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In practically all branches of physics, different types of solitons, with a number of them enjoying
topological protection, are found. Here we explore how one- and two-dimensional topological solitons
formed by spatially localized continuous orientational patterns of optical axis in uniaxial birefringent media
interact with light. These solitons, in the forms of one-dimensional twist walls and two-dimensional
skyrmions, are controllably generated in thin films of cholesteric liquid crystals to introduce spatially
localized patterns of effective refractive index. Laser light interacts with these solitons as quasiparticles or
extended interfaces of different effective refractive indices seen by ordinary and extraordinary waves
propagating within the liquid-crystal medium. Despite our system’s complex nature, our findings can be
paralleled with the familiar phenomena of total reflection and refraction at interfaces of optically distinct
media, albeit these behaviors arise in a medium with homogeneous density and chemical composition but
with spatial variations of molecular and optical-axis orientations. By exploiting the facile response of liquid
crystals to external stimuli, we show that the twist walls and skyrmions can be used to steer laser beams and
to act as lenses and other optical elements, which can be reconfigured by low-voltage fields and other
means. Analytical and numerical modeling, with the latter based on free-energy-minimizing configurations
of the topological solitons, closely reproduce our experimental findings. The fundamental insights provided
by this work potentially can be extended also to three-dimensional solitons, such as Hopfions, and may lead
to technological applications of optical-axis topological solitons in telecommunications, nanophotonics,
electro-optics, and so on.
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I. INTRODUCTION

Multidimensional topological solitons—once introduced
by Skyrme to describe subatomic particles with different
baryon numbers—found their way into many disciplines of
physics ranging from condensed matter to cosmology [1–6]
and optics [7–9]. These topologically protected but con-
tinuous fields cannot be unwound by smooth deformations
[10] and can exist as energy-minimizing field configura-
tions in theories that possess chiral or high-order nonlinear
free-energy terms [11,12] needed to overcome the stability
constraints imposed by the Derrick theorem [13]. Recently,

there is great interest in studies of multidimensional
topological solitons in condensed matter, especially in
magnets and in liquid crystals (LCs) [8,14–23]. The interest
in topological solitons in magnetic solids is partially
driven by the solitons’ potential for spintronics applications
including racetrack magnetic memory devices [24,25].
Moreover, topological solitons in LCs have been used to
form various photonic crystal lattices and diffraction
gratings [26–28]. Both fundamental and applied interests
in studies of topological solitons arise largely from their
particlelike nature and from their ability to be morphed and
reconfigured by weak external stimuli like fields and light
[29–31]. The effective sizes and physical behaviors of these
particlelike structures in chiral LCs can be controlled by
confinement, chirality, external fields, laser tweezers, and
so on [26,32–40]. Topological solitons in LCs can be
created and templated on demand using scanning laser
beams [26,41], thus making them good candidates for
tunable all-optical devices using the intrinsic optical
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anisotropy of their LC host media. At the same time, the
idea of light propagation control with LCs distinguishes
itself in the more general context of advanced LC-based
applications in the fields of photonics, telecommunications,
and refractive and singular optics [42], which go far beyond
the more conventional display applications for which LCs
are broadly known. Recent achievements in these fields
include biocompatible microresonators and microlasers
based on onionlike chiral LC droplets [43,44], light guiding
and steering with light-written waveguides in nematic LCs
[45], photopatterned large-angle refractive elements [46],
multispectral generation of singular optical vortices [47],
optical inscription of reconfigurable arrays of microscopic
optical vortex generators in chiral LCs [48], and tunable
broadband Bragg mirrors stable in a wide range of temper-
atures [49]. However, these advanced applications of LCs
have not utilized topological solitons in the optical axis of
the birefringent LC medium so far, to the best of our
knowledge.
In this work, we experimentally demonstrate and theo-

retically model controlled guiding and lensing of laser
beams by highly reconfigurable topological solitons in the
continuous spatial patterns of the optical axis of uniaxial
LCs. The localized nature of topological solitons including
one-dimensional (1D) twist domain walls and 2D sky-
rmions allows for their well-defined interaction with light
in the linear optical regime, an interaction similar to that
with objects of effective refractive indices that are different
from those of the surrounding medium; however, here this
interaction emerges in a chemically homogeneous single
medium solely due to spatially localized structures of the
LC’s optical-axis (director) orientation [19,50,51]. The
susceptibility of LC topological solitons to external stimuli
further allow for reconfiguration of their interactions with
light. A set of theoretical tools that we introduce and use
allows for an explanation of our experimental findings and
can be extended for a more general description of topology-
enabled LC optical elements such as beam deflectors,
polarization multiplexers, and lenses.
Below (Sec. II) we introduce the structure and topology

of the two classes of solitons that we study and describe
the experimental and theoretical methods. In Sec. III, we
explore linear interactions of light with translationally
invariant 1D topological solitons characterized by a twist
of the optical axis by π [32,52]. We show that the
interaction of an optical beam with a translationally
invariant topological soliton may be described by a
generalized version of Snell’s law, which we introduce
in a closed analytical form and complement with numeri-
cally calculated Fresnel coefficients. In Sec. IV, we dem-
onstrate controlled deflection and lensing of a beam by a
2D elementary skyrmion [8,52,53], which is consistent
with a simple description of the linear optical interactions
based on Hamilton’s equations for the flow of the Poynting
vector in the geometrical optics approximation. We also

show robust control over beam deflection and lensing with
an electric field. Finally, in Sec. V, we describe the potential
impact of our findings on the study of solitons in fields
ranging from nuclear physics to optics and cosmology and
draw conclusions. Since various solitons are widely studied
[54] and since 2D topological solitons have been recently
realized in optical fields, our demonstrations of how
topological solitons in the optical axis of birefringent
media interact with light may create a new research
paradigm for exploration and exploitation of interactions
between solitons of different types in condensed matter and
in optics.

II. EXPERIMENTAL AND NUMERICAL
METHODS

A. Classes of topological solitons

1D and 2D topological solitons, which in one and two
spatial dimensions are characterized by elements of the
first and second homotopy groups, respectively, can be
smoothly embedded in 3D space as localized LC director
field configurations within a uniform far-field background
[52]. The diverse configurations that embed lower-dimen-
sional topological solitons can be greatly enriched by
adjusting the confinement and surface boundary conditions
of the LC system [52]. The anisotropy of the LC’s elastic
constants, cholesteric pitch, external fields, thickness of the
gap between confining substrates, and substrate’s surface-
anchoring strength can tune solitonic structural features
[52]. We emphasize here that whatever the type of
embedding, optical solitons cover by definition at least
once the order parameter space and therefore always yield a
strong effective refractive index contrast seen by a light
beam, thus leading to a wide range of strong interaction
behaviors. In our experiments and modeling, we focus on
two classes of 1D and 2D topological solitons embedded in
3D space.
The first class corresponds to 1D topological solitons

associated with a π twist of the director field along one
axis orthogonal to the far-field background director n0
[Fig. 1(a)], which cannot be realized in vector fields and are
specific to LCs because of their nonpolar nature. Such 1D
structures can be embedded in 3D space as orientational
fields with translational invariance in a plane orthogonal to
the axis of twist [52]. Particular confinement and surface
boundary conditions are needed to stabilize different
possible structures, with the extreme cases being repre-
sented by twist walls that are fully continuous [52] or
cholesteric fingers of the third type (CF3s) that have the
twist wall terminating on two singular disclination lines
[55] near the top and bottom confining substrates. For
constant elastic anisotropy, cholesteric pitch, and thickness
between confining substrates, the transition from twist
wall to CF3 or vice versa may occur by adjusting the
substrate’s anchoring strength and orientation of director at
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the surface [52]. For strong surface-anchoring strengths,
CF3s form with χ disclinations that facilitate matching
of the 1D topological soliton with the fixed, homeotropic
substrate boundary conditions representing a uniform,
topologically trivial state of the field [see Fig. 1(c)]. For
weak-to-moderate surface-anchoring strengths, the singular
disclination lines of the CF3s escape from the physical
volume of the sample, since the homeotropic orientation is
not strongly enforced by weak boundary conditions on
confining substrates [see Fig. 1(b)]. Note that in this article,
we neglect all possible in-plane curvature of CF3 and twist
walls and assume that the structures presented in Figs. 1(b)
and 1(c) are invariant by translation along the direction
normal to the plane of the figure.
The second class of solitonic structures that we study

corresponds to 2D topological solitons called skyrmions
and also elementary skyrmions, which are low-dimensional
topological analogs of Skyrme solitons introduced in high-
energy physics [see Fig. 1(d)]. Similar to twist walls and
CF3s, these 2D structures possess different structural
surface-anchoring-strength-dependent 3D spatial embed-
ding, which in general takes the form of rotationally
invariant orientational fields [8,52]. For strong homeotropic
anchoring conditions, the 3D structure that embeds the
elementary skyrmion is called a toron and in its simplest

form is associated with two point defects near the substrates
that match the topologically nontrivial soliton’s structure to
the uniform topologically trivial boundary conditions
[8,16,56] [see Fig. 1(f)]. For moderate anchoring strengths,
the singular point defects of the toron are pushed outside
of the physical sample’s dimensions and become virtual
[52] [see Fig. 1(e)]. We call this nonsingular 3D structure a
baby skyrmion, while the term elementary skyrmion is
reserved to describe the underlying 2D topological soliton
shown in Fig. 1(d).
All experiments are done with topological solitons in

cells with moderately strong anchoring, with which rela-
tively thick LC samples tend to yield torons and CF3s [52].
Nevertheless, twist walls and baby skyrmions are good
approximate structural representations of CF3s and torons
in the LC cell’s midplane. As the interaction of light with
the localized patterns of the optical axis mostly takes place
in this midplane, we preferentially use baby skyrmions and
twist walls—which can be described with simple Ansätze
minimizing the system’s total free energy—in numerical
simulations and theoretical models. With one example, we
also illustrate how the precisely simulated director field of a
CF3—based on the minimization of the full Landau–de
Gennes free energy—allows a theoretical explanation of an
effect seen in the experiments (see the Appendix D). This

(a) (b) (c)

(d) (e) (f)

FIG. 1. (a) Schematic representation of a 1D soliton with a π twist in a nonpolar LC. The orientation of the LC director is represented
by cylinders, and the far field is denoted by n0. (b) 3D embedding of the wall shown in (a) between plates (in gray) with moderate
homeotropic anchoring. (c) Same as (b) with strong homeotropic anchoring. Two defect lines (in red) are necessary to accommodate the
boundary conditions. (d) Schematic representation of a 2D soliton dubbed elementary skyrmionwith a vortex of π twist from its center in
all radial directions. (e) 3D embedding of the elementary skyrmion shown in (d) between two plates (in gray) with moderate
homeotropic anchoring; no singular defects are present in this LC bulk. The director field lines resting on nested toroidal surfaces are
represented in black. (f) Same as (e) with strong homeotropic anchoring; similar to (c), two defects (in red) are present due to the strong
anchoring. The colors of the surfaces in (e),(f) are only there for visual enhancement and do not have special meaning.
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approach allows us to explore different regimes for optical
interactions with topological solitons, thus revealing how
the choice of a particular 3D embodiment influences the
optical properties of the underlying topological soliton.

B. Observation of topological solitons and flow of light

We observe optical interactions between LC topological
solitons and linearly polarized Gaussian beams with an
inverted optical microscope (Olympus IX-73) that includes
a homemade sample stage [57], which enables an in-
sample-plane optical coupling with a monochromatic
Gaussian beam and through-sample-plane visualization
of the topological solitons with polarized-light optical
microscopy (POM). Topological solitons are selectively
generated with high-intensity laser pulses according to the
method described in Appendix A. The transmitted light
through phase-retarding LC solitons between crossed
polarizers [polarization axes P and A in Fig. 2(a)] and
the light scattered from the in-sample-plane laser beam due
to LC orientational fluctuations are collected through an

objective and captured by a digital camera revealing the
interactions between the beam and solitons. The sample
cell consists of two almost parallel but slightly tilted glass
plates terminated by a glass coverslip [58], which enforces
via tangential anchoring the uniform frustrated cholesteric
LC alignment at a common edge, as shown in Fig. 2(a).
A coupling objective introduces a Gaussian beam with its
focal point near the coverslip’s plane. To ensure that the
center of the beam interacts with the midplane of the
topological solitons, we configure the beam’s coupling
angle and insertion location so that the beam is coupled into
the equidistant center plane defined between the cell’s two
confining glass plates [Fig. 2(a)].
In Fig. 2(b), we illustrate a CF3 drawn in the cell’s yz

plane at a specific azimuthal angle that causes beam
deflection. We also selectively create and position torons
near the coverslip for interactions with a Gaussian beam
(not shown in Fig. 2). The incident beam is subject to
lensing and deflection from the torons, whose diameters are
adjusted with an electric potential applied across the gap

White-light source
To coupling 

objective

Cover slip

Coupling 
objective

From lens 2

Double-Fresnel-
Rhomb prism

Viewing 
objective

Digital camera

(a) (c)

(b)

FIG. 2. Schematics of the (a) microscope, (b) liquid-crystal cell, and (c) optical setup used to probe interactions between Gaussian
beams and topological solitons in frustrated cholesteric LCs. (Not to scale.)
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between the glass plates (URMS ¼ 0–0.8 V at 1 kHz),
indicated by the alternating voltage source shown in
Fig. 2(a). Our experimental system thus enables the
study of the laser beam’s interactions with topological
solitons under conditions when the beam’s intensity
is sufficiently low to ensure only linear interactions
observed with beam powers <1 mW and exclude non-
linear optical effects, which we observe with powers
starting around 20 mW.
The incident beam’s power, width, and linear polariza-

tion are configured with the setup shown in Fig. 2(c).
A 532-nm diode laser placed directly before a half-wave
(λ=2) plate combined with a polarized beam-splitting cube
and an adjustable neutral density filter (NDF) define the
incident beam power (< 1 mW) and a fixed linear beam
polarization. The insertion of a double-Fresnel-Rhomb
prism after the filter tunes the beam’s incident linear
polarization by rotation about the prism’s optical axis as
shown with the dashed line in Fig. 2(c). A combination of
the coupling objective [Fig. 2(a)] and a telescope made
from lenses 1 and 2 [Fig. 2(c)], where objectives (not
shown) are used for the lenses in the telescope, permitted
the tuning of the beam waist in the sample. Directly prior to
the coupling objective, the beamwidth is also adjusted by
an iris (not shown). Inside the cell, the beam’s full width at
half maximum is measured between 30 and 40 μm.
Additional details about the experimental setup, liquid-
crystal cell preparation, and laser-assisted generation of
topological solitons are presented in Appendix A.

C. Beam propagation and imaging simulations

In this article, we employ theoretical tools based on
Maxwell’s equations—with an exact eigenmode expansion
or geometrical optics approximation—to elucidate the
general mechanisms of interaction between light and
topological solitons. However, numerical simulations are
also used in order to validate and complement theoretical
results concerning the flow of light in our system.
Full 3D simulations of beam propagation inside our LC

sample are performed, with the main axis of propagation
parallel to the sample plates. We use a custom-written wide-
angle-beam propagation method (BPM) that one of us
(G. P.) recently designed [59]. Briefly, the wave equation
for anisotropic lossless media is recast into a simpler
Schrödinger-like equation of the type ∂uE⊥ ¼ iLE⊥,
where by definition the transverse field E⊥ is orthogonal
to the main propagation axis u. The differential operator L
includes several contributions—anisotropic diffraction,
beam walk-off, and phase operator—but most importantly,
it is obtained without any paraxial approximation. The
numerical implementation of this Schrödinger equation
ensures accurate propagation of beams with deflection
angles as high as 20° with respect to the main propagation
axis [60]. Note that the more conventional finite-difference
time-domain method, which directly solves Maxwell’s

equations without any approximations, is not a realistic
option for our system due to its huge size (typical box size
of 40 × 100 × 200 μm).
To simplify the comparison between simulations and

experimental images, we also simulate POM micrographs
of the studied LC solitons using a simpler version of our
BPM code with a paraxial approximation, where the main
axis of propagation—identical to the optical path in a
microscope (Fig. 2)—is normal to the sample plates [61]. In
all simulations, we use the values of the material constants
given in Table I.

III. OPTICAL INTERACTIONS WITH 1D
TOPOLOGICAL SOLITONS

In this section, we explore the linear optical interactions
of Gaussian light beams with π-twisted 1D topological
solitons embedded in translationally invariant configura-
tions in 3D space, as we describe above. In order to develop
insight into the reflection and transmission of light imping-
ing on such objects, we first provide a generalization of
Snell’s law and corresponding Fresnel relations for our
system. We then complement and verify this procedure by
full BPM simulations before its use in the detailed analysis
of the experimental results.

A. A generalization of Snell’s law for confined
modes of light propagation

We show here how to determine the effective modes of
propagation of light while a monochromatic beam is
reflected or transmitted through a topological soliton
invariant by translation in one direction. Specifically, we
consider frustrated cholesteric LC samples confined
between two plates with homeotropic boundary conditions.
By convention, x is the normal to the sample plane, and z is
the axis of invariance of an isolated topological soliton
inside the LC sample. The background state of the LC far
from the topological soliton is assumed to be invariant by
translation along both y and z. The Poynting vector of the
incident beam is parallel to the sample plates in the yz plane
and generates, through interaction with the topological
soliton, one or more reflected and transmitted beams, as
represented schematically in Fig 3. The situation repre-
sented in Fig. 3(b) resembles very much, by design, Snell’s
law at the interface between two isotropic media. Despite
the fact that our physical system includes complex 3D

TABLE I. Values of the material constants used in the simu-
lations. The values of the Frank constants K1;2;3 and refractive
indices ne;o are experimentally measured for E7 at ambient
temperature [62,63]. The value of the refractive index np is
experimentally measured for typical crown glasses [64].

K1 (pN) K2 (pN) K3 (pN) ne no np

11 7 18 1.746 1.522 1.51
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variations of the optical axis, we now demonstrate that the
very simple laws of refraction and reflection between
isotropic media can be generalized to the case of light
beams incident on birefringent-medium topological soli-
tons embedded in a uniform far field.
We start with the wave equation for the electric field E

in lossless and nonscattering birefringent media [65]:

∇ × ∇ × E −
ϵðx; yÞ
c2

∂2E
∂t2 ¼ 0 ð1Þ

with ϵ the permittivity tensor. Following the formalism
presented in Ref. [66], we can use the existence of an axis
of invariance (z) to express monochromatic solutions (at
angular frequency ω) of the wave equation (1) in the
following form:

Eðx; y; z; tÞ ¼
Z

ẼðpzÞðx; yÞ exp ½iðk0pzz − ωtÞ�dpz; ð2Þ

where k0 ≡ ω=c ¼ 2π=λ is the wave vector in empty space.
The z component of the wave vector (k0pz) is therefore
conserved in the system of Fig. 3 and should be the same
for incident, reflected, and transmitted beams. Although the
latter statement is quite powerful, it is insufficient to
determine the general directions of propagation of possible
reflected and transmitted beams since the x and y depend-
ences are still unspecified in Eq. (2).
Our approach to express the general form of ẼðpzÞðx; yÞ

in Eq. (2) is based on an eigenmode decomposition of the

wave equation. Although we could greatly simplify the
problem at hand by ignoring variations along the x axis and
assuming that the relevant eigenmodes are simple plane
waves—as in the original law of Snell—we choose here to
rely on an exact decomposition based on waveguide modes,
since we see later that these modes can play an important
role in our system. We split the whole sample into a series
of slabs parallel to the xz plane and centered on the
coordinates yl such that ylþ1 > yl, with l ¼ 1;…; N as
the slab number. In each slab, we assume that the
permittivity tensor ϵ is independent from y: ϵðx; yÞ ≈
ϵðx; ylÞ in slab l, an assumption that is rigorously exact
in the continuous limit (an infinite number of slabs for
N → ∞). The first and last slabs of this discretization
always correspond to the background domains represented
in Fig. 3, while the other slabs correspond to the soliton.
We then find for the slab l:

ẼðpzÞðx; yÞ

¼
X∞
m¼0

X
s¼þ;−

aðpz;l;m;sÞΨðpz;l;m;sÞðxÞ exp
h
ik0p

ðpz;l;m;sÞ
y y

i
:

ð3Þ
In Eq. (3), a subscript ðpz; l; m;þÞ [resp., ðpz; l; m;−Þ]

corresponds to the mth forward-propagating (resp., back-
ward-propagating) eigenmode in slab lwith a z dependence
set by pz in Eq. (2). Here, forward propagating (backward
propagating) means that the renormalized y component of
the wave vector py is positive (negative), and the actual

(a)
(c)

(b)

(d)

FIG. 3. Side (a) and top (b) view of the system, which consists of a LC layer confined between two plates in blue, with a topological
soliton inside the LC layer along the z axis. A light beam with wave vector ki is incident on the soliton in the yz plane and generates
reflected and transmitted beams. (c) Side view of the LC director field inside the simulated translationally invariant soliton. This soliton
called a twist wall is invariant by translation along the z axis and represents the simplest type of translationally invariant soliton in
frustrated cholesterics, with a π twist of the director field along the y axis represented schematically in (d). In (a)–(c), n0 represents the
orientation of the background director field far from the soliton. The projection of the translationally invariant director configuration’s
components along the axis of invariance (z axis) is indicated by the color scale in (c).
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sorting scheme of the eigenmodes is of little importance for
the present discussion. The vectors Ψð���Þ are defined as the
field amplitudes of the eigenmodes, and the coefficients að���Þ
correspond to the weights of each eigenmode for a particular
input beam, which can be found recursively by imposing the
continuity of the x and z components of the electric and
magnetic field at the interface between each slab.
Combining Eqs. (2) and (3), we observe that the phase

of each eigenmode flows along a vector pðpz;l;m;�Þ ≡
f0; pðpz;l;m;�Þ

y ; pzg in the yz plane. Although Eqs. (2)
and (3) correspond to a formal analytical solution of the
problem at hand, it contains little information since

pðpz;l;m;þÞ
y is unspecified for now. To go further, we there-

fore need to specify the permittivity tensor of the topo-
logical soliton and calculate the eigenmodes.
In the rest of this subsection, we choose to focus on a

simple example of a translationally invariant topological
soliton—the twist wall already described in Sec. II A. The
backgroundstateof suchastructure corresponds toauniform
director field n0 parallel to the x axis, while the twist wall
itself corresponds to aπ rotationof thedirector field along the
y direction [Figs. 3(c) and 3(d)]. In all numerical simulations
and comparisons between theory and experiments, we use a
simple topologicalAnsatz for the director field of twistwalls,
whosemathematical expressioncanbe found inAppendixB.
Since we are interested in the effective modes of

propagation for the reflected or transmitted beams far
from the soliton, we need to calculate the eigenmodes only
inside the background domains of Figs. 3(a) and 3(b). This
computation corresponds to the classical calculation of the
eigenmodes of an anisotropic slab waveguide (see, for
example, Ref. [67]), which can be split into an ordinary
(transverse-electric, TE) mode with a polarization orthogo-
nal to n0 and extraordinary (transverse-magnetic, TM)mode
with a polarization parallel to n0. In all numerical simu-
lations and experiments, the extraordinary index ne and
ordinary index no always have a greater value than the
refractive index of the sample plates np, so that there always
exists confined waveguide modes for both polarizations.
For simplicity, we give the expression of only the field

amplitude for each eigenmode inside the LC layer and drop
the ðpz; l; m;�Þ subscripts in favor of a simpler subscript
(α) expressing the polarization state α ¼ e, o (with e for
extraordinary and o for ordinary). We express the mode
profiles along x as a function of the renormalized coor-
dinate X ¼ k0x, and assume that the LC layer exists in the
interval x ∈ ½0; h� with h the sample thickness; we find for
the polarization α ¼ e or o:

ΨðxÞ ¼
(
sin½ξX� þ κðαÞξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ΔnðαÞ�2 − ξ2
q cos½ξX�

)
uðαÞ

þ ΨðαÞ
p ½x�pðαÞ; ð4Þ

py ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2α

�
1 −

�
ξ

no

�
2
�
− p2

z

s
; ð5Þ

where ΨðαÞ
p can be determined from the Maxwell-

divergence equation (∇ · E ¼ 0) and is nonzero only when
α ¼ e. In the equation above, κðoÞ ≡ 1 and κðeÞ ≡
n2p=ðnenoÞ are dimensionless factors, and we define the
ordinary and extraordinary polarizations uðαÞ as

uðoÞ ≡ n0 × pðoÞ; uðeÞ ≡ n0; ð6Þ

as well as the refractive index contrasts ΔnðαÞ for ordinary
and extraordinary modes as

ΔnðoÞ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2o − n2p

q
; ΔnðeÞ ≡ no

ne

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2e − n2p

q
: ð7Þ

Finally, the renormalized frequency ξ is given by a
transcendental equation depending on an integer m:

arcsin

2
64 κðαÞξffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ΔnðαÞ�2 þ ð½κðαÞ�2 − 1Þξ2
q

3
75þ ξk0h

2
¼ mπ

2
: ð8Þ

For each value of the integer m, we define ξðα;mÞ as the
unique solution of this transcendental equation. When the
sample is thick with respect to the wavelength, a very good
asymptotic expression of ξðα;mÞ can be used:

ξðα;mÞ ¼ mπ

k0hþ 2κðαÞ=ΔnðαÞ
þO

�
1

½k0h�4
�
; m ∈ N: ð9Þ

The integer m, which we call the waveguide mode
number in the following, physically corresponds to the
number of intensity lobes in the thickness of the sample.
For odd (even) m, the mode is symmetric (antisymmetric)
with respect to the center of the cell. Only a finite set of
waveguide modes exists for a given pz, since the square
roots in Eqs. (4) and (5) become imaginary as m goes
to infinity. More specifically, it can be shown that the
modes are fully confined in the sample (with exponen-
tially decaying fields in the glass plates) if and only
if jξðα;mÞj < ΔnðαÞ.
Combining the previous results for extraordinary and

ordinary waveguide modes, we find that the renormalized
wave vector pðα;mÞ along which the phase of the mth
waveguide mode with polarization α ¼ e, o flows can
always be expressed as

pðα;mÞ ¼ nðα;mÞ

0
B@

0

cos θðα;mÞ

sin θðα;mÞ

1
CA; ð10Þ
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where θðα;mÞ is the angle of pðα;mÞ with respect to the y axis
[see Fig. 3(b)], and the effective indices nðα;mÞ are given by

nðα;mÞ ¼ nα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ξðα;mÞ

no

�
2

s
; α ¼ e; o and m ∈ N:

ð11Þ

Using the conservation of pz demonstrated at the beginning
of this subsection, we finally arrive at a generalization of
Snell’s law for the transformation of an incident beam with
incidence angle θi and effective index ni into a reflected or
transmitted eigenmode with effective index nðα;mÞ (m ∈ N
and α ¼ e, o) and angle θðα;mÞ:

nðα;mÞ sin θðα;mÞ ¼ ni sin θi: ð12Þ

This equation shows that, after interaction, one incident
beam can produce as many as four modes per waveguide
mode number m: a reflected ordinary mode, reflected
extraordinary mode, transmitted ordinary mode, and trans-
mitted extraordinary mode.
We emphasize that this result is fully general and is

obtained without any approximation. Additionally, the
Poynting vector and the wave vector are parallel far from
the soliton both for extraordinary and ordinary modes,
which means that the angle θðα;mÞ in Eq. (12) indeed
characterizes the direction of energy flow of the transmitted
or reflected modes. Remarkably, our generalization of
Snell’s law does not depend on the internal structure of
the soliton but only on the permittivity profile far from the
soliton. Although this remark may seem counterintuitive at
first, we recall that Snell’s law expresses only the con-
servation of photon momentum parallel to an interface
(pz in our formalism), and therefore does not depend on the
structural details of the interface but only on the value of
the refractive index far from the interface. However, the
soliton’s orientational field is extremely important when
calculating the coefficients of transmission and reflection of
each eigenmode—the so-called Fresnel coefficients. Since
a closed form of the eigenmodes inside the soliton cannot
be obtained in general, we do not propose an analytical
formula for the Fresnel coefficients, which therefore need
to be calculated numerically (see Appendix C for calcu-
lation details).
In addition to the generalization of Snell’s law presented

above, we propose a simple estimation of the onset of total
internal reflection for the twist wall studied here. With a
calculation of the eigenmodes inside an infinitesimal slab
parallel to the xz plane and centered on the soliton, we find
that all confined waveguide modes (i.e., mode with a
real py) disappear when jpzj > no and are replaced by
exponentially decaying modes along the y axis. Using once
again the conservation of pz, we conclude that an input
mode with effective index ni and incidence angle θi will be

totally reflected by a twist wall when θi > θc, where θc is
the critical angle of reflection:

θc ¼ arcsin
no
ni

: ð13Þ

This result is not exact and relies on the assumption that the
optical axis is parallel to z at the center of the soliton, which
is not true near the sample plates as can be seen in Fig. 3(c).
The validity of this criterion is discussed later in light of
experimental and numerical results.
We close this theoretical discussion with suggestions on

how to use our generalization of Snell’s law in practice.
Indeed, in experiments and numerical simulations, one
never specifies a combination of eigenmodes but rather the
transverse field profile and polarization of the input beam.
In this article, we always work with input beams with a
Gaussian profile and extraordinary (parallel to x) or
ordinary (orthogonal to x) polarization. Since the waist
of these beams is much bigger than the wavelength
(typically 10 times bigger), it can be verified numerically
that the effective index of propagation ni in Eq. (12) can be
very well approximated by ne (extraordinary polarization)
or no (ordinary polarization). The situation is slightly more
complicated for reflected and transmitted beams. As can be
seen in Figs. 4(a) and 4(c), where the results of typical BPM
simulations for a 40-μm-thick sample are shown, trans-
mitted and reflected beams are diffracted along the sample
normal x after interaction with the twist wall [68]—due to
variation of the director field along x—with an initially
Gaussian profile transformed into a combination of wave-
guide modes confined between the two plates. In practice,
this multiplicity of eigenmodes is not a problem as long as
the waveguide mode numbers of the transmission or
reflection eigenmodes are small with respect to a critical
dimensionless number mc ¼ ðnok0hÞ=π. When m ≪ mc, it
can be verified that ξðα;mÞ ≪ no in Eq. (11) and nðα;mÞ ≈ nα
(α ¼ e, o) in Eq. (12).
In other words, for small waveguide mode numbers m,

the generalization of Snell’s law in Eq. (12) depends on the
polarization mode α ¼ e, o only. This approximation is
valid for the BPM simulation presented in Fig. 4, since the
dashed white lines in Figs. 4(b) and 4(d)—which represent
the directions of propagation of reflected or transmitted
modes predicted by Eq. (12) assuming nðα;mÞ ≈ nα—
perfectly agree with the directions of propagation of the
reflected and transmitted beams simulated with BPM.
We mention that the approximation nðα;mÞ ≈ nα is fully
equivalent to a simple description based on an effective
plane wave associated with a single wave vector p. In
Sec. III B, where we discuss our experimental results, we
start with this approximation but also present experimental
conditions where m can play an important role in our
generalization of Snell’s law and cannot be assumed to be
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small—in which case, the use of waveguide modes cannot
be avoided.

B. Experimental results and discussion

We present experimental beam reflection (transmission)
from (through) a CF3 in Fig. 5, where deflection behavior

corresponding to an o-mode incident beam polarization is
shown in Figs. 5(a)–5(g), while that for an e-mode incident
beam polarization is shown in Figs. 5(h)–5(n). We re-
present in Figs. 5(a) and 5(h) theoretical reflection and
transmission angles—as calculated from Eq. (12) with the
small m-approximation—with solid, multicolored lines

(a)

(c)

(b)

(d)

FIG. 4. (a) BPM simulation of a beam reflected by a twist wall. The green color corresponds to a 3D volumetric rendering of the
optical field intensity. The colored surfaces correspond to isosurfaces of the z component of the LC director field. The beam profile is
initially Gaussian but then spreads out along the x axis after interacting with the twist wall while confined between the two glass plates
represented in gray. (b) Simulated microscope images of the system represented in (a), with the axis of observation along x. The POM
image of the twist wall is simulated assuming crossed polarizers, and the green beam corresponds to the 3D volumetric data of
(a) averaged along x. (c) Same as (a) with a different incident angle. Instead of a reflected mode, two transmitted modes associated with
different polarizations are observed. (d) Same as (b) with the system of (c). The intensity of the o mode is enhanced 10 times in order to
be seen with the naked eye. In (a),(c), the polarization state of light is represented with double arrows. In (b),(d), the white thick line
represents 50 μm; the white dashed lines represent the directions of propagation of transmitted or reflected beams predicted by Eq. (12)
assuming nðα;mÞ ≈ nα. The angle of beam incidence is θi ¼ 70° for (a),(b) and θi ¼ 55° for (c),(d).
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whose colors correspond to relative mode powers predicted
by numerically calculated Fresnel coefficients for particular
incidence angles (see Appendix C for the details of this
calculation, which is based on the formalism of transfer
matrix for plane waves assuming approximate invariance in
the x direction). Note that the curve Tomode in Fig. 5(h)

saturates at 90° above an incidence angle of 60°, where
transmitted ordinary modes become fully evanescent, as we
discuss in more details in Appendix C.
While two reflection and two transmission modes always

exist for any incidence angle, relative powers associated
with each mode can be negligible or zero, as illustrated by
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FIG. 5. Comparison of our modification of Snell’s law to experiments with an ordinary (left) or extraordinary (right) polarized beam
impinging on a CF3. Angles of transmission and reflection are shown for an o-mode incident beam in (a) or an e-mode incident beam in
(h). Predicted reflection (Ro;e modes) and transmission (To;e modes) modes are indicated by the colored solid lines. Relative mode power
as a function of the incidence angle is depicted by the color scale as shown. Experimental data, at incidence angles with nonzero mode
powers, verify the trajectories predicted by our generalization of Snell’s law. POM images of an incident o-mode (b)–(g) or e-mode
(i)–(n) beam interacting with a CF3 are shown below (a),(h). The beam propagates from right to left in each micrograph. In (b)–(d) and
(i)–(k), the sample is illuminated with a backlight to view the birefringent medium’s soliton. In (e)–(g) and (l)–(n), the backlight is
extinguished to capture the beam’s optical interaction with the soliton. Each interaction, as indicated by the incidence angles as shown, is
portrayed as a pair of POM images viewed with and without a backlight. In general, as the incidence angle increases, different mode
powers become nonzero as shown with a transition from total transmission to a regime with weak transmission and dominant reflection
in (h). The scale bar’s length is 100 μm.
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the mode coloration and corresponding mode power scale
in Figs. 5(a) and 5(h). For this reason, experimental data
represented by the data points are provided only for regions
with sufficiently strong nonzero mode powers. In the case
of Fig. 5(a), the reflected e mode (not shown) has a relative
power that is identically zero except for a few-degree
incidence-angle range close to 90°. The same approach
applies to the reflected o mode (not shown) for Fig. 5(h).
With experimental mode observation constraints in mind,
we conclude from the plots in Figs. 5(a) and 5(h) that the
generalization of Snell’s law in Eq. (12) with small m
predicts reflected and transmitted trajectories of an incident
Gaussian beam from a CF3 consistent with experiments,
which we use as an illustrative example. However, we
emphasize once again that the generalization of Snell’s law
in Eq. (12) is also applicable to any translationally invariant
soliton embedded in a uniform far-field background, as we
explain in Sec. III A.
The micrographs for transmitted and reflected beam

behavior from incident o-mode beams [Figs. 5(b)–5(g)]
portray control over redirection of incident beams using an
experimental system fully described by our approach using
our generalization of Snell’s law assuming nðα;mÞ ≈ nα
(α ¼ e, o) in Eq. (12). Figures 5(b)–5(g) portray the
angle-adjusted CF3 interaction output as simply an o-mode
transmitted beam [Figs. 5(b) and 5(e)], an o- and e-mode
transmitted beam pair [Figs. 5(c) and 5(f)], and an o- and
e-mode transmitted beam pair with a reflected o mode
[Figs. 5(d) and 5(g)]. POM images of the beam-CF3
interactions are shown in Figs. 5(b)–5(d) while, for better
demonstration of the interactions, identical interactions
with no POM illumination are shown in Figs. 5(e)–5(g),
where the experimentally observed beam light collected by
the microscope originates from LC orientational fluctua-
tions away from the local alignment director field that
scatter beam light. Normal incidence angles are as indicated
in the figures.
Similar to o-mode incidence, incident e-mode beam

interactions with CF3s are portrayed with POM images
in Figs. 5(i)–5(k) and with no POM illumination in
Figs. 5(l)–5(n). Normal incidence interaction angles are
indicated directly in the micrographs. For small angles of
incidence (typically θi < 55°), observed micrographs such
as the ones in Figs. 5(i) and 5(l) portray an incident e-mode
beam interaction that is qualitatively similar to that of its
o-mode counterpart, with one or two transmitted modes
and no reflected modes as predicted by our numerical
calculation of Fresnel coefficients in Fig. 5(h). For angles
of incidence above approximately 55°, the situation
becomes more complicated, and two interesting effects
can be experimentally observed.
First, Figs. 5(k) and 5(n) show beam interaction micro-

graphs associated with an incidence angle θi above the
critical angle for total internal reflection θc ≈ 60°; although
our numerical calculation of Fresnel coefficients predicts

that no light can go through the topological soliton when
θi > θc, a small fraction of light leaks through the
experimental CF3 as seen in Figs. 5(k) and 5(n). As
rigorously simulated and discussed in Appendix D, this
loss is attributable to light slipping above and below the
center of the CF3, in the thin space between the CF3’s
disclinations and the confining plates, a region with no
internal reflection constraint. Note that in Fig. 5, the ideal
regime of total internal reflection predicted by the numeri-
cal calculation of Fresnel coefficients is associated with the
red parts of the curves Tomode and Temode above 60°.
Second, and in stark contrast to the case of o-mode

incidence, we experimentally observe that when the angle
of incidence is typically above approximately 55°, trans-
mitted and/or reflected beams sometimes split into smaller
beams—which we dub beamlets—with slightly different
directions of propagation. For example, two very faintly
transmitted (resp., brightly reflected) beamlets can be
observed in Fig. 5(m) [resp., Fig. 5(n)], with their mean
direction of propagation corresponding to the curve Tomode
(resp.,Remode) inFig. 5(h),whichdisplays all of themeasured
beamlets’ reflection or transmission angles from experiment
for each incidence angle as shown. This splitting of trans-
mitted and reflectedmodes suggests that thewaveguidemode
number m cannot always be assumed to be small for the
incident emode, and therefore thatmultiplewaveguidemode
packets with slightly different directions of propagation can
be generated in our system. In the next subsection, we
carefully examine the role of the waveguide mode numberm
in order to get more insight into this splitting effect.

C. Beamlets and higher-order eigenmode corrections

Motivated by the existence of beamlets in our exper-
imental system, we now discuss the conditions under which
the waveguide mode number m cannot be neglected in our
generalization of Snell’s law in Eq. (12). We recall that m
becomes relevant in this equation when ξðα;mÞ has the same
order of magnitude as no [or equivalently, m=mc ¼ Oð1Þ
with mc ¼ nok0h=π], i.e., when eigenmodes with a great
number of intensity lobes in the thickness of the sample are
generated after transmission or reflection. Since we show in
Sec. III A that the maximum value of ξðα;mÞ for confined
modes is ΔnðαÞ, this condition can be fulfilled only if
ΔnðαÞ=no ¼ Oð1Þ. Using the material constants given in
Sec. II, we calculate ΔnðeÞ=no ¼ 0.502 for extraordinary
modes and ΔnðoÞ=no ¼ 0.125 for ordinary modes. We
conclude that the waveguide mode number m can always
be neglected in Eq. (12) for ordinary modes—which
explains why we do not see beamlets for ordinary input
polarization in the experiment—but not for extraordi-
nary modes.
Using BPM simulations, we determine three possible

situations in which extraordinary modes with m=mc ¼
Oð1Þ are generated through diffraction in the x direction:
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(1) Thin samples in which only a limited range of values
are accessible for m. Since the maximum value for
ξðα;mÞ is ΔnðαÞ, the maximum value form scales with
the thickness; see Eq. (9).

(2) Misaligned input beams that are not perfectly
centered in the midplane of the sample (yz plane
equidistant from the two sample plates; see Fig. 3).
In this case, the incident beam can interact with both
the birefringent-medium structure of the sample and
the confining sample plates during reflection or
transmission, thus generating high-frequency modes
with high m.

(3) Input-beam full width at half maximum that is
comparable to the thickness between the LC cell’s
confining glass plates. In this case, the beam
can interact with the glass plates during reflection
or transmission and experience a high-frequency
maximum m.

We simulate with our BPM code the reflection of an
extraordinary beam by a twist wall in a thin sample (10 μm
assuming situation 1 above) and observe that the reflected
modes split into two distinct beams with the same extraor-
dinary polarization detailed in the simulated POM image in
Fig. 6(a). For completeness, we also show an experimental
image in Fig. 6(c), which is obtained in the same sample as
in Sec. III B and shows a similar splitting for reflected
modes as well as a weak transmitted mode irrelevant to the

present discussion. We perform an eigenmode decompo-
sition of the numerical optical fields along two lines parallel
to the x axis and centered on two points P1 and P2 [shown
in Fig. 6(a)] associated with the two reflected beams and
plot the power spectra of these two decompositions as a
function of the waveguide mode number m in Fig. 6(b).
From this plot, we deduce that the beam associated with P1
contains a majority of low-frequency modes with a dom-
inant waveguide mode number m ¼ 4, while the beam
associated with P2 contains a majority of high-frequency
modes with a dominant waveguide mode number m ¼ 14.
Finally, we verify that our generalization of Snell’s law
predicts the correct directions of propagation for the
reflected beams (dashed white lines in Fig. 6) by using
Eq. (12) with the dominant waveguide mode numbers
of Fig. 6. As can be seen, the agreement between
predicted propagation directions and simulated beams is
reasonably good.
We emphasize that each beam reflected from a twist

wall in fact contains a multiplicity of waveguide modes,
which affect the spreading and intensity distribution of the
reflected beams emanating from their reflection point.
Interestingly, it can be observed that the beam associated
with P1 diffracts greatly in the y direction, with a trans-
verse profile skewed toward the soliton. As shown by the
associated power spectrum in Fig. 6(b), this reflected beam
has non-negligible contributions with moderate waveguide

(a)

(b) (c)

FIG. 6. (a) Simulated microscope images of an extraordinary beam reflected by a twist wall in a thin sample of 10 μm. The incidence
angle is θi ¼ 75°. Similar to Fig. 4, the simulated birefringent-medium twist wall is observed under crossed polarizers, and the green part
of this image is obtained by averaging along x the three-dimensional optical field intensity simulated with BPM. The white bar
represents 10 μm. (b) Calculated power spectrum at points P1 and P2 in (a) as a function of the waveguide mode number. The dominant
waveguide mode numbers for P1 andP2 are used to predict the main directions of propagation of reflected modes [dashed white lines in
(a)] using Eq. (12). (c) Experimental images in a thick sample of 40 μm showing a splitting of reflected modes consistent with those in
(a). The white bar is 100 μm.
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mode number m ∈ ½6; 13�, each associated with smaller
angle of deflection with respect to the z axis according to
Eq. (12). Our numerical study therefore validates our
generalization of Snell’s law as a powerful tool to study
the effective mode of propagation in the system considered
here, even in extreme cases where high-frequency eigenm-
odes are generated through interaction with the soliton and
confining plates.

D. Toward topology-enabled optical devices

From our experimental and theoretical studies, we
suggest design rules for future research and possible
devices that practice the fundamental insights disclosed
in this article. We envision at least a few trajectories for
future investigations. First, we show that confining effects
are quite weak for ordinary modes in the system studied
here (ΔnðoÞ=no ¼ 0.125 ≪ 1), which could become a
problem if propagation of ordinary modes with low loss
is desirable in the target system. This limitation can be
easily mitigated by using confining plates with an index np
less than that of crown glass or alternatively by using a
liquid crystal with a higher ordinary index no. The latter
case can be easily realized with negative birefringence LCs
(ne < no), which could be employed for the total internal
reflection of ordinary but not extraordinary modes, if such a
feature is wanted [69–76].
Second, future studies could focus on the optimization of

truly x-invariant patterns of optical axis to ensure total
internal reflection and to mitigate the emergence of
beamlets. For twist walls, as discussed in this section,
such could be realized experimentally using patterned
confining surfaces (see Ref. [77] as an example of a
patterning method) or low anchoring strengths for large
cell thicknesses h or small h with strong anchoring
conditions. Patterning of confining surfaces could also
be used to design other birefringent-medium patterns of
optical axis to optimize the conversion of e to o modes or
vice versa within the pattern and satisfy m=mc ≪ 1 for
transmitted and reflected modes, thus yielding simple
control over a unique beam without additional beamlets.
Finally, for devices such as all-optical logic gates, the

existence of beamlets may be desirable for a multiplicity of
information channels, and so efforts would focus on their
generation and control. Here, miniaturization of the system
would be a very desirable feature, since we expect that the
lower number of waveguide modes due to thinner samples
would help to control the generation of beamlets. Attention
could be given to the splitting of low- and high-order
waveguide modes occurring inside the topological solitons
of this section, and in particular, examine if multiple
internal reflections inside the soliton could be responsible
for this splitting in the case of transmitted modes—as
suggested by one of the referees. In addition to the pertinent
parameters enumerated above for beamlets with e-mode
polarizations, the generation or collection of beamlets could

be controlled by adjusting—without any change in structure
topology—the global orientation of the optical axis inside
birefringent-medium structures by, for example, the appli-
cation of an in-sample-plane (out-of-sample-plane) electric
field for LCs with Δϵ > 0 (Δϵ < 0). Thanks to the time
invariance of Maxwell’s equations, such patterns of optical
axis could be used also to collect propagating beamlets
and convert them into simple Gaussian beam profiles with
e-mode polarizations, as an example.

IV. OPTICAL INTERACTIONS WITH 2D
TOPOLOGICAL SOLITONS

In this section, we study experimentally and theoretically
the deflection and lensing optical properties of 2D elemen-
tary skyrmions embedded in the rotationally invariant
structures introduced in Sec. II A. We first use the theo-
retical framework of geometrical optics to gain insight into
the flow of light inside these structures and then use this
knowledge to discuss our experimental results.

A. Theory: Ray tracing for skyrmionic structures
in birefringent media

First, we specifically focus on the linear interaction
between light and baby skyrmions, whose structure is
represented schematically in Figs. 7(a) and 7(b). As we
explain in Sec. II A, we recall that baby skyrmions can be
observed in frustrated cholesteric LC cells treated for homeo-
tropic boundary conditions with moderate anchoring energy
and correspond to a two-dimensional vortex of twist in the yz
plane, slightly modulated along the x axis by the anchoring
potential of the confining sample plates. We assume a simple
topological Ansatz for the director field of baby skyrmions,
whose mathematical expression can be found in Appendix B.
We emphasize that baby skyrmions are topologically equiv-
alent to the torons that we study experimentally, with singular
point defects replaced by virtual ones near the confining
plates.As longas the optical interactionof a beamwith a toron
or baby skyrmion happens at the midplane of a sample, we
expect identical scattering properties for both types of rota-
tionally invariant topological solitons.
Torons do not have an axis of translational invariance

that allows a simple decomposition into propagation
eigenmodes as in Sec. III. To provide a general under-
standing of the effects observed when laser beams are
impinging on such objects, we therefore need a different
approach. Since the skyrmions that we experimentally
study are much bigger than the wavelength of the light
(typically 100 times bigger), we choose to rely on the
geometrical optics approximation and use the ray-tracing
formalism described by Sluijter et al. [78] and Poy and
Žumer [79]. The advantage of the approach of Poy and
Žumer is that all formulas are given in a coordinate-free
covariant form and that it provides energy-conservation
laws for the amplitude of the optical fields. Here, we
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focus only on the field lines of the Poynting vector—called
rays—for the e- and o-mode polarizations, which can be
traced using the following Hamilton’s equations:

dr
ds̄

¼ ∂HðαÞ

∂p ; ð14Þ

dp
ds̄

¼ −
∂HðαÞ

∂r ; ð15Þ

where α ¼ e, o is the polarization state of the considered ray,
r is the spatial position of a virtual observer—which we call a
bullet—propagating along the ray, p is the wave vector of the
ray renormalized by k0 ¼ 2π=λ (the wave vector in empty
space) and evaluated at the bullet’s position, s̄ is the optical
length [80], and the HamiltoniansHðαÞ for extraordinary and
ordinary rays are defined as

HðoÞ ¼ jpj2
2ϵ⊥

; ð16Þ

HðeÞ ¼ ϵ⊥jpj2 þ ϵajnðrÞ · pj2
2ϵ⊥ϵk

; ð17Þ

with ϵ⊥ ≡ n2o, ϵk ≡ n2e, and ϵa ≡ ϵk − ϵ⊥.

Since HðoÞ does not depend explicitly on r (spatially
uniform index of refraction no), one may observe that
ordinary rays cannot be deflected by LC structures, which
is why we focus exclusively on the behavior of extraor-
dinary rays. We assume that these rays initially propagate in
the yz midplane of the sample along the z axis defined in
Fig. 7. By neglecting the variations of the LC director field
nðrÞ along the x axis—an approximation valid as long as
the ray is not propagating near the confining plates [see
Fig. 7(b)]—and by developing Eqs. (14) and (15) to first
order in ϵa, we find

dy
dz

¼ py

no
þ ϵa
ϵ⊥

nynz þOðϵ2aÞ; ð18Þ

dpy

dz
¼ −

ϵa
2no

∂n2z
∂y þOðϵ2aÞ: ð19Þ

This very simple system of differential equations for the
extraordinary ray trajectories clearly shows that the deflec-
tion of the photon’s momentum along y is controlled by a
single quantity g:

g≡ ∂n2z
∂y ; ð20Þ

(a)

(b) (d)

(c)

FIG. 7. Top (a) and side (b) view of the director field of a baby skyrmion. We use the same axis convention as in Fig. 3. The color scale
is the same for (a) and (b). (c) General trajectories of extraordinary rays deflected by the baby skyrmion, as predicted by the simple ray-
tracing model of the main text. (d) Variations of the quantity g introduced in the main text along a line parallel to y and centered on the
baby skyrmion. h is the sample thickness. The sign of g allows us to predict the sign of deflection of the rays.
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where z is the initial direction of propagation of light, and y
is an axis orthogonal to z and parallel to the sample plates.
By examining the sign of dpy=dz in Eq. (19), we find that
when g > 0 (g < 0), extraordinary rays are deflected
toward negative (positive) y.
Using this simple criterion on the birefringent-medium

structure of Figs. 7(a) and 7(b), we can predict the general
features of the light flow around baby skyrmions without
any numerical calculations. The general shapes of extraor-
dinary rays deflected by the skyrmion are represented in
Fig. 7(c) based on the general variation of g [Eq. (20)]
represented in Fig. 7(d). We observe that the outer part of
the skyrmion acts as a repulsive potential, while the inner
core of the skyrmion is analogous to a converging 2D lens.
This simple qualitative approach is used to analyze exper-
imental data and is complemented by the full numerical
calculations of ray trajectories from the original system
of Hamilton’s equations (14) and (15), as well as more
detailed BPM simulations.
Before closing this theoretical section and discussing

our experimental results, we point out that the ray-tracing
equations presented here [either the exact Hamilton’s
equations (14) and (15) or the simplified system (18)
and (19)] are invariant by scaling. The deflection paths
of the rays incident at a scale-invariant y=R, with R the
typical radius of the skyrmion viewed in its yz plane, stay

exactly the same while the size of the baby skyrmion is
adjusted by a linear scaling operation. This remark is not
true in very small systems with characteristic lengths
comparable to the wavelength but proves to be reasonably
accurate for the systems studied here.

B. Discussion of light deflection in experiments

The 2D ray-tracing model that we introduce above
predicts multiple deflection regimes, which allow for a
rich assortment of beam-steering and lensing behaviors for
an incident e-mode beam, as portrayed in Fig. 8. Near the
deformation edge of a toron, beam focusing and deflection
are observed, as shown in the simulation of Fig. 8(a) and
the corresponding experimental POM image in Fig. 8(d).
As in Sec. III, observation of beam interactions are made
possible by the scattered light from LC orientational
fluctuations away from the local alignment director field
interacting with the in-sample-plane laser beam. Focusing
and deflection are enabled by the beam’s incidence on a
conceptual boundary region between g < 0 and g ≈ 0 as
shown in Figs. 7(c) and 7(d) above. Rays that interact with
the elementary skyrmion structure closer to the skyrmion’s
center experience a greater angular deflection, while rays
that are far from the skyrmion propagate as they would in
the absence of a deflection region. The combined effect on

(a) (d)

(b) (e)

(c) (f)

FIG. 8. A demonstration of simulated (a)–(c) and experimental (d)–(f) beam deflection and lensing from a toron at no electric field.
In (a)–(c), the white lines correspond to calculated ray trajectories, while the color images are simulated as in Fig. 4 with the beam
propagation method. As depicted in Figs. 7(c) and 7(d), the angle of deflection is attributable to the sign and magnitude of the deflection
parameter g. Small, negative values of g produce a slightly deflected beam whose simulation is shown in (a) with experimental
confirmation in (d). When g switches sharply from a very negative value to 0, defocusing and enhanced deflection occurs, as shown
theoretically in (b) and experimentally in (e). By virtue of a skyrmion’s rotational invariance, a beam injected at the toron’s center
experiences symmetric broadening behavior as shown theoretically in (c) and experimentally in (f). The inset in (c) shows an enlarged
view of the ray trajectories near the toron’s center. Differences in appearance between simulated (a)–(c) and experimental (d),(e) torons
mostly result from director perturbation, only near the glass plates, used to pin a toron against diffusive motion within its sample plane
and from experimental illumination with a coherent white-light source. The scale bar’s length represents 100 μm.
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a cluster of rays, which approximate a Gaussian beam,
shown as white lines in Fig. 8(a) is their simultaneous
focusing and deflection, which are experimentally con-
firmed in Fig. 8(d).
We observe hybrid defocusing and deflection behavior

that results from sequential, distinct deflection regions
along the beam’s trajectory through a baby skyrmion. In
the case of Figs. 8(b) and 8(e), rays nearest the skyrmion’s
center propagate twice through a g < 0 region inside the
skyrmion’s periphery but also must pass through a g ≈ 0
region near the center. The combined effect results in a
spreading of rays nearest the toron center, while rays that
propagate through only the peripheral g < 0 region expe-
rience uniform redirection as shown by the simulation in
Fig. 8(b). We observe concurrent experimental behavior as
shown in the POM image of Fig. 8(e).
Injection of an incident beam at the toron’s center results

in a defocusing effect with symmetric beam broadening
originating from a focal point inside the toron. While the
beam center propagates through the elementary skyrmion
and along the skyrmion-center boundary indicated by the
dashed line in Fig. 7(c), each beam half must pass through
deflection regions of opposite sign. The resultant broad-
ening is shown in the simulation of Fig. 8(c). Therein, the
defocused light appears to form a conelike multitude of
distinct beams emanating from the toron’s center. It can be
shown that this discretization is due to an interference effect
at the focal point [81], since a monochromatic beam is used
in the simulation. While such a behavior is not distinguish-
able in the experimental POM image of Fig. 8(f), which
demonstrates the defocusing effect from an elementary
toron at no field, we experimentally observe this effect from
a constricted elementary toron (not shown) subject to an

electric field orthogonal to the sample plane. Since electric
fields are known to dampen director orientational fluctua-
tions [55], we hypothesize that experiments conducted with
an electric field are similar to the ideal situation depicted in
BPM simulations with a static director field. Conversely, in
Fig. 8(f), orientational fluctuations cause dynamic random
deviations from the equilibrium structure employed in the
simulations. These deviations result in the destruction of
the interference pattern shown in Fig. 8(c) and a blurred
output signal as visible in Fig. 8(f). Differences in appear-
ance between simulated Figs. 8(a)–8(c) and experimental
Figs. 8(d) and 8(e) torons result from perturbation of the
experimental torons’ substrate director only near the glass
plates, strong scattering and defocusing from the thermal
fluctuations in a thick cell, and experimental illumination
with a coherent white-light source. We emphasize that the
pinning of torons with director perturbations is a surface
effect used to prevent their diffusive motion (see
Refs. [26,51]) within the sample plane. We have checked
that identical deflection behavior is observed for both
pinned and unpinned torons and notice that using incoher-
ent illumination with a fully opened condenser aperture
averaged out the surface perturbation due to the pinning, as
visible in Fig. 9(a), which has demonstrated the expected
crossed double-axis symmetry. From these two observa-
tions, we deduce that the pinning of the toron does not
affect the bulk field alignments and therefore the topology
of the baby skyrmion Ansatz.
The beam-center deflection angles from the simulations

and experiments depicted in Fig. 8 may be included in a
summary of all possible beam-center deflection angles,
which are presented in Fig. 9. Each beam-center deflection
angle θ may be mapped to the incident beam’s normalized

(a) (b)

FIG. 9. Experimental measurements of incident beam deflection and lensing with a theoretical ray-tracing fit for a toron at no electric
field. (a) A schematic representation of the coordinate system and parameters used for data measurement. The incident beam ki is
deflected by an angle θ from the incidence trajectory, which is depicted as a white dashed line segment. The deflected ray kt may
represent the center of a deflected beam profile or its half-intensity-maximum envelope rays. (b) Deflection angles for the beam envelope
and beam center rays plotted against the normalized distance δ ¼ yi=R. The incident beam has an extraordinary polarization. The
theoretical ray-tracing fit for center angles is plotted as the black curve. Negative angles in (b) correspond to a clockwise deflection of kt
as indicated in (a). The scale bar’s length represents 100 μm.
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distance δ ¼ yi=R, where each parameter is depicted in the
coordinate system shown in Fig. 9(a) over a toron’s POM
image. For a particular δ, theory indicates that a resultant
beam-center deflection behavior will generally correspond
to the ray paths shown for the deflection regions in Fig. 7(d)
whose abscissa also depicts a normalized transverse dis-
tance. Solving Hamilton’s equations in Sec. IVA for rays
incident at various yi yields the solid black curve shown
in Fig. 9(b). Corresponding experimental beam-center
deflection data are shown as black filled circles in the
same figure, with additional gray symbols representing the
half-maximum beam envelopes. In general, experimental
data are consistent with the theoretical curve except at the
theoretical peaks near δ ¼ �0.1. Though exploring the
mechanism responsible for this deviant experimental peak-
deflection behavior is outside of the scope of this study, we
hypothesize that
(1) Director fluctuations combined with the toron’s

optical thickness diminish sharp deflection behavior
in favor of scattering.

(2) Off-midplane rays could bias the experimental ob-
servation in favor of smaller deflection angles. Rays
that interact with the toron outside of the toron’s
midplane and between the toron’s two singularities
would still interact with an elementary skyrmion

topology; however, as a ray transgresses farther from
the toron’s midplane, it experiences a deflection-
potential pattern [Figs. 7(c) and 7(d)], wherein each
region g has a smaller deflection magnitude.

(3) Our simple comparison between the angle of de-
flection of the beam center and a single ray centered
on the input beam neglects the possible shifting
and/or scaling of the transverse intensity profile
orthogonal to the rays, which can be accurately
captured only with a full-wave simulation.

We emphasize that such a small discrepancy is not a
problem in our opinion, since the goal of our ray-tracing
model is only to provide a qualitative description of the
flow of light in our system. Should more quantitative data
be needed—for example, in the design of specific beam-
steering devices—one can always use full BPM simula-
tions with the exact birefringent structures as input instead
of Hamilton’s equations (14) and (15).

C. Tuning of light-soliton interactions
with an electric field

The nearly parallel-plate geometry of the LC cell [see
Fig. 2(a)] enables the application of an electric field that is
parallel to the uniform far-field director n0 [along the x axis
in Fig. 9(a)] [82]. As the LC has positive dielectric
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FIG. 10. Modulation of beam-center deflection by the application of an electric field along the far-field uniform director n0, which is
orthogonal to the beam-propagation plane. (a) Incident extraordinary-mode (e-mode) beam-center deflection plotted against the
normalized distance δ. Three datasets are collected for three different electric potentials as indicated. The solid curve is the behavior
predicted by our simple ray-tracing model. For the beam-center deflection peaks at δ ¼ �0.5, larger beam-center deflection is
attributable to an asymmetric broadening and lensing of the beamwidth for different toron diameters, which map to applied potentials as
indicated in (b). (b) Measured toron diameter plotted as a function of the electric potential for the experimental system. (c)–(e) Incident
e-mode light deflected by three instances of a toron experiencing different electric potentials. The normalized distance of interaction
δ ¼ 0.5 is constant as indicated by the star in (a). The shift in beam-center deflection is attributable to the contracting toron’s distortion
profile despite a constant incident beamwidth. Negative angles in (a) correspond to the clockwise deflection of the beam in (c)–(e), as
defined in Fig. 9(a). The scale bar’s length represents 100 μm.
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anisotropy Δϵ > 0, the ensuing torque tends to orient the
director field parallel to the x axis, causing a shrinking of
the toron’s effective diameter as the voltage increases.
Our Hamilton’s equations for ray trajectories predict

size-invariant deflection and lensing behavior for rays of
light interacting with a baby skyrmion. Like the simulations
shown in Figs. 8(a)–8(c), the incident beam’s intensity
profile may be represented as a ray bundle. As the diameter
of the toron shrinks under an applied electric field, the ray
bundle width remains constant. At the same time, the
distinct beam-deflecting regions depicted in Fig. 7(c)
contract proportionately with the diameter of the toron,
thus allowing the ray bundle to access multiple beam-
deflection regions at large electric potentials but only one
region at small or zero potentials. This is demonstrated in
Fig. 10(a), wherein beam-center deflection is plotted
against the normalized distance δ for the relaxed state
(0 V) as well as for two nonzero potentials.
Comparison of beam-center deflection data taken in the

relaxed state to data collected at applied potentials indi-
cates sharper deflection at beam-deflection peaks, as
indicated by the zero-electric-field theoretical prediction
shown as the solid black curve. For the beam-center
deflection peaks at δ ¼ �0.5, larger beam-center deflec-
tion is attributable to an asymmetric broadening and
lensing of beamwidth for different toron diameters, which
map to applied potentials as indicated by Fig. 10(b).
Therein, the experimentally measured toron diameter is
plotted against applied voltages. At normalized distance
δ ¼ 0.5 as indicated by the star in Fig. 10(a), the asym-
metric beam-broadening and lensing behavior at different
URMS is shown in Figs. 10(c)–10(e).
Based on our experimental and theoretical studies, we

suggest design rules for future research and possible
devices that include 2D topological solitons. In our
opinion, externally applied fields such as the electric field
used in this section are essential to gain tunable optical
devices. For enhanced control over beam deflection with
reduced beam broadening, a LC with negative dielectric
anisotropy Δϵ < 0 may be used to grow the diameters of
baby skyrmions and torons with an applied electric field
parallel to the symmetry axis of rotational invariance.
Further control over deflection and beam lensing behaviors
may be realized by patterning of confining substrates or
weak anchoring in thick cells for baby skyrmions that are
invariant along the x axis. Alternatively, with strong
anchoring conditions, thin cells may be used to realize
baby skyrmions [29]. Note that the in-sample-plane size of
the birefringent-medium structures constrains the choice of
suitable modeling frameworks; with large sizes, our ray-
tracing formalism still applies, but for sizes comparable
to the wavelength, BPM, or even the finite-difference
time-domain method—which directly solves Maxwell’s
equations—must be used. For the case that lensing and
broadening behaviors are desirable, a LC with a larger

Δn ¼ ne − no may be used to enhance lensing, broadening,
and deflection according to our theoretical framework
discussed in this section.

V. CONCLUSION

By exploiting the facile response of liquid crystals to
external stimuli, we show that 1D and 2D topological
solitons can be used to steer laser beams and to act as lenses
and other optical elements, which can be reconfigured
by laser tweezers and applied weak electric potentials.
Analytical and numerical modeling, with the latter based on
free-energy-minimizing configurations of the topological
solitons, closely reproduce our experimental findings. First,
we explore optical interactions with 1D topological sol-
itons. We generalize the description of the observed optical
transmission and reflection behavior due to such 1D
solitons into a modification of Snell’s law. We also explore
and explain optical interactions with 2D topological sol-
itons and demonstrate controlled deflection and lensing
from a rotationally invariant toron. By the application of an
electric field, we show tunable modulation of a toron’s
effective size and of enhanced deflection and lensing
control by real-time tuning of the effective index that an
incident beam experiences. The fundamental insights
provided by our studies of 1D and 2D topological solitons
potentially can be extended also to fully 3D solitons, such
as Hopfions.
The existence of topologically nontrivial quasiparticles

hosted in birefringent media that are accessible at the
mesoscale allow optical interactions with them to be
described either analytically or numerically, depending
on the number of symmetries for the studied structure.
Moreover, the optically interactive structures presented
herein have no differences in density, chemical compo-
sition, permittivity, or permeability from the medium
in which they are embedded. Their stability is assisted
by topological protection. Because of this unique suite
of characteristics, we envision potential technological
applications.
While magnetic topological solitons (including 1D

walls and 2D skyrmions) can be used as robust spintronic
information carriers for applications like energy-efficient
and high-density memory [21,83,84] their LC counter-
parts can potentially attract comparable technological
interest because of their interaction with light described
here, along with electric reconfiguration [26,38,85], spon-
taneous self-ordering into crystalline lattices [38,84],
coordinated movement in schools [83,86], and diversity
of states described with higher-order topological numbers
[17,18,53,86,87]. One can also envisage optically writable
and readable analogs to an information infrastructure
realized by skyrmions and twist walls in magnetic
systems. For example, by polymerization of a predesigned
configuration of topological solitons, scattering from
liquid-crystal director fluctuations can be significantly
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reduced with the formation of homogeneous or nearly
homogeneous polymer domains [88]. This low-signal-loss
environment would be ideal for applications like optical
read-only memory even in the mesoscopic regime.
Moreover, with sufficient system miniaturization, we
hypothesize that both twist walls and skyrmions may
be reconfigured in real time and using weak stimuli for all-
optical transistor analogs that could form all-optical logic
gates, circuits, information processors, reconfigurable
memory, and information busses [89–93]. Finally, we
posit that our fundamental studies may enable novel
applications like evanescent beam steerers whose local-
ized effective refractive index is controlled by the location
of topological solitons and that may be useful as lidar
systems [94]. Since our work provides a fundamental
physical understanding of the interaction of light with
topological solitons in optical-axis patterns of birefringent
media, we envision that it will lay a foundation for a new
subfield of informatics realized with topological structures
thought previously inaccessible for facile configuration
and manipulation of optical signals.
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APPENDIX A: EXPERIMENTAL PROCEDURES

1. Observation of optical interactions

With reference to Fig. 2(a), a white-light source illumi-
nates the back aperture of a condenser whose back-aperture
iris is closed to a pinhole for coherent plane-wave illumi-
nation incident upon the sample. Interactions between topo-
logical solitons and incident beams are captured with a

4×objective and a digital camera (FLIRBFS-U3-51S5C-C).
Meanwhile, a 2× coupling objective (∞ corrected, NA ¼
0.06) is used to couple the in-sample-plane laser beam
into the LC cell. We probe spatial configurations of
topological solitons by moving the cell along the y axis
of Fig. 2(b) to access linear segments of CF3s at multiple
azimuthal orientations spanning 0° to 90° with respect to
the y axis.

2. Liquid-crystal cell preparation

We first wash indium-tin-oxide-coated (ITO) glass, as
described previously [95]. By a spin-coating and baking
procedure, we apply a homeotropic polyimide substrate
(SE-1211, Nissan Chemicals, Inc.) atop the ITO layer.
Briefly, 50 μL of SE-1211 is applied to the ITO surface of
the glass for spin coating. First, the plate is ramped to
700 rpm over 1 s. Immediately thereafter, it is ramped to
3100 rpm over 5 s and held at that speed for 30 s. The glass
is then removed from the spin coater and immediately
placed on a hot plate at 90 °C for 2 min. It is then placed
into an oven at room temperature. The oven is then ramped
to 185 °C over 30 min and subsequently held at the same
temperature for 1 h.
To define the thickness between the glass pieces, we

place ultraviolet- (UV) curable glue dots (NOA-65,
Norland Optical) near the corners of the cell volume,
containing silica spacer spheres (ThermoFisher), as shown
in Fig. 2(b). Before stacking the second glass subsection,
we affix 50-μm-thick UV glue dots at the corners near the
coverslip and 60-μm-thick UV glue dots at the corners
opposite those near the coverslip. We build the cell so that
the SE-1211 substrates face inward toward each other.
With weak UV exposure, the glue cures until hard
(30 min). In a different embodiment of the cell, we lap
the glass pieces to provide exposed surface area with an
ITO substrate. We then solder electrical leads to the
exposed ITO substrates.
We treat a washed microscope slide glass [95] with

a nylon solution (Elvamide, DuPont) for tangential align-
ment via a different spin-coating and alignment procedure
such that the tangential alignment is parallel to the x axis
in Fig. 2(b). The coverslip made in this way imposes
uniform alignment on the frustrated cholesteric LC direc-
tor field at the beam-coupling interface so that the incident
polarization suffers no phase retardation and thus main-
tains its initial state until interaction with a topological
soliton. To prepare the nylon spin-coating solution,
0.15-wt % Elvamide pellets are added to pure methanol
and vigorously stirred until dissolution, which occurs
usually after 2 h at room temperature. An aliquot of
100 μL is deposited on the surface of a 25 × 75 mm2

microscope slide. Immediately thereafter, the slide is spin
coated by ramping to 4500 rpm over 1.5 s and then held at
the same speed for 58 s. To establish tangential planar
boundary conditions, the Elvamide surface is then slowly
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rubbed five times using a velvet cloth with an applied
force of about 1 N. The slide glass is broken into
approximately 3 × 25 mm2 coverslips. We attach the
coverslip with UV glue as shown in Fig. 2(b) and allow
the assembly to cure with weak UV exposure until hard
(approximately 30 min).
By using capillary forces, we fill an empty cell with a

cholesteric LC composed of E7 (Shijiazhuang Chengzhi
Yonghua Display Material Co., Ltd.) and a chiral dopant
(cholesteryl pelargonate, SigmaAldrich) to define a chiral
pitch according to the relationship C ¼ 1=ðHTPpÞ,
where C is the weight fraction of the chiral dopant,
HTP is the helical twisting power of the chiral dopant
in E7, and p is the desired pitch of the cholesteric LC
[56]. We adjust the LC’s pitch so that the cell has a
thickness-to-pitch (h=p) ratio of approximately unity
near the beam-injecting coverslip. These particular cell
specifications allow a uniform frustrated cholesteric LC
background director field n0 between the coverslip and
selectively generate topological solitons farther away
from the sample boundary. With reflection-mode POM,
we confirm the uniformity of n0 at the coverslip’s
interior surface.

3. Laser-assisted generation of topological solitons

We use near-infrared (1064 nm) laser tweezers
described previously [26,51,96,97] to selectively generate
topological solitons embedded in a uniform frustrated
cholesteric LC background. At a nominal laser power
of approximately 1 W a 10× objective (NA ¼ 0.30)
focuses laser radiation on either the top or bottom
substrate to deform the alignment of the substrate as
anchoring points. We position two of these anchoring
points at hundreds of micrometers apart to define a line.
With an in-sample-plane power of 30–160 mW, we
translationally draw and anchor a CF3 along a line
segment from one anchoring point to the other by
locally heating LCs to the isotropic phase and quench-
ing back to the nematic phase with the focused laser
beam. These anchoring points fix the upper and lower
π-twist-disclination termini in a CF3, which will other-
wise shrink due to the tension in the singular disclina-
tion lines. Torons are generated with an approximately
1-s burst of nominally 190-mW laser radiation at any
lateral position in the cell’s bulk. When needed, we
erase topological solitons by the application of an
electric field parallel to the far-field n0 of the LC’s
director. Because of the strong aligning effect of the
electric field when applied to our LC with positive
dielectric anisotropy [98], complete erasure of solitons
occurs with an applied potential of URMS ¼ 2 V at a
frequency of 1 kHz. See Refs. [26,51] for a thorough
characterization of the laser powers used to generate
topological solitons within frustrated cholesteric LC
systems.

APPENDIX B: THEORETICAL ANSÄTZE FOR
THE TOPOLOGICAL SOLITONS

We present here the theoretical director fields that we
use for the topological solitons studied in this article.
These director fields are obtained by choosing simple
topological Ansätze and minimizing the LC free energy
(including elastic and anchoring energy) along the sub-
space spanned by the Ansätze. Note that the Ansätze
presented in this section can be interpreted as a simple
generalization of the theory in Ref. [99]. In this reference,
the authors assume strong boundary conditions and derive
simple Ansätze in isotropic elasticity, whereas here we go
a step further and include the finite anchoring energy and
the elastic anisotropy.
Based on Ref. [55], the total free energy of cholesteric

samples treated for homeotropic anchoring can be
written as

F½n� ¼
Z
V
fvðn;∇nÞdV þ

Z
S
fsðnÞdS; ðB1Þ

where V corresponds to the volume of LC, S corresponds to
the interfaces between the LC layer and confining plates,
and the bulk (Frank-Oseen) and surface (Rapini-Popoular)
free-energy densities are defined as

fv ¼
K1

2
ð∇ · nÞ2 þ K3

2
jn × ∇ × nj2

þ K2

2
ðn · ∇ × nÞ2 þ K2qðn · ∇ × nÞ; ðB2Þ

fs ¼ Wa½1 − ðn · exÞ2�; ðB3Þ

with K1;2;3 representing the splay, twist, and bend elastic
constants of Table I, q the cholesteric spontaneous twist,
and Wa the anchoring energy. We have checked that the
Gauss elastic constant K4 does not contribute to the elastic
deformations of the Ansätze of this section. To simplify the
mathematical expressions in the next subsections,
we immediately introduce the rescaled Frank constants
κ21 ¼ K2=K1 and κ31 ¼ K3=K1, as well as the anchoring
length ξs ¼ K1=Wa.

1. Ansatz for the twist wall

We approximate the director field of a twist-wall
invariant by translation along the z axis with the following
Ansatz:

n ¼

0
B@

− sin θ

cos θ

0

1
CA; ðB4Þ

θðx; yÞ ¼ arctan

�
sinh

�
y

ρwðxÞ
��

; ðB5Þ
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where x ∈ ½0; h� is the direction normal to the sample plate,
h is the sample thickness, and ρw is a function to be
determined through minimization of the total free energy.
By inserting Eq. (B4) into Eq. (B1) and minimizing the
resulting free energy, we find

ρwðxÞ ¼
h

ffiffiffi
μ

p
4

�
ηs þ 4x

h ð1 − x
hÞffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ηs
p

�
; ðB6Þ

where we define the following dimensionless factors:

ηs ¼
νξs
h

; ðB7Þ

ν ¼ 12ðκ31 − 1Þ þ π2ðκ31 þ 2Þ
9

; ðB8Þ

μ ¼ 4κ21
ν

: ðB9Þ

2. Ansatz for the baby skyrmion

We approximate the director field of a baby skyrmion
with the following Ansatz, using cylindrical coordinates
ρ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ z2
p

and ϕ (azimuthal angle such that cosϕ ¼ y,
sinϕ ¼ z) around the rotational invariance axis x:

n ¼

0
B@

cos θ

sinϕ sin θ

− cosϕ sin θ

1
CA; ðB10Þ

θðx; ρÞ ¼ 2 arctan

�
sinh

�
ρ

ρsðxÞ
��

; ðB11Þ

where similar to the twist-wall Ansatz, x ∈ ½0; h� is the
direction normal to the sample plate, h is the sample
thickness, and ρs is a function to be determined through
minimization of the total free energy. By inserting
Eq. (B10) into Eq. (B1) and minimizing the resulting free
energy, we find

ρsðxÞ ¼ qh

�
4ηx

�
1 −

x
h

�
þ χξs

�
; ðB12Þ

where we define the following dimensionless factors:

η ¼ γκ21
8ðν0 þ κ31ν1Þ

; ðB13Þ

χ ¼ γκ21
4σ

; ðB14Þ

σ ¼ 2ð1þ log 4Þ
3

≈ 1.591; ðB15Þ

γ ¼ −
2

3
þ 4G ≈ 2.997; ðB16Þ

ν0 ¼
12ζð3Þ − 4

5
≈ 2.085; ðB17Þ

ν1 ¼
21ζð3Þ þ 8Þ

10
≈ 3.324; ðB18Þ

withG Catalan’s constant, and ζ the Riemann zeta function.

APPENDIX C: NUMERICAL CALCULATION OF
FRESNEL COEFFICIENTS

The numerical calculation of the Fresnel coefficients
necessitates the precomputation of the eigenmodes
Ψðpz;l;m;�Þ introduced in Sec. III A and the recursive
application of the continuity of the transverse-electric
and -magnetic fields at the interfaces between the virtual
slabs delineating the topological soliton. In this Appendix,
we propose a simple way of estimating the Fresnel
coefficients based on the assumption that the permittivity
tensor does not depend on the x coordinate (direction
normal to the sample): ϵðx; yÞ ≈ ϵðh=2; yÞ, where h=2
corresponds to the midplane of the LC layer. This approach
is evidently quite simplistic since we show in the main text
that waveguiding effects—caused by a discontinuity of the
permittivity tensor in the x direction—can play an impor-
tant role. Nevertheless, it has the advantage of giving the
leading contribution to the transmitted and reflected beam
powers due to the midplane permittivity profile at a low
computational cost.
Based on this assumption, the eigenmodes inside each

slab simply correspond to the usual extraordinary and
ordinary plane waves of uniaxial media with uniform optical
axis. By replacing the eigenmode index m with the polari-
zation state α ¼ e, o, we find in each slab four eigenmodes
with electric polarization vectorsΨðpz;l;e;þÞ (forward extraor-
dinary mode),Ψðpz;l;o;þÞ (forward ordinary mode),Ψðpz;l;e;−Þ

(backward extraordinary mode), and Ψðpz;l;o;−Þ (backward
ordinary mode). The expressions of these vectors are given
in a previous article [79] under a covariant form as a function
of the optical axis n and the renormalized wave vector
pðpz;l;α;�Þ, which can be found in each slab using the
eigenvalue equations also given in Ref. [79], provided the
value of the conserved quantity pz is imposed.
Using Maxwell’s equations to find the magnetic field as

a function of the electric field, we then rewrite Eq. (3) of the
main text under the following equivalent form for the
electric and magnetic field in the lth slab:

ẼðpzÞðyÞ ¼
X
α¼e;o

X
s¼þ;−

aðpz;l;α;sÞΨðpz;l;α;sÞ

× exp
h
ik0p

ðpz;l;α;sÞ
y ðy − y�l Þ

i
; ðC1Þ
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B̃ðpzÞðyÞ ¼
X
α¼e;o

X
s¼þ;−

aðpz;l;α;sÞχ ðpz;l;α;sÞ

× exp
h
ik0p

ðpz;l;α;sÞ
y ðy − y�l Þ

i
; ðC2Þ

where χ ðpz;l;α;�Þ ≡ pðpz;l;α;�Þ ×Ψðpz;l;α;�Þ is the magnetic
polarization vector of the mode ðpz; l; α;�Þ and y�l ¼
yl − hl=2 is the starting point of the lth slab along the y
axis, with hl the thickness of the lth slab. The continuity of
the transverse-electric and -magnetic fields at the interface
between the slabs l and lþ 1 is then written as

aðpz;lþ1Þ ¼ ½Mðpz;lþ1Þ�−1Mðpz;lÞDðpz;lÞaðpz;lÞ; ðC3Þ

where we define the vector of eigenmode amplitudes a and
the matrices D and M as

aðpz;lÞ ¼

0
BBB@

aðpz;l;e;þÞ

aðpz;l;o;þÞ

aðpz;l;e;−Þ

aðpz;l;o;−Þ

1
CCCA; ðC4Þ

Dðpz;lÞ ¼

0
BBBBBB@

exp ½ik0pðpz;l;e;þÞ
y hl� 0 0 0

0 exp ½ik0pðpz;l;o;þÞ
y hl� 0 0

0 0 exp ½ik0pðpz;l;e;−Þ
y hl� 0

0 0 0 exp ½ik0pðpz;l;o;−Þ
y hl�

1
CCCCCCA
; ðC5Þ

Mðpz;lÞ ¼

0
BBBBB@

Ψðpz;l;e;þÞ · ex Ψðpz;l;o;þÞ · ex Ψðpz;l;e;−Þ · ex Ψðpz;l;o;−Þ · ex
Ψðpz;l;e;þÞ · ez Ψðpz;l;o;þÞ · ez Ψðpz;l;e;−Þ · ez Ψðpz;l;o;−Þ · ez
χ ðpz;l;e;þÞ · ex χ ðpz;l;o;þÞ · ex χ ðpz;l;e;−Þ · ex χ ðpz;l;o;−Þ · ex
χ ðpz;l;e;þÞ · ez χ ðpz;l;o;þÞ · ez χ ðpz;l;e;−Þ · ez χ ðpz;l;o;−Þ · ez

1
CCCCCA: ðC6Þ

By recursively using Eq. (C3), one can find a linear
relation between the eigenmode amplitudes in the first
(l ¼ 1) and last (l ¼ N) layers. However, one must be
careful to take into account possible evanescent modes
(associated with a complex py) which can exponentially
amplify numerical noise. To avoid this numerical insta-
bility, we use the very reliable algorithm presented in
Ref. [100], which recursively updates a modified transfer
matrix T based on Eq. (C3) and the matrices D andM. The
main output of this algorithm is the following relation:

0
BBB@

aðpz;N;e;þÞ

aðpz;N;o;þÞ

aðpz;1;e;−Þ

aðpz;1;o;−Þ

1
CCCA ¼ T

0
BBB@

aðpz;1;e;þÞ

aðpz;1;o;þÞ

aðpz;N;e;−Þ

aðpz;N;o;−Þ

1
CCCA: ðC7Þ

In plain words, the right-hand side of Eq. (C7) contains the
amplitudes of the modes propagating toward the soliton,
and the left-hand side of the same equation contains the
amplitude of the modes propagating away from the
soliton. This equation is causal—in the sense that only
input modes are on the right-hand side—and therefore,
evanescent modes (if present at all) can be only exponen-
tially decaying.

Assuming a single extraordinary or ordinary input mode
of amplitude 1 incident on the first layer, Eq. (C7) can be
used to compute the amplitudes of transmitted or reflected
extraordinary or ordinary modes, i.e., the so-called Fresnel
amplitude coefficients. Alternatively, one can also compute
the Fresnel power coefficients by using the y component
(in-sample-plane direction normal to the soliton) of the
Poynting vector of each mode. Up to a constant multipli-
cative factor, the Poynting vectors of the output modes can
be written as

Sðpz;α;þÞ ≡ ½jaj2ðΨ × χ �Þ�ðpz;N;α;þÞ; α ¼ e; o; ðC8Þ
for transmitted modes, and

Sðpz;α;−Þ ≡ ½jaj2ðΨ × χ �Þ�ðpz;1;α;−Þ; α ¼ e; o; ðC9Þ

for reflected modes. In the last two equations, the index
ðpz; � � �Þ applies to a,Ψ, and χ . We then obtain the rescaled
transmitted and reflected powers as

Pðpz;α;�Þ ≡ Re½Sðpz;α;�Þ · ey�
Re½Si · ey�

; ðC10Þ

where Si is the Poynting vector of the incident mode. We
remark that for exponentially decaying evanescent modes
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in the y directions, the real part of S · ey is exactly zero—
as expected from the conservation of energy. However, it
may also be possible to have extremely small (but
nonzero) transmitted power if the input propagating mode
transforms into an evanescent mode inside the topological
soliton (which is possible for grazing angles of incidence)
before becoming again a propagating mode on the other
side of the soliton. In practice, we find in all numerical
experiments that this evanescent coupling between each
side of the solitons is negligible if the thickness of the
soliton is much bigger than the wavelength (typically
more than 10 μm).
We use the formalism of this section to compute the

reflected and transmitted powers assuming a single
ordinary or extraordinary mode incident on a CF3 in
a 40-μm-thick sample, i.e., the same topological soliton
as in Sec. III B. The director field of this structure is
obtained numerically (see Appendix D for more details),
but we use only the permittivity profile in the midplane
of the sample as we explain above (which is topologi-
cally equivalent to the permittivity profile of the twist
wall in Fig. 3), which is discretized in a series of 40-nm-
thick slabs (yielding a total of 4800 slabs for the whole
profile). The result of this calculation is shown in
Fig. 11, and is also visible in Fig. 5 as color-coded
variations of the transmitted and reflected powers. As
can be seen, there is a clear range of incidence angles
[incidence angle greater than approximately 60°, in
agreement with the theoretical formula (13) presented
in Sec. III A] for which an incident extraordinary mode
suffers total internal reflection.

APPENDIX D: IMPERFECT TOTAL INTERNAL
REFLECTION IN CF3

In this Appendix, we show how the total internal
reflection regime—which is theoretically predicted and
numerically observed for twist walls when the incidence
angle is ≥ 60°—can be broken in CF3. To understand this,
we must recall that the orientational field of a CF3 is
topologically equivalent to the midplane director field of a
twist wall, with two additional singular defects near the
surface plates due to the strong homeotropic anchoring. We
numerically minimize the Landau–de Gennes free energy,
which takes into account the variations of the scalar order
parameter in the defects’ cores, using the method described
in Ref. [101] and assuming a sample thickness of 40 μm
and using the material constants given in Sec. II. The result
of this calculation is shown in Fig. 12(a).
We simulate with BPM the propagation of a laser-beam

incident on the CF3 at an angle of 70° with an extraordinary
polarization. The associated simulated polarizing optical
micrograph including the POM signal of the CF3 and
x-averaged green intensity of the laser beam is represented
in Fig. 12(b). Although the incidence angle is above the
critical angle θc introduced in Eq. (13) of Sec. III A, the
reflection is not perfect here [contrary to twist walls; see
Fig. 4(b)], and some light goes through the CF3. This effect
can be easily understood by taking a look at the intensity
profile of incident and transmitted beams along the sample
normal x, as represented in Fig. 12(c): Since the director
field is homeotropic inside a thin layer comprised between
the bottom sample plate (white line) and bottom defect
lines (red ellipse), the extraordinary light mode can

(a) (c)

(b) (d)

FIG. 11. Transmitted (a) and reflected (b) powers from the midplane permittivity profile of a CF3, assuming an incident ordinary
mode. (c),(d) Same as (a),(b) with an incident extraordinary mode. We use the same convention as Fig. 5 for the notation Te;o and Re;o.
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propagate in this layer without suffering total internal
reflection. Conversely, light is fully reflected at the mid-
plane of the sample, as expected from the simple criterion
of Sec. III A since the permittivity profile of a CF3 is
topologically equivalent to the one of a twist wall at the
center of the sample.
We emphasize that the actual fraction of light which can

slip through below the defects depends on the alignment of
the input beam. In Fig. 12(c), we show a situation where the
beam is slightly below the midplane of the sample. We have
varied the vertical position of the beam in other (not shown)
numerical experiments and have found that there is always
some light transmitted below the defect, with an increasing
(decreasing) fraction of transmitted light for lower (higher)
input position between the two confining plates. The
fraction of transmitted light can also be affected by other
parameters such as the waist of the beam and a possible tilt
of the beam with respect to the plane of the sample.
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