is
much shorter than the persistence length in contrast to simulations

presented here. We, therefore, do not attempt for a detailed quanti-
tative comparison.

C. Dynamics
We characterize the dynamics of the rings in terms of the mean-

square displacements of individual monomers of a chain, g1, and the
rings’ center of mass, g3, as a function of the lag time t,

g1(t) =
1

T − t ∫
T−t

0

1
N ∑

N
i ⟨[ri(t

′ + t) − ri(t′)]
2⟩dt′, (7)

g3(t) =
1

T − t ∫
T−t

0
⟨[R(t′ + t) − R(t′)]2⟩dt′, (8)

where ri(t′) is the position of the ith monomer belonging to a single
ring, R(t′) is the position of the center of mass of a ring at a time t′

with respect to the center of mass of the whole system at that time,
and T is the total simulation time. The angle brackets in Eqs. (7) and
(8) ⟨⋯⟩ stand for averaging over the ensemble of rings. As shown
in Fig. 10, the early and intermediate time dynamics is consistent
with the bulk results. The g1 exhibits a subdiffusive regime, g1(t)
∼ tα, with the exponent α below 0.4 at early times that later even
slows down to around 0.25 for the longest rings, in agreement with
the bulk values.19 The g3(t) shows exponents ranging from 0.75 for
smaller rings with N = 200 to approximately 0.67 for the bigger ones
(N = 1600), in full analogy with those observed in the bulk systems

FIG. 10. Mean-square displacements. (a) The mean-square displacements of
monomers, g1, and (b) the rings’ center of mass, g3, as a function of the lag time
t. The black solid lines indicate intermediate scaling regimes.
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(0.75 for N = 200 to 0.65 for N = 1600).18 At the time scale when
the bulk system crosses over to diffusion (e.g., 2 ⋅ 106τ for N = 800),
the confined system still subdiffuses. This is because such crossover
happens at the scale of 2Rg that is comparable to the system size
(about 2.5Rg, as seen in Table I). Here, in contrast, g3 plateaus due
to the confinement, and no intermediate diffusive regime could be
observed.

To get a better understanding of the dynamics of the rings
within the confining sphere, we separately analyzed the mean-square
displacements of the rings’ center of mass along the radial direction
and perpendicular to it, g∥3 (t) and g�3 (t), respectively, as a function
of the lag time t. To do so, for a time interval [t′, t′ + t], we first eval-
uated the ring’s displacement along the radial direction, δ∥(t), and
perpendicular to it, δ�(t),

δ∥(t, t′) = ((R(t′ + t) − R(t′))R̂(t′ + t), (9)

δ�(t, t′) = R(t′ + t) − R(t′) − δ∥(t), (10)

where R(t′) is the magnitude the position vector R at the time
t′, assuming that R is measured from the sphere’s center, and
R̂ = R/R. Consequently, for a fixed lag time t, the displacements
in Eq. (9) are squared and averaged over time and over different
rings,

g∥/�3 (t) = 1
T − t ∫

T−t

0
⟨[δ∥/�(t, t′)]

2
⟩dt′. (11)

Note that with such definition, δ�(t) is a sum of two orthogonal dis-
placements along the ϕ- and θ-directions in the spherical coordinate
system, and therefore,

g3(t) = g∥3 (t) + g�3 (t). (12)

Also note that we do not track the cumulative values of the angular
components but consider the values of the angles to θ ∈ [0, π], ϕ ∈
[0, 2π], and therefore, the g�3 is bounded too. As shown in Fig. 11,
the spherical confinement generates an anisotropic behavior of the
rings’ motion along the different directions. Although both direc-
tions exhibit very similar subdiffusive exponents, the angular com-
ponent dominates g�3 (t) over the radial component g∥3 (t) by almost
an order of magnitude. This emerges due to the inhomogeneous
radial density distribution [Fig. 8(a)]. Similar effect, but about factor
of two weaker, can be observed for linear chains (not shown), where
the density anisotropy is weaker due to their shallower correlation
hole.18 Furthermore, we find that the radial [Fig. 11(a)] and total
[Fig. 10(b)] mean-square displacements can be brought on top of
each other at longer times if the time axis is multiplied by N−2.4±0.1,
which corresponds to the scaling of the ring’s diffusion coefficient
in the bulk melts D ∼ N−2.3±0.1,19 as shown in Fig. S11. Finally,
some works quantify the radial dynamics differently, resulting in
a different anisotropy and a seeming superdiffusive regime of the
radial rings’ displacements (see the discussion in the supplementary
material).

We further quantify the dynamics in terms of the relaxation
of different quantities. First, we consider the structural relaxation
proposed recently in Ref. 65 to quantify the effect of threadings

FIG. 11. Anisotropic dynamics within the confining sphere. (a) Radial components
of the mean-square displacements for different N. (b) Comparison between dif-
ferent components of g3 for N = 400. Similar results are found for other N (not
shown). The black solid lines indicate intermediate scaling regimes.

in ring-linear blends. The relaxation is in terms of the terminal
autocorrelation function (TACF) ⟨u(t) ⋅ u(0)⟩, where u(t) is the unit
vector connecting two monomers contourwise N/2 apart and the
average is performed over all such possible monomers within rings,
over different chains and time. The resulting function is shown in
Fig. 12(a) with the inset showing the scaling of the corresponding
relaxation time with N. The exponent 2.4 is comparable to the one
obtained in the bulk (2.2)19 for a similar structural relaxation quan-
tity computed as the autocorrelation of a vector c = u1 ×u2, where
the two vectors are connecting monomers 0 to N/2 and N/4 to 3N/4.
In Fig. 12(b), we compare the TACF of rings that are located close
to the confining wall to those in the sphere’s interior. Such TACF
was averaged over time periods when a ring is continuously resid-
ing in the respective region. We find that the structural relaxation of
inner rings is slowed-down in comparison to the outer ones, which
can be attributed to a more pronounced threading in the former
region. Unfortunately, due to the lack of long time statistics for the
region-resolved TACF, we were not able to accurately estimate the
relaxation times in the two regions separately and verify their scaling
with N.

Additionally, we quantify the dynamics of the neighbor
exchange. We compute the two-point contact correlation function
χ̂c(t) = ⟨nij(t0)nij(t0 + t)⟩t0 ,ij, where nij(t) is unity if ring i is a
neighbor of ring j in the sense of K1(a) with a = Re and zero
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FIG. 12. Terminal autocorrelation functions. (a) TACF of confined rings (solid lines)
compared to equivalent bulk systems (dashed lines). Inset: the relaxation time τuu

computed as τuu = ∫⟨u(t) ⋅ u(0)⟩dt as a function of N on a log–log scale. (b) TACF
of confined rings averaged over all chains in the system (solid lines) and over
those that are located in the inner shell with their center of mass position r < 2R/3
(dotted lines) and in the outer shell with r > 2R/3 (dashed lines).

otherwise [see Fig. 8(b)]. The correlation χ̂c is non-vanishing at long
times because in a finite system, there is a probability pn that any
two rings are neighbors at any time, which is given by the average
number of neighbors of a ring divided by all the possible number of
neighbors. Therefore, pn = ⟨∑j nij(t)⟩t,i/(M − 1), where the mean
number of neighbors of a ring i is averaged over i and time. In
Fig. 13(a), we plot χc(t) = χ̂c(t) − pn as a function of time. Further-
more, from χc(t), we extract the mean exchange time τex given by
τex = ∫χc(t)dt. The exchange time τex scales with N with the expo-
nent ≃2.7 ± 0.1, which is consistent with the exponent found for
the relaxation time in the bulk systems.12,19 The tails of χc(t) can be
accurately fit with a stretched exponential exp(( − (t/t0)β) with β
= 0.6–0.8 (smaller values correspond to larger N). The significant
prefactor in this scaling relation makes the exchange time about one
order of magnitude larger than the diffusion time in bulk.19 This
behavior arises not only from a neighbor exchange dynamics but
also from the finite volume of the enclosing sphere in which the rings
frequently meet repeatedly. Such behavior is expected as χc is more
related to the diffusional properties rather than the structural relax-
ation. Interestingly, χc of the bulk system [dashed line in Fig. 13(a)]
decays to zero slightly faster as for the confined case, and its shape
is different at early times, suggesting a different process of χc

FIG. 13. Neighbor exchange dynamics. (a) The neighbor exchange correlation
function χc(t) as a function of time for different ring lengths N. Inset: the mean
neighbor exchange time τex defined as τex = ∫χc(t)dt as a function of N in the
log–log scale. To estimate τex for N = 1600, the tail of χc(t) was extended with
a stretched exponential fit. (b) Contact duration distribution Pc for different ring
lengths N. The black solid line highlights the scaling regime Pc(t) ∼ t−1.75±0.01.
Inset: the mean contact time ⟨τc⟩ as a function of N on a log–log scale. The
dashed lines in (a) and (b) of the respective color corresponds to the bulk systems
of rings.

relaxation in the two cases. This is illustrated in Fig. 13(b) in which
the distribution of contact times Pc(t) is plotted for the bulk case
with N = 200 and for different N in the confined case. Note that Pc(t)
∼ tα/2−2 is connected to the distribution of the return times of a ran-
dom walker with the subdiffusive exponent α52,66,67 characterizing
the dynamics of rings. This agrees well with the subdiffusion of the
rings with α ∈ [0.5, 0.75]. The presence of the wall enhances the
contact time in the confined case in comparison to bulk, as is
clear from the later decay of the Pc [blue solid and dashed lines in
Fig. 13(b)]. This explains also the different χ relaxation process. The
mean contact time ⟨τc⟩ scaling as ⟨τc⟩ ∼ N0.55 grows more slowly
with N in comparison to τuu and τex. The scaling exponent of τc
with N is a consequence of the rings’ subdiffusion. The average con-
tact time based on the distribution above is ⟨τc⟩ ∼ λα/2, where λ is a
typical time scale characterizing the power-law regime. Then, λ must
be proportional to typical relaxation times for rings. The relaxation
time scales as λ ∼ Nx, with x being ≃2.4 in the case of the structural
and 2.7 for the diffusional relaxation mechanism, both of which can
contribute to the contact breaking events. This gives ⟨τc⟩ ∼Nxα/2, i.e.,
exponent somewhat above α in either case, in agreement with our
findings.
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Similar to the neighbor exchange, we analyzed the threading
dynamics only for the two shorter systems. We compute the two-
point threading correlation as χ̂th(t) = ⟨nij(t0)nij(t0 + t)⟩t0 ,ij, where
now the indicator function nij(t) is unity if ring i threads ring j
with Lsep > Ne and zero otherwise. In full analogy to the neighbor
correlation, the χ̂th is non-vanishing at long times. The probabil-
ity pth that any two rings are threading at any time is given by the
average number of threaded neighbors of a ring ntn divided by all
the possible number of neighbors pth = ntn/(M − 1). We plot the
threading correlation in Fig. 14, and in the inset, we show the dis-
tribution of the threading duration Pth(t). We find that the longest
threading durations are almost an order of magnitude shorter than
the relaxation of the threading correlations, and this discrepancy
is larger for the longer rings. This could mean that although the
duration of each threading is relatively short, it requires a number
of correlated threading events to be relaxed in order for a ring to
move. Consistent with that is the fact that the threading duration
agrees with the structural relaxation (when terminal autocorrela-
tion functions vanish in Fig. 12), and additionally, the neighbor
exchange dynamics (χc) agrees with the threading de-correlation.
The former fact contrasts with the bulk findings in Ref. 63, where
the structural relaxation is faster than the threading. However, here,
we only take into account threadings that are deeper than the
entanglement length. When threadings of any depth are consid-
ered, we find that the threading state can be maintained by the
short threadings for longer time. However, the short threadings
do not have impact on the final de-correlation time, which is gov-
erned by the deep threadings (see the supplementary material and
Fig. S3).

Although the view of the ring relaxation being governed by the
correlated sequence of unthreading events is plausible, we cannot
rule out that the threading is only a consequence of spatial prox-
imity that is maintained by another mechanism. Specifically, the
rings form compact structures with a pronounced correlation hole.
As such, rings could be viewed on the scale of Rg as soft colloids
that, especially in confined space, might require collective mode
of relaxation, similar to systems approaching a glass transition. In
other words, for a ring to move, others have to rearrange to make

FIG. 14. Threading exchange dynamics. The two time-points threading correlator
χth(t) for the two systems with N = 200 and N = 400. Inset: the distribution of
threading times Pth(t) for these systems. The black solid line highlights the scaling
regime Pth(t) ∼ t−1.75±0.01.

space for it, which prolongs the exchange times. The confinement
induces an effectively higher density in the center of the volume
interior (Fig. S8) and also restricts the possible motion directions
at the periphery. Both of these effects would enhance the relaxation
times in comparison to the bulk, in agreement with our observation
[Fig. 13(a)].

IV. DISCUSSION AND CONCLUSIONS
We have shown that a small number of spherically confined,

unknotted, and non-concatenated rings in melt maintain the uni-
versal features of the main static and dynamic characteristics known
from the bulk systems.18,19 Therefore, the connection between the
conformational properties of the topologically constrained polymers
and the chromatin of higher eukaryotes “survives” the enclosure of
the former in the confinement.

The ring conformations at the boundary display γ close to
unity despite the fact that a part of the ring has smooth sur-
face (db = 2) and, as such, would be represented by the exponent
γ = 2 − (2/3) = 1.33. This means that the conformations of the con-
fined rings are from the geometrical perspective well represented by
space-filling curves that have smooth outer, but fractal inner bound-
ary. Examples of such space-filling curves have been constructed
in Refs. 35 and 40. Further work is necessary to unambiguously
determine the structure factor and contact probability scaling prop-
erties for these “hybrid” space-filling conformations. We hypoth-
esize that this could be relevant when interpreting the scaling of
the contact probabilities within different chromatin (epigenomic)
domains. If the domain formation is due to different interaction
energies (proposed in Ref. 68), the domain boundaries would be
governed by minimizing the interfacial area, which would lead to
a smooth interface affecting the contact probability of the segment
similar to a smooth confining wall. In this context, the comparison
of our structural data with the scattering experiments performed on
chromatin at the periphery of the nucleus would be very interest-
ing. Indeed, such a system is much more complex than the present
simple coarse-grained model, and therefore, the results would also
depend on the nature of the interaction of the chromatin with the
nuclear lamina. In contrast to our simulations here, recent results
conjecture this interaction to be attractive in most cells; however,
the rod photoreceptors of nocturnal mammals do not exhibit this
attraction and therefore might be good candidates for the tests of our
results.69

Other differences between the bulk and confined case include
radially dependent conformational and threading properties of the
rings and the anisotropic dynamics along the directions parallel and
perpendicular to the sphere’s radius. These effects arise from the
confinement-induced radial density variations of the rings as well
as their compact structure at melt densities. Despite the thread-
ing differences with respect to the bulk, the confinement does not
reduce the threading to the extent comparable to the effective tree-
like model.21,46 Therefore, the question of the construction of an
effective model of equilibrated ring melt remains open not only in
the bulk46 but also in the confinement.

The confinement in the present work represents one of many
recently proposed mechanisms affecting the phase-space of the
uncrossable polymers, such as more complex topology,52 controlled
concatenation,70–74 supercoiling,75 or activity.53 Considering the
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effects of these perturbations brings the system closer to a practical
material or biological situation but also improves our understanding
of the unperturbed topologically constrained matter. Considering
the activity, recently, it has been shown that a bulk system of non-
concatenated rings with active segments can lead to a very slowly
relaxing state, the so-called active topological glass.53 The relaxation
is slowed down by the increased number of threadings and their spa-
tial and temporal extent that dramatically differs from the one found
in equilibrium ring melts. Such a system possesses many similari-
ties with the chromatin of living cells, such as the slow relaxation,
dynamic heterogeneity, and polymer size dependence on the level
of the activity. The questions whether such state is possible to cre-
ate in a confined geometry and whether it is relevant for biological
conditions remain open. The results of the present work, however,
provide the reference equilibrium values of the observables that the
system would originate from.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional information on
static and dynamic properties of the considered systems.
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