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ABSTRACT

We propose a formalism for deriving force-elongation and elongation—force relations for flexible chain molecules from analytical expressions
for their radial distribution function, which provides insight into the factors controlling the asymptotic behavior and finite chain length
corrections. In particular, we apply this formalism to our previously developed interpolation formula for the wormlike chain end-to-end
distance distribution. The resulting expression for the asymptotic limit of infinite chain length is of similar quality to the numerical evaluation
of Marko and Siggia’s variational theory and considerably more precise than their interpolation formula. A comparison to numerical data
suggests that our analytical finite chain length corrections achieve a comparable accuracy. As an application of our results, we discuss the
possibility of inferring the time-dependent number of nicks in single-molecule stretching experiments on double-stranded DNA from the

accompanying changes in the effective chain length.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0028777

. INTRODUCTION

The wormlike chain (WLC)' is the standard model for describ-
ing the statistical physics of semiflexible polymers and is widely
used in the context of biological physics to describe stiff cytoskele-
tal filaments such as actin or microtubules.” " The present article
is primarily motivated by the application of the WLC""" to single-
molecule experiments, where double-helical DNA,'”'® ** proteins,”
or polysaccharides™ are stretched by an external force.

In their classical works, Marko and Siggia'™'® showed that
the original experiments of Smith, Finzi, and Bustamante'® with

A-phage DNA are significantly better described by the WLC than by
other polymer models (Fig. 1). While A-phage DNA has a size of
48 kb or N, = L/l, = 320 persistence lengths, single-molecule
stretching experiments can be carried out for much shorter seg-
ments.”””’ From the point of view of theory, this leads to qualitative
changes, which we have tried to illustrate in Fig. 2, where we show
chain conformations and density distributions for the free chain-end
positions. The different panels present results for a range of chain
lengths [contour lengths L equal to 8, 40, 320 [, persistence
lengths corresponding to double-stranded DNA (ds-DNA) of 1.2 kb,
6 kb, 48 kb] and for two levels of the applied force [(a) f = 0 and
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FIG. 1. Comparison of force—elongation curves for a number of popular polymer
models discussed in the present article. The abbreviation FJC stands for the “freely
jointed chain.”®
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(b) f = kpT/l, = 4 pN nm/(50 nm) ~ 0.1 pN, where ds-DNA is
stretched to about half its maximal extension]. As in the force—
elongation curves in Fig. 1, distances in Fig. 2 are scaled to the
maximal chain extension L (indicated by the semi-transparent
half sphere centered on the fixed chain end). With unperturbed
end-to-end distances of \/(r?) = \/2l,L and \/((r/L)?) ~ \/I,/L,
short chains exhibit substantial fluctuations in this representation.
In contrast, long chains of the size of A-phage DNA are hardly visible
while unstretched and are almost perfectly aligned when they elon-
gate in the direction of the applied force. In the (thermodynamic)
limit of infinite chain length, the distributions of the end point posi-
tions shrink to a point: force-elongation and elongation—force rela-
tions become each other’s inverse. Figure 2 illustrates Marko and
Siggia’s reasons for focusing on this limit, when they analyzed data
for A-phage DNA. However, a theoretical analysis of the behav-
ior of shorter chains needs to take into account fluctuations and
their different nature in the constant-force and constant-elongation
ensembles.

To deal with this situation, we choose a different theoreti-
cal approach than Marko and Siggia’s. Instead of solving the WLC
model in the presence of a stretching force, we derive the response in
the two ensembles from given expressions for the radial distribution

FIG. 2. Simulated chain conformations and chain-end density distributions predicted by the BRE-distribution from Ref. 26: results for three different chain lengths correspond-
ing to single ds-DNA filaments of 1.2 kb, 6 kb, 48 kb. (a) Zero applied force, f = 0. (b) f = kgT/l, = 4 pN nm/(50 nm) ~ 0.1 pN, where ds-DNA is stretched to about half its
maximal extension. Note that distances are scaled by the maximal chain extension L, which is indicated by the semi-transparent half sphere centered on the chain end fixed
at the origin. Chain diameters are rescaled by a smaller factor because otherwise the longest chains would become invisible.
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function of unperturbed polymer chains. This paper is organized as
follows: In Sec. II, we briefly summarize the main features of the
WLC model and the main results from the study of Marko and Sig-
gia.'” Sec. I11 is devoted to a systematic derivation of the elongation-
force and force-elongation relations of long (wormlike) polymers
from a given expression for the chain end-to-end distance distri-
bution. In particular, we obtain analytical expressions for and gain
insight into the finite chain length corrections in the two ensembles,
where chains are held at constant force and constant elongation,
respectively. In Sec. IV, we apply this formalism to a number of
end-to-end distance distributions of polymer chains. As a first val-
idation, we consider the exactly solvable cases of Gaussian springs
and finitely extensible nonlinear-elastic (FENE)-springs. In the sec-
ond step, we apply the formalism to two approximate expressions for
the radial distribution function of the WLC. Bhattacharjee, Thiru-
malai, and Bryngelson (BTB)” derived a suitable expression using
the variational theory of Ha and Thirumalai.””"' As an alternative,
we (hereafter "BRE," see Ref. 26) proposed an interpolation between
exact results for all relevant limiting cases of the WLC model ranging
from short (stiff) to long (flexible) chains and including looped and
fully stretched configurations. In Sec. V, we compare the resulting
analytical expressions for the asymptotic force-elongation relation
of “BTB”-springs and “BRE”-springs and the first-order corrections
in both ensembles to analytical, numerical, and simulation results
for long WLCs. In addition, we discuss the elastic response of the
nicked WLC composed of several freely jointed wormlike segments.
In this case, finite chain length effects turn out to be controlled
by the average segment length. In particular, we show that, under
suitable conditions, single-molecule stretching experiments of DNA
should be able to detect enzyme-induced changes in the number
of single-strand breaks. We briefly conclude in Sec. VI. For better
readability, we have separated part of the material from the main
text. Appendix A summarizes the simulation and data analysis meth-
ods we have used to obtain numerical reference data for FENE-
springs, BTB-springs, and BRE-springs as well as for the WLC.
Appendixes B-D report details on the derivation and interpreta-
tion of our analytic results for harmonic springs, FENE-springs, and
BTB-springs.

Il. BACKGROUND
A. The model
The WLC is defined via a Hamiltonian

H 1o\
k‘l;v;c = EZPA (@T(S)) ds (1)

for incompressible space-curves of contour length L with bending
rigidity I, kpT, where I, is the persistence length and kgT is the
thermal energy. Despite its simple appearance, the incompressibil-
ity constraint, %?(s)| = 1, renders the model non-trivial to solve.

Notable exceptions’” are the even moments (r2k (L)) of the end-to-
end distance r and, in particular (k = 1), the mean-square end-to-end
distance' given by the formula
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{r*(1)) = (H(L) = 7(0)[)

:2112,(%+e_L/1P—1). )
p

This expression shows a crossover from rigid rod behavior,
(r*(L)) = L%, to random walk behavior, (r*(L)) = 2I,L, for contour
lengths, L, around the persistence length, [,.

Nature offers examples of polymers in a wide range of ratios
L/l,. For instance, cytoskeletal filaments such as microtubules® typ-
ically have L < I,. In this work, we focus on chains, which are much
longer than their persistence length, L > [, and N, = L/l, > 1. This
is, for example, the case in DNA stretching experiments.'®

We are interested in two related mechanical problems, the
force-elongation and the elongation—force relation of the freely
rotating WLC. The former specifies the expectation value of the
force, ( f(2)) = ( f(2)) &, required to constrain the projected elonga-
tion of a WLC to a constant value z = z(L)-z(0) = (F(L) = 7(0)) - é..
The latter denotes the average elongation, (z(f)), of a WLC in the
direction of a constant force,f = fé,, separating its ends. That is, the
average (z(f)) is taken with respect to the forced Hamiltonian

H =Hwic - fz. (3)

B. DNA stretching

In their seminal analysis,© Marko and Siggia discussed the
following inter alia: (1) the asymptotic behavior of the force in the
limit of strong stretching

) f 1 )
I eT/h ~ 3(1=Z/L) )

(2) an analytic expression (blue in Fig. 1),

f z 1 1

keTfl, L' 4(1-zJL)? 4 <)

interpolating from Eq. (4) to the opposite (random walk) limit of
weak stretching

. f 3z
lim —— = 2% 6
w0 ksT/l, 2L (©)

(3) a more precise variational calculation of the stretching force
(green in Fig. 1); and (4) how to obtain the exact force-elongation
relation with sufficient precision by numerically diagonalizing a
100 x 100 matrix (dashed black in Fig. 1). They noted that (3) and
(4) were necessary because of the high quality of the experimental
data.

Marko and Siggia worked in the constant-tension ensemble,
since they were motivated'’ by the experiments of Smith et al.,'"”
who attached one end of phage-1 DNA to a glass slide and the
other to a magnetic bead on which they could exert a force. The
complementary constant-elongation ensemble can be explored in
atomic force microscope experiments,”*”’ where the mobile end of
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the DNA molecule is attached to a cantilever, which probes the force
needed to maintain an imposed constant displacement. The results
of pulling experiments in the two ensembles are not expected to be
equivalent for chains of finite contour lengths; that is, the force-
elongation relation in the constant-force ensemble is not the inverse
function of the elongation—force relation in the constant-elongation
ensemble.”* " Below, we will consider both situations in turn
(see Secs. 111 A and 111 B).

I1l. THEORY

In the present work, we infer the elastic properties of polymers
from their end-to-end distance distribution,

Q) = = (B(F(L) = 7(0)] - 7). )

Without loss of generality, we consider a geometry where one chain
end is fixed at the origin and where the rotational symmetry is bro-
ken either (i) by constraining the other chain end to a plane orthog-
onal to the z-direction or (ii) by applying a forcef = fé; to the free
chain end. The behavior in the constant-elongation ensemble [(i), to
be discussed in Sec. III A] is controlled by the partition function,
Z(z), defined as the integral of Q(r) over the considered z-plane,
Eq. (11). The average force, ( f(z)), required to constrain the chain
end to this plane is given by the z-derivative of the corresponding
free energy, Eq. (13). By contrast, the statistical weight w(z; f) of
a particular z-elongation in the constant-force ensemble [(ii), to be
discussed in Sec. I1I B] is given by the product of Z(z) and a force-
dependent Boltzmann factor. Equation (39) defines the relevant par-
tition function, Z( f), as the integral of w(z; f) over all possible val-
ues of z. The expectation value (z(f)) follows from the normalized
probability, p(z;f) = w(zf)/Z(f), to observe a particular elonga-
tion, Eq. (41), and can equally be written as a force-derivative of the
free energy, Eq. (42).

ARTICLE scitation.org/journalljcp

End-to-end distance distributions, Q(r; L, [,) = Q(r/L, I,/L), and
the partition function, Z(z;L,l,) = Z(z/L,l,/L), can be written as
a function of two dimensionless variables: the chain elongation in
units of the maximal elongation,

, ®)

and the (inverse) chain length in units of the bending persistence
length,

1]

K= — =L 9)
N, L

We will focus on long chains, whose contour length exceeds the per-

sistence length, L > I, or k << 1 or N, > 1. In this case, a useful

dimensionless measure of the force is

__f
¢= ksT/l," (10)

We will alternate between the original and reduced variables as
needed, throughout the text.

Below, we describe step by step how to infer the behavior of
polymers in the two ensembles from given expressions for their
end-to-end distance distribution, Q(r/L, I,/L). In particular, we will
provide analytic expressions for the long-chain limit, x — 0, which
are exact to first order in «. Below, we briefly summarize the origin
of the various terms and our notation to facilitate the reading.

For long chains, the partition function, Z(z), is dominated
by the contribution Z(.y(z) = Q(z) from aligned chain confor-
mations with 7 = (0,0,z), see Fig. 3. In particular, the asymp-
totic force—elongation and elongation—force curves in the thermo-
dynamic limit of infinite chain length can be immediately read off
from the corresponding limit of Q(z).

FIG. 3. The partition function Z(z) in the constant-elongation ensemble is defined as the integral of Q(r = /x> + y* +z2) over a constant z-plane. For long
chains, Z(z) is dominated by the contribution Z(.y(z) = Q(z) from aligned chain conformations with 7 = (0,0,z). In the figure, we show the relative probability,

Q(\/%* +y* +2%) [ 2. (2), to find the chain end at an off-center position in the same z-plane. The integral of this relative probability over the z-plane yields the partition
function 2,y (z) for transverse fluctuations defined in Eq. (33). Note that the amplitude of transverse fluctuations decreases, when the z-extension of the chains approaches

their maximal elongation.
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In addition, we identify three qualitatively different finite chain
length effects in single-molecule stretching experiments of long
chains:

(i) “O0f()” and “0z(.y” arising from finite chain length corrections
to Q(2);

(ii)  “6f(1)” and “0z(1)” arising from the elongation-dependence
of transverse fluctuations for a given value of z;

(iii) (in the constant-force ensemble, only) “dz()” arising from
the elongation-dependence of the longitudinal fluctuations
around the average extension (z(f)).

To first order in «, corrections denoted “1” and “||” only
depend on the asymptotic limit of Q(z) and are qualitatively sim-
ilar for different chain models in the sense that the correspond-
ing entropic springs become stiffer on approaching their maximal
extension.

»

A. Force-elongation relations from end-to-end
distance distributions

For chains whose free ends are constrained to a particular
z-plane, the partition function is

Z(z)cx/d?'Q(r')S(z'—z)
mﬂﬂdpr(W). (11)

We define the potential of mean force as
F(z) = —kpTlog Z(z), (12)
so that the mean required constraining force is

2'(2)
2(z)

() = S F @) = kT (13)

Without loss of generality, we consider chain ends constrained
at z > 0. As a consequence of our force convention, the constraining
forces are also positive, f > 0.

To proceed, we perform an analogous switch from the exten-
sive free energy F to an intensive free energy F, per persistence
length,

F(zL,1,) = Ny Fp((, %), (14)
Fo(0.K) = —kaTlog(Z5(0.x), (15)
Zy(Lx) = Z(z; L, 1)~ (16)

ARTICLE scitation.org/journalljcp

Using this notation, constraining forces can be computed as

(L) = 5 FzL)

d
= NP&-FP(( =z[L, k)
1
= Tfp(l)o)((, K)
P
ksT 25 (¢.x)

= v 1
b 26 a7

where we have introduced the notation X() = 828{;X for quanti-

ties X = X((, x). Constraining forces can be directly expressed in the
natural units of force, kpT/1p,

FEL) _ Z7 @G 209

A () 200

(18)

1. Asymptotic behavior and finite-size corrections

For chains, which are much longer than their persistence
length, L > [, and N, > 1, the parameter x << 1 can serve as a conve-
nient expansion parameter for identifying the behavior close to the
thermodynamic limit of infinitely long chains,

Fo (L) = Fp(Q) + 6Fp(¢, k), (19)
&« d"Fyp((x)
0Fp($x) = Zl W | (20)
= ; ”—!fp(m((,o). 1)
Retaining the leading term
Fp(§) = ~ksTlog(Z,(¢,0)) (22)
and corrections to first order in x,
SFp (L) ~ kLD (£,0) (23)
7" (¢,0)
= 7KkBT ZP({,O) 5 (24)
the corresponding force-elongation relation reads
(¢(¢,5)) = $(¢) + 8 (¢ ), (25)
ZM(¢0
o0 - -8 o

ZP(() O) ’
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(1,1) 0,1) (1,0)
8¢(( K) ~ K _ZP (C)O) Zp (()0) Zp (()0) . (27)
2p(¢,0) Z5(6,0)  Z,(4,0)
In particular, corrections are of the order §f ~ kaTT = N%, kaT = k’i—T

2. Approximations

Since we are not always able to carry out the integrations in
Eq. (11), we develop an approximation scheme valid for long chains,
L » I, and N, >» 1, where Q(r) is a monotonically decreasing
function of distance.

Neglecting fluctuations, we may restrict the partition function
to conformations with the minimal end-to-end distance, r = z, at
the considered elongation in the z-direction. Denoting the partition
function for chains with z-aligned end-to-end vectors by Z.), we
approximate

Z((, K) ~ Z()(C, K) < Q((, K). (28)

With Z, .y ({,x) o< Qp({,x), the corresponding zeroth and
first order contributions to the restoring force can be directly read
off from Eqs. (26) and (27),

by (§x) = ¢y () + 8¢y ((x), (29)

Q" (4,0)

% 0) G0

b)) =~

(L,1) (0,1) (1,0)
G0 M0 G (6,0)). 1)

5¢<~>(CK)“K(‘ Q(50) T Q(G0)  Q(50)

In the second step, we can approximate the integra-
tion over the transverse degrees of freedom by expanding

~knTlog(Q(\/p? + 7 k) ) » ~ks Tlog(Q{; x))+ Tk (¢ K)p?, the
linear contribution being absent because the displacement in the
p-direction is perpendicular to the elongation in the z-direction. The
coefficient of the second order term

2

0 -t s o)

_ kTQM (6w _ fiy (&) )

¢ Q6x) ¢

p=0

is the effective stiffness at the minimal elongation r = z of chains con-
strained to a particular z-plane. Note that, independently of chain
length, we are dealing with a single degree of freedom and that we are
expanding (an approximation of) the extensive partition function,
Q, and not Q,. We remark that Eq. (32) is identical to the expression
derived by Strick et al.”” and used to measure the force f exerted on
DNA molecules pulled by magnetic beads.
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Extending the limits of the p-integration to infinity and
carrying out the Gaussian integral,

Z(Cx) ~ 20y (8 x) 201y (o x), (33)

1 o ¢
ky(Gx) by (Gx)

Zy({x) o< (34)

The change in the transverse fluctuations upon stretching makes an
additive contribution to the restoring force,

(f(Gr)) ~ fiy (G ,) + fr) (G ). (35)
Z(LO)((,K)
With ¢(,)({,x) = —x%, Eq. (18), this contribution vanishes
asymptotically,
¢y (Gx) = 1y () + 81y (¢ %), (36)
dy() =0, (37)

so that the asymptotic force-elongation relation is given by ¢.({)
and Eq. (30). Furthermore, we may neglect corrections to ¢.({)
when evaluating

90y (Gx) )

2 (Gr) K( b (&)

(1,0)
) ( 657 ()

1
¢
1
() () (38)

to first order in «.

B. Elongation-force relations from end-to-end
distance distributions

For chains stretched in the z-direction,

2 e [ arares(L2)
-/ jdzz(z)exp(l%). (39)

We define the potential of mean elongation as
G(f) = —ksTlog(Z(f)), (40)

so that
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f dz 2(z) zexp(f—T)

=)= _[ dzZ(z)eXp( ZT)

(41)

fg(f ): (42)

Again, we are not always able to carry out the integrations in
Egs. (39) and (41), which requires us to generalize the above approx-
imation scheme to include fluctuations in the z-direction.

1. Finite-size corrections to the inverse
of the asymptotic force-elongation relation

Given a force-elongation relation, (f(z)), approximate
elongation-force relations, (z(f)), can be obtained from Egs. (39) to
(42) with the help of Laplace’s method. Expanding the logarithmic
integrand of Z( f) around 0 < z* < L and noting that the derivatives

obeyf(”_l) (z%) = Fm (z%),

f(z) fz _ FE)  fZ fz") f .
T kT keT keT ( ks T +kBT)(Z_Z)
1f'(z") w2 1f7(z") +\3
"2 ksT (Z_Z) 6 ksT ( _Z)

oo lf(n—l)(zx-) o
_Z;EikBT (z-2")". (43)

The integrand develops a maximum at z*, if the external force,
f = f(z*) = F(z"), is equal to the average force [see Eq. (13)]
required to constrain the elongation to z*. The second order term
describes the longitudinal stiffness at this elongation with an effec-
tive spring constant of k¢|y(z") = F'(z")/ksT = f'(z")/ksT.
The third order term gives rise to anisotropic fluctuations
around z*.

To a first approximation, which becomes exact in the asymp-
totic limit, one can neglect all terms beyond the linear order,
n=1,

2 = 2 e 105, ()

G(f) ~ F(z") - fz". (45)

While this trivially equates the elongation-force relation to the
inverted force—elongation relation, i.e., in natural units,

U(e(¢"K),x) =¢ (46)

we are still left with two problems. First, we are not necessarily able
to invert a general, non-linear force-elongation relation in closed
form: in such cases, we can still provide a parametric representa-
tion of the elongation-force curve. In particular, in the asymptotic
limit of x = 0, we can plot {#({*), {(¢({*)) = {*} for 0 < {* < 1. Sec-
ond, we need to convert our corrections, §¢((, «), to the asymptotic
force-elongation relation into corresponding corrections 6{(¢, ) to
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6(" )

8(¢")

AN

(D¢, k), 5) ¢

FIG. 4. “Geometric” derivation of Eqgs. (47) and (48): conversion of the first-
order correction, 8¢((*, «), to the force—elongation relation, into the first-order
correction, 8(({*, «), to the inverse force—elongation relation.

the asymptotic elongation—force relation. As illustrated in Fig. 4, we
may write to first order in «,

LB ) ) = ¢+ 8(T ), (47)
oy 89 K)
R OR (48)

In particular,

S (CF,

8y (¢*,x) = —%, (49)
8¢,

8y (0" ) =~ 2 ¢)/E§) 5 (50)

2. Additional finite-size corrections

Higher order terms in Eq. (43) describe additional corrections,
8(({*, x), induced by longitudinal fluctuations,

<C(¢(c*,K))) = (* +5((.)((*,K) +5((l)((*,K) +8((H)((*’K)' (51)

To a second approximation, we retain the second order term in
Eq. (43) and expand the exponential with the third order term to
first order,

Z(z) exp(f(z )Z) ~ 2(Z%) exp(w) exp(—%%&zz)

1f"(z")
><(1 6 Tl —— =0z ), (52)

when evaluating the integrals in Eqs. (39) and (41). Extending the
integration range to infinity and noting that Gaussian integrals for
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odd powers of §z vanish due to symmetry, the partition function for
longitudinal fluctuations is given by

27TkBT
frz)

Zgh(f(=") = (53)

while
kBl f//(z*)
2 (fr(z)*

dz(py (") = - (54)

Note that the latter result can also be obtained by differentiating the
corrected force-dependent free energy,

(55)

G(f)=F(")-fz" + kBTT log(flfBZ;) ),

with respect to the applied force, Eq. (42). Rewriting in terms of
dimensionless variables and to first order in x,

: ¢'@)
81y ({2x) = - (56)
O @)

we see that this effect is of comparable magnitude to the other
corrections in Eq. (51).

To summarize, we have identified three main contributions
entering the first-order corrections to the asymptotic chain behavior:
(1) from chain conformations whose end-to-end vectors are aligned
along the z-direction [symbol (-)]; (2) from chain conformations
whose end-to-end vectors make “transverse” fluctuations, orthogo-
nal to the prescribed z-direction [symbol (1)]; and (3) from chain
conformations fluctuating along the z-direction, i.e., longitudinal
fluctuations that are allowed only in the constant-force ensemble
[symbol ()]

IV. RESULTS

Below and in Appendixes B-D, we report results obtained by
applying the above formalism to four different expressions for the
end-to-end distance distribution of polymer chains. All calculations
can be performed exactly for Gaussian and finitely extensible non-
linear elastic (FENE) chains. While the former case provides a mere
sanity check, the FENE model allows us to validate both, the theo-
retical analysis from Sec. I1I and the data analysis for our numerical
results (Appendix A). For a systematic evaluation of the quality of
available analytical expressions for the end-to-end distance distribu-
tion of the WLC, we refer the reader to Ref. 26. Here, we analyze
the behavior of “BTB”-springs introduced by Bhattacharjee, Thiru-
malai, and Bryngelson™ as well as “BRE”-springs defined via our
own proposition for the radial distribution function of the WLC. To
facilitate the comparison of the different systems in the two ensem-
bles, Figs. 12 and 13 for FENE-springs in Appendix C, Figs. 14 and 15
for BTB-springs in Appendix D, and Figs. 5 and 6 for BRE-springs,
as well as the final comparison to WLC data in Figs. 8 and 9, all
follow identical outlines.

ARTICLE scitation.org/journalljcp

A. Gaussian chains

The ubiquitous” Gaussian chain model of polymer physics
describes the conformations of long, L > [,, non-interacting or
ideal chains, whose radial distribution function follows a Gaussian
distribution as long as r < L,

2 2
Q(r) o< exp(—:lﬁ) = exp(—ZNp(g) ) (57)

The model is obviously exactly solvable and exhibits no finite-size
corrections to the force—elongation and elongation-force relations,
if the above expression is used for arbitrary values of . Appendix B
discusses the application of the formalism from Sec. I1I to Gaussian
chains. In particular, we show that the exact behavior is identical
to the asymptotic behavior inferred from the asymptotic partition
function, Z,,(.)(z/L), per persistence length. Furthermore, the finite
chain length corrections df .y [Eq. (31)], 0f (1) [Eq. (38)], and dz())
[Eq. (56)] are all identical to zero for harmonic springs.

B. FENE-springs

While it is reassuring to recover the well-known behavior
of Gaussian chains, the model is too simple to provide a serious
test of our approach. In Appendix C, we explore the behavior of
finitely extensible non-linear elastic (FENE)-springs. S The radial
distribution function for FENE-springs

() = eol e = (1))
“(-())"

reduces to the Gaussian distribution, Eq. (57), for L > I, as long as
r <« L. However, contrary to Gaussian chains, the partition function
of FENE-springs drops to zero in the limit of full elongation, r — L.
As consequence, the contour length is a relevant independent length
scale.

The FENE model was not derived from an underlying micro-
scopic chain model but chosen for the relative ease with which it
can be manipulated mathematically.”® Conveniently, the model can
also be solved exactly in the present context (Sec. C 1). This pro-
vides us with a non-trivial test case for our approximation scheme,
which yields analytic expressions for the asymptotic behavior and
the first order corrections due to transverse and longitudinal fluctu-
ations. Notably, there are no finite chain length corrections to Q(r)
and, hence, f(,)(2).

Figures 12 and 13 present a detailed analysis of the behav-
ior of FENE-springs in the constant-elongation and constant-force
ensembles, respectively. The results for the latter are shown with
the dependent variable on the abscissa to simplify the comparison
between the two ensembles. Besides the overall force—elongation and
elongation—force relations [Figs. 12(a) and 13(a)] and the relative
finite chain length correction, f(z)/f(z), to the former [Fig. 12(b)],
we find (i) the difference between the inverted force-elongation
relations for chains of finite length and the asymptotic elongation
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force relation [Fig. 12(c)], (ii) the difference between the elongation—
force relation and the inverted force-elongation relation for chains
of a given length [Fig. 13(b)], and (iii) the difference between the
elongation—force relations for chains of finite length and the asymp-
totic elongation—force relation [Fig. 13(c)], which is the sum of
the first two terms. The comparison confirms the ability of our
formalism to predict the asymptotic behavior (Sec. C 2) as well
as the leading order finite chain length corrections to the force-
elongation and elongation-force relations (Secs. C 3 and C 4,
respectively).

Last but not least, the FENE model provides us with a strin-
gent test case for validating the data analysis pipeline described in
Appendix A (compare symbols to lines in Figs. 12 and 13).

C. “BTB-springs” representing long WLCs

In Ref. 29, Bhattacharjee, Thirumalai, and Bryngelson used a
variational approach™”" to replace the hard incompressibility con-
straint ‘%?(sﬂ =1,Vs € [0, L] of the WLC with its thermal average
(( %7(5) )?) = 1 and derived the following approximate formula for
the end-to-end distribution function of a WLC:

o) (- (1)) o)

In Appendix D, we explore the properties of the corresponding
BTB-springs. As for FENE-springs, we can calculate their asymp-
totic behavior to first order in x = 1/N,, using the approximation
scheme outlined in Sec. I1I. In this case, the finite chain length cor-
rections to Q(r) are relatively strong. Compared to the correction
6f (1)(2) from transverse fluctuations, df(.)(z) is about twice as large
and of the opposite sign. In particular, the BTB distribution implies
that, for the WLC, dz(.)(z) should nearly cancel the sum of dz(,)(z)
and dz(j)(2) in the constant-force ensemble.
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Figures 14 and 15 for BTB-springs are the exact analogs of
Figs. 12 and 13 for FENE-springs, which we have discussed in
Sec. IV B. In all cases, our numerical results for BTB-springs are in
excellent agreement with the results of this analysis with the pre-
dicted asymptotic behavior and theoretically expected first order
corrections to the force-elongation and elongation—force relations.

D. “BRE-springs” representing long WLCs

In Ref. 26, we have proposed a closed analytical expression

Qere(r) = (1- crz)s/2 Qa(r) Qs(r) (60)

for the end-to-end distance distribution of the WLC composed
of three factors, which interpolates between all relevant limit-
ing cases from stiff to flexible chains and from looped to fully
stretched configurations. By analogy to the FENE-case, Fgre(r)
= —kpTlog(Qpre(r)) describes the elastic (free) energy of a non-
linear, finite-extensible spring. In order to keep both notation
and terminology concise, we will refer to corresponding results as
describing the behavior of “BRE-springs.”

In the context of DNA stretching, we are mostly interested in
chains, which are much longer than their persistence length, L > 81,.
In this case, ¢ ~ 0 and Qgp(r) o< 1, and we can extract all distance
dependent factors of the radial distribution function from

100~ — 100 -
1 0.0, s o000
— Np=eo (a), 02§ Ry (c) I 820
02§’ - "
o Ny=4 / et ! — — oz
10 4 i 10 '
Np=8 Af 06 100 72 R S20y+620)
Np=16 & o8] A :
s o Np=32 ol 10 { = 10 , \
x ; p= ‘,:’. 00 0.2 04 06 08 1.0 * R ‘.’} / b
= - o Z/L - - (
< « o < DN 1.
< ,': ° ’w"’ < o0 4 N ./.:
//.ﬂ. = N ’{,
0.01
010 g’ 010 0 025\ Be
I3 6z/L Vb
i B
i i T
001 1 J i 0.01 T .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 -1.0 -0.5 0.0 0.5 1.0
z/L z/L 6zl

FIG. 5. BRE-springs in the constant-elongation ensemble: (a) force—elongation relations, (b) finite-size corrections [(0f)=(f(z, x))—(f(z, x = 0))] to the force-elongation
relation, and (c) finite-size corrections [0z =(f(z,x))~" —(f(z,x = 0))~"] to the inverted force—elongation relation. The insets show finite-size corrections in the units of the
force—elongation relation, while the main panels show rescaled results in comparison with the theoretical expressions for the leading order term. Symbols represent the most
likely elongation of BRE-springs in MC simulations in the constant-force ensemble (see Sec. A 3).
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FIG. 6. BRE-springs in the constant-force ensemble: (a) elongation—force relations,
relations for chains of the same length, and (c) finite-size corrections [(86z + 6z) =

the average elongation of BRE-springs in MC simulations in the constant-force ens
abscissa to simplify the comparison with Fig. 5.

which we obtained”® by a systematic interpolation between the exact
limit results by Daniels” and Wilhelm and Frey."

As in the case of BTB-springs, we first explore the properties of
BRE-springs as such. Figures 5 and 6 for BRE-springs are the exact
analogs of Figs. 12 and 13 for FENE-springs and Figs. 14 and 15
for BTB-springs. Again, we have not been able to obtain an exact
analytic solution. As a consequence, we are restricted to validating
results obtained from the approximation scheme outlined in Sec. I1I
via a comparison with numerical data from Monte Carlo simula-
tions of stretched BRE-springs. For a comparison of BRE-springs to
the WLC, see Sec. V and Figs. 8 and 9.

1. Asymptotic behavior

In the asymptotic limit, the free energy per persistence length is
given by the dominant exponential term in Eq. (61),

Ty (&) -3(2/L)* + B(2/L)" - Z(z/L)°
kT 1-(z/L)’ '

Differentiating with respect to the elongation, Eq. (30), yields

()

for the asymptotic force-elongation relation of BRE-springs. The
behavior is similar to BTB-springs and largely dominated by the first
two terms, which reproduce the exactly known behavior of the WLC
in the two limits of weak and strong elongations, Eqgs. (4) and (6),
respectively. With the inverse, z(.)(f), being the root of a seventh
order polynomial, we show results in the constant-force ensemble as
parametric plots.

4

L

foGE/L) 1z z/L 7

ksT/l, 2L (1-(z/L)?)> 16 (62)

(b) finite-size corrections [(86z)=(z(f, x))—(f(z,x))~"] to the inverted force-elongation
(z(f, x))—(z(f, x = 0))] to the asymptotic elongation—force relation. Symbols represent
emble (see Sec. A 1). Note that all results are shown with the dependent variable on the

2. Finite chain length corrections
to the force-elongation relation

As in the other cases, the effective spring constant, Eq. (32), for
transverse fluctuations of BRE-springs,
()

diverges on approaching full elongation. To first order in «, the cor-
responding finite-size correction, Eq. (38), for the force-elongation
(1-(z/L)»)° 8

curve reads
1 7

P 7(2
(1- (/L) 16

7
(1-(2/L)?)* 16

z

I (63)

1
k(l)(Z/L) o< E +

z 4 7

S (1 (z/L,x) » L

ksT/ly (64)

1

5
; )
While the effect of transverse fluctuations is qualitatively similar in
all three cases [panel (b) in Figs. 12, 14, and 5], the corrections for
BRE-springs are somewhat smaller than those for BTB-springs.

Similarly to BTB-springs, BRE-springs exhibit finite-size cor-
rections to the dominant free energy contribution, 7, .y(z/L, k),
from aligned chains with the minimal elongation, r = z. Again,
there is no explicit chain length dependence of the two subdomi-
nant factors in Eq. (61). As a consequence, there are no higher order
corrections to 0.5, (.)(z/L, k) beyond the linear term,

L

6F, . , K 2

7}}”(;;;# ) x(zlog(l - (2/L)%)

3L+ § (/L) - (/1)
- (/L)

). (65)
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The corresponding correction, Eq. (31),
reads

to the elastic response

Of () (z/L,x) [z z/L 9(z\?
keTfl, "(Z 1 (zL)? Z(f) ) (66)

Note that the dominant FENE-like term in Eq. (66) has again the
opposite sign from Eq. (C11). As for BTB-springs, the diverging

2\~5/2
subdominant factor of (1 - (f) ) in Eq. (61) reduces the drop

in Qa(r) on approaching full elongation. Because of the smaller
exponent, this correction is again smaller for BRE-springs than for
BTB-springs.

For BRE-springs, the sum of the two corrections is approxi-
mately given by the more readable expression

Of (z/L,x) NK(ii 1 ,EE) 67)
ks T/l 2 2(1-z/L) 12L

While the total correction is qualitatively similar to the one for BTB-

springs, it turns out to be only about half as strong. Compared

to FENE-springs, the major difference is again the opposite sign

caused by df(.)(z/L, «). Our numerical results for BRE-springs are

in excellent agreement with the results of this analysis [Fig. 5(b)].

3. Finite chain length corrections
to the elongation-force relation

In the constant-elongation ensemble, we expect a correc-
tion due to the elongation-dependence of longitudinal fluctuations
because the corresponding effective spring constant,

f(H(=/L)

K EIL) o< = o (68)
1 1+3(z/L) 21
2" (1-(z/L)2)? 16(L) (69)

diverges even more rapidly than k(,)(z/L). For BRE-springs, Eq. (56)
reads

dz(y (2" /L, Np)
L
= 48x(z* /1) (1 - (z/L)*)’
L ~25-60(z"/L)° +42(z" /L)* - 28(=" [L)° + 7(<" [L)°
(24+3(z /L) +87(z* /L) = 71(z* /L) + 21(2* /L) )
(70)

and can be approximated as

&(u)(z /[LN,) 1 1 2
/\l zsz 6(1 */L)Z) - 7D
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The behavior shown in Fig. 6(b) is very similar to the results for the
other cases. Again, our numerical results converge to the theoretical
prediction.

Following the discussions in Sec. III B, we need to add dz())
to the finite chain length corrections from the inverted force-
elongation relation given by Eqs. (49) and (50). With 8f(1), 0f (),
and f(') for BRE-springs defined in Egs. (64), (66), and (68), the
expressions

dz1)(z*/Lix) Oy (2" /L.x)
L RN CT N

0z(y (2" /L,k) 78f(,)(z*/L, )
L 4,@ED

(72)

(73)

gain little in being written out in full. The two functions are shown
in Fig. 5(c). Like in the other cases, the corrections are strongest
around z/L ~ 1/2 and fl,/kpT =~ 1. As for BTB-springs, 0z(.) and 8z(,)
have opposite signs. However, with dz(.) being smaller, the sum, dz(.)
+ 0z(1), is about 50% smaller. Again, the numerical results for
BRE-springs are in excellent agreement with our analysis results.

The total finite chain length corrections to the elongation-force
relation of BRE-springs are shown in Fig. 6(c). The first point to note
is again the excellent agreement between the results of our simula-
tions for chains with length N, = 4, ..., 32 persistence lengths and
the theoretically predicted first order correction, 8z(.) + 8z(1) + 6z(|)-
Higher order terms appear to be negligible. A second key feature is
revealed in the direct comparison to Figs. 13(c) and 15(c) for FENE-
springs and BTB-springs: due to the magnitude and opposite sign
of the contribution dz(.), the total finite chain length corrections to
the elongation—force relation of BRE-springs are surprisingly small,
even though they do not exhibit the near cancellation we found in
the case of BTB-springs.

V. DISCUSSION

In the present paper, we have developed a formalism for infer-
ring force-elongation and elongation-force relations for single-
molecule stretching experiments from given (approximate) expres-
sions for the chain end-to-end distance distribution. We have val-
idated the formalism for the analytically exactly solvable case of
FENE-springs (Appendix C). In Appendix D and Sec. IV D, we
have derived the relevant expressions for the approximate BTB-
distributions and BRE-distributions for long WLCs, whose contour
length is much larger than their persistence length, L/l, = N, > 1.

We now turn to the question regarding which (if any) of the
approximate radial distribution functions allows us to derive a quan-
titative description of the behavior of wormlike chains. We will fol-
low the same outline as in Secs. IV A, IV B, IV C, and IV D. In
Sec. V A, we compare the asymptotic force—elongation relation of
BTB-springs and BRE-springs to the results of Marko and Siggia. In
the second step (Sec. V B), we use our numerical results for the WLC
to test the corresponding expressions for the finite chain length cor-
rections. As a final point, we show in Sec. V C how experimentalists
might employ our results to infer the changing number of nicks in
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a ds-DNA molecule by observing the changing mean elongation in
a single-molecule stretching experiment, where the DNA is held at
constant force.

A. Asymptotic behavior of WLC

In Fig. 7, we compare the asymptotic force-elongation relation
for BTB-springs and BRE-springs, Egs. (D1) and (62), to the MS
approximate expression, Eq. (5), the numerical solution of the MS
variational theory, an analytical expression proposed by Vologodskii
[Eq. (4) in Ref. 19], the exact MS solution obtained by numerically
inverting a 100 x 100 matrix, and an empirical formula by Bouch-
iat et al. [Eq. (11) in Ref. 20], who fitted a seventh order polynomial
to the difference between the exact solution and Eq. (5). Considered
over the full force and elongation range in panel (a), all approxi-
mate expressions provide a good approximation to the exact solution
(indicated by a dashed black line). Only for Eq. (D1), the deviations
are immediately apparent.

For a more detailed analysis, we have calculated the rela-
tive error of the asymptotic force—elongation relations [panel (b)]
and the absolute error of the asymptotic elongation—force rela-
tions [panel (c)]. These representations show that the deviations of
the BRE-spring expression, Eq. (62), are of the order of 2% over
the full range of elongations. They are, thus, about one order of
magnitude smaller than those for the MS approximation, Eq. (5),
and comparable to the numerical evaluation of the MS varia-
tional theory. Vologodskii’s expression is three to five times worse
in the intermediate force regime and breaks down in both lim-
its.") For BTB-springs, the elastic response to large forces is off
by a factor of 3/2."" While Bouchiat et al’s”’ fit of the exact MS
solution retains its utility for the analysis of experimental data,
Eq. (62) has at least the merit of being the most precise explicit
expression resulting from a systematic theoretical approach to the

ARTICLE scitation.org/journalljcp

B. Finite chain length effects for WLC

In the absence of exact results for the finite chain length correc-
tions to the force—elongation and elongation-force relations of the
WLC, we are limited to comparing the predictions we have derived
from the BTB-distributions and BRE-distributions to our numerical
data for the WLC. In order not to confuse the errors in the inferred
asymptotic force—elongation relations with the predicted finite chain
length corrections, we calculate the latter for our WLC data relative
to the exact asymptotic MS force-elongation relation.

The presentation of our results in Figs. 8 and 9 is the exact ana-
log of Figs. 14 and 15 for BTB-springs and of Figs. 5 and 6 for BRE-
springs. The only difference is that symbols now represent simula-
tion results for the WLC, while gray and black dashed lines represent
predictions for BTB-springs and BRE-springs, respectively. In the
constant-force ensemble, there is excellent agreement between the
WLC data and the finite chain length corrections inferred from the
BRE-distribution. In contrast, the BTB-results—while qualitatively
perfectly reasonable—are off by a factor of 2-3 over the entire range
of elongations [Figs. 8(b) and 8(c)]. We tentatively conclude that
the predicted asymptotic force-elongation relations and finite chain
length corrections seem to be of comparable quality. In the constant-
elongation ensemble, there is very good agreement between the
observed corrections due to longitudinal fluctuations and the pre-
dictions from both models [Fig. 9(b)]. However, due to the subtle
cancellation effects, the total correction [Fig. 9(c)] is only correctly
predicted by BRE-springs.

Curiously, for the WLC and BRE-springs, the average of the
force-elongation and the elongation-force relation for chains of
finite length appears to be an excellent estimator for the asymp-
totic force—elongation curve [panel (a) in Figs. 5 and 6 as well as
Figs. 8 and 9, or even more clearly the corresponding panel (c)].
While this might be intuitively plausible, it is easy to show that
the identity for BRE-springs is only approximate, but not exact.

problem. Moreover, the examples of FENE-springs and BTB-springs would
100 I 0.5] 100~ 1
MS Approximation (1995) (a) : (b) (C)
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— Vologodskii (1994) ’
10 : 10
— Bouchiat et al. (1999) 03
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FIG. 7. (a) Asymptotic force—elongation relation for the WLC, (b) relative error of predicted forces, and (c) error of the predicted position. Black line: Marko and Siggia’s exact
solution. Cyan line: Marko and Siggia’s approximate expression [Eq. (5)]. Green line: numerical solution of the Marko and Siggia variational theory. Blue line: Vologodskii's
approximate expression.'® Magenta line: Bouchiat et al.’s approximate expression.”” Brown and red lines: analytical expressions, Egs. (D1) and (62), derived from the BTB*°

and BRE? distributions.
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FIG. 8. WLC of finite length compared to corresponding BTB-springs and BRE-springs in the constant-elongation ensemble: (a) force—elongation relations, (b) finite-size
corrections to the force—elongation relation, and (c) finite-size corrections to the inverted force—elongation relation. Symbols: most likely elongations of the WLC in MC
simulations in the constant-force ensemble (see Sec. A 3). Gray dashed lines: theoretical results for BTB-springs (see Fig. 14). Black dashed lines: theoretical results for
BRE-springs (see Fig. 5). Solid colored lines in the insets: numerical results for BRE-springs representing the WLC of finite length (see Fig. 5). Colors distinguish chain
lengths, and label notation is as in Fig. 5.

seem to indicate that this near identity is an accident rather than
a rule [Figs. 12(c) and 13(c) as well as Figs. 14(c) and 15(c)]. The
corrections 8,y and 6(()) due to transverse and longitudinal fluc-
tuations only depend on the asymptotic force elongation relation,
¢((0). For reasonable polymer models, these corrections plausibly
have a universal sign because their origin is the relative stiffen-
ing of the springs on approaching their maximal elongation. The
different behavior of FENE-springs, BTB-springs, and BRE-springs
is due to the first order correction, 8¢.)({), which arises from
the dominant contribution to the partition function from chain

conformations with the minimal total elongation, r = z, at the
considered projected elongation. While this term vanishes for
FENE-springs, for BTB-springs and BRE-springs, it counteracts and
largely cancels the fluctuation-induced corrections.

C. Counting nicks in single-molecule stretching
experiments of DNA

As an interesting application of our results, we discuss in the
following the possibility to follow a dynamically changing number
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FIG. 9. WLC of finite length compared to corresponding BTB-springs and BRE-springs in the constant-force ensemble: (a) elongation—force relations, (b) finite-size corrections
to the inverted force—elongation relations for chains of the same length, and (c) finite-size corrections to the asymptotic elongation—force relation. Symbols: average elongation
of the WLC in MC simulations in the constant-force ensemble (see Sec. A 2). Gray dashed lines: theoretical results for BTB-springs (see Fig. 15). Black dashed lines:
theoretical results for BRE-springs (see Fig. 6). Solid colored lines in the insets: numerical results for BRE-springs representing the WLC of finite length (see Fig. 6). Colors
distinguish chain lengths, and label notation is as in Fig. 6.
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of “nicks” in a molecule held at constant force by analyzing the
accompanying changes in the average elongation. For DNA, such
a situation may arise in the presence of enzymes, which can induce
and repair single-chain breaks.

Consider a defect-free ds-DNA segment of length L under the
influence of a dimensionless stretching force, ¢. Retaining finite
chain length effects to first order, its average elongation is given by

(2) = LC(9) + Ipdc (¢)s (74)

where 8¢(¢) = limy—00{(¢, x)/x. This expression is straightforward
to generalize to the situation, where the molecule is composed of #n
freely jointed defect-free segments of a total length of L = Y1, L;,

(2) = 2 (LiC(9) + 1,0 (9)) (75)

i=1
= L{(¢) + nlpd; (¢). (76)

The above relation has a number of interesting implications: (i)
changing the number, n — 1, of nicks by one changes the average
chain elongation by a distance of the order of the DNA persistence
length of /, = 50 nm and (ii) this change depends neither on the total
length, L, of the molecule nor on the precise position of the nicks.
Note, however, that by equating a single-strand break to a free hinge,
we have neglected the possibility that the double helix can remain
stacked at the nick position.”" Such a “passive” nick leaves the chain
locally smooth and would be difficult to discern in single-molecule
stretching experiments. Here, we focus on the detection of “active”
nicks and leave the inclusion of “passive” nicks via a (sequence-and
force-dependent) two-state model to future work.

Defining our usual parameter « = [,/L for the known total con-
tour length and rewriting Eq. (76) in terms of the expectation value
of the reduced elongation, we obtain an elongation—force relation,

(3) - @)+ meace). )

of the form that we have considered throughout this article. In par-
ticular, the introduction of a single nick doubles the finite chain
length effects. Assuming that Eqs. (76) and (77) are borne out in
experiments of DNA-molecules with a well-controlled number of
nicks, we can invert the logic and count (active) nicks in single-
molecule stretching experiments,

{i) -9

= ko (9) (78)

With the above caveats, Eq. (78) applies to a static setting. In con-
trast, if the nick dynamics is fast, one is bound to measure a response
corresponding to the average number, (1), of freely jointed WLC
segments.

To resolve dynamic changes in the number of nicks, one needs
to measure (%) in between changes with sufficient precision to be

I
able to distinguish the “quantized” mean elongations described by
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Eq. (77). To understand how this can best be achieved, we need to
analyze the fluctuations.

Similarly to the total elongation, which is given by the sum of
the subchain elongations, the variance of the total elongation is given
by the sum of the variances of the subchain elongations. To zeroth
order in x, Eq. (68) implies that

I n IL,L
(5z2) S R P — (79)
¢'(¢*(¢)) ; ¢ (¢*(¢))
In particular, the distribution of instantaneous chain elongations for

a WLC with n — 1 (active) nicks is given by

(z— (2)n)’
~S5a ) (80)

= exp(

With the standard deviation, \/(8z2) ~ I, /N,, increasing with
the chain length, the “quantization” is in general not observable in
instantaneous configurations and emerges only in averages,

1 t+T , ,
Zr= = f 2(£)dt, 81)
T Jt

over time intervals, T, of sufficient length, where the relevant mea-
sure is the sampled number, Ngppies ~ T/ cor, Of statistically indepen-
dent configurations. The correlation time, e, for the fluctuating
chain extension depends on the DNA dynamics in the experimen-
tal setup. A simple blob picture’” would suggest that 7., ~ ¢~ * is a
rapidly decreasing function of the applied force. In particular,

Nsample: (ET - <Z>")2
27(622) eXp(_ 2(822) /Nuampies ) (®2)

p(zr) =

Figure 10 illustrates the influence of the chain length, N, of
the applied stretching force, ¢, and of Nygmyes on the distribution
of (time-averaged) chain elongations for an ensemble composed
of equal numbers of chains with n — 1 =0, ..., 3 nicks. There is
obviously little point in exploring the effect of nicks in the weak
stretching limit (left column of Fig. 10). While averaging over more
and more statistically independent configurations sharpens the dis-
tributions around the mean, the peak does not split into separate
peaks for molecules with different numbers of nicks. This is easy to
understand. First, §;(¢) [and hence the distance between the quan-
tized mean positions, Eq. (74)] vanish in this limit [Figs. 13(c),
6(c), and 9(c)]. Second, the chain fluctuations, Eq. (79), are largest
because the effective spring constant for longitudinal fluctuations
is a monotonously increasing function of the applied force. The
signal-to-noise ratio is better in the strong stretching limit (right
column of Fig. 10), but experiments might be challenging, since
the absolute differences between the quantized elongations vanish
again with 6;(¢). From an experimental point of view, the opti-
mal regime is, thus, probably located around intermediate forces,
¢ ~ 1, where chains are stretched to about half their full elongation
(central column of Fig. 10). Comparisons between the three rows
of Fig. 10 illustrate the effect of chain length on the detection of
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FIG. 10. Distribution of the parallel elongation for an ensemble of stretched ds-DNA molecules with n — 1 =0, 1, 2, 3 nicks modeled as a corresponding sequence of freely
jointed BRE-springs. The panels illustrate the effect of varying the total chain length, N, = 32, 128, 512, and the applied force, ¢ = fl,/kgT = 0.1, 1.0, 10.0 [for the example
of ds-DNA with I, = 50 at room temperature kgT ~ 4 pN nm, this corresponds to ~0.008 pN, 0.08 pN, 0.8 pN]. Blue: instantaneous elongations. Yellow, green, and red:
“time averages” over Nsampres = 16, 256, 4096 independent configurations. Chain elongations are reported in “nm” for the example of ds-DNA with /[, = 50 nm. To simplify the
comparison, all panels are centered on the elongation predicted by the asymptotic elongation—force relation, L{(¢), and reported p(z) over z-values in intervals of an identical
width of 4/, = 200 nm.

nicks. The effect of fluctuations decreases with N, if one consid- distances between the mean positions are independent of length
ers the relative chain elongation, { = z/L, which we have privileged [Eq. (74)], Namples ~ Ny statistically independent configurations are
throughout most of the article. However, in absolute terms, Eq. (79), expected to be needed to discriminate the number of nicks in the

the width of the fluctuations increases with chain length. Since the ~ molecule.
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VI. SUMMARY AND CONCLUSIONS

The present work discusses the force-elongation and
elongation—force relations of long polymer chains in single-
molecule stretching experiments in the constant-force and constant-
elongation ensembles. In particular, we show how to systematically
derive these relations from a given radial end-to-end distance distri-
bution and provide insight into the form and origin of the leading
finite chain length corrections. The exactly solvable, non-trivial case
of FENE-springs serves as a useful validation of our formalism and
the employed numerical techniques.

In particular, we have used our formalism to explore the
properties of “BTB”-springs and “BRE”-springs defined through
approximate, closed analytical expressions for the end-to-end dis-
tance distribution of the WLC.”"* While the BTB-distribution
[Eq. (59)] derives from a variational treatment, the BRE-distribution
[Eq. (60)] interpolates between all relevant, exactly known limit-
ing cases from stiff to flexible chains and from looped to fully
stretched configurations. For the present application to long WLCs,
it was sufficient to analyze Eq. (61). To test the quality of the
BTB-approximations and BRE-approximations in the present con-
text, we have performed Monte Carlo simulations of stretched
WLCs.

The asymptotic BRE force-elongation relation [Eq. (62)]
reproduces the numerical solution of Marko and Siggia’s exact
description'® to within 2%. While this is probably less useful for
experimental applications than the fit by Bouchiat et al.”’ of the exact
MS relation, our formula has the merit of being the most precise
among those resulting from a systematic theoretical approach to the
problem, #1520

From our comparison to numerical data for the WLC, we ten-
tatively conclude that the BRE-expressions for the finite chain length
corrections in the two ensembles are of comparable quality. We
argue that this precision might allow for an experimental applica-
tion in the counting of “nicks” in single-molecule stretching exper-
iments of ds-DNA because their primary effect is the reduction of
the effective chain length. As details on the form of the surface
anchoring can lead to corrections of similar magnitude,” it might
be difficult to count their absolute number. However, the quan-
tization of the mean elongations should allow following dynamic
changes in the number of kinks provided they occur sufficiently
slowly.

While the present work focuses on long WLCs, it might also
be interesting to review the opposite limit of short WLCs with
L 5 I, along similar lines. Figure 11 illustrates why the formal-
ism from Sec. III has to break down for short chains, even though
the BRE-distribution describes the WLC for arbitrary ratios of [,/L
and r/L. A priori, the limit of very short (and hence rigid) chains
is described by the classical Langevin-formalism for individual or
freely jointed chains.”* Nevertheless, a quantitative analysis of the
fluctuations (including a two-state model for kinking"’) might be
called for to detect transient extreme bending at these scales in
single-molecule stretching experiments.*®

With respect to the theory of WLC, we notice that the partition
function Z( f), Eq. (39), is equivalent to the Laplace-Fourier trans-
form of the end-to-end distribution function Q(7) for which suitable
sophisticate approximation schemes (such as the continued-fraction
expansion of Ref. 47 or the Mathieu function expansion for 2d WLCs

ARTICLE scitation.orgljournalljcp

-0.5

FIG. 11. Simulated chain conformations and chain-end density distributions pre-
dicted by the BRE-distribution from Ref. 26 for chain length N, = 1 (=single ds-DNA
filament of 150 bp) at the applied force f = kgT/l, (=0.1 pN for ds-DNA). Notation
and symbols are as in Fig. 2.

of Ref. 48) have been proposed. In future work, it might be interest-
ing to explore if these formalisms provide an alternative access to
the asymptotic WLC force-elongation relation and to the finite-size
corrections in the different ensembles.

Finally, we speculate that the convenient mathematical proper-
ties of the FENE-model and our present results might be useful for
the analysis'’ of analogous experiments on protein and polysaccha-
ride stretching, where the use of the WLC model is less pertinent
than for ds-DNA.

ACKNOWLEDGMENTS

R.E. gratefully acknowledges discussions with G. S. Grest in a
different context, which, nevertheless, triggered the present inves-
tigation. Our work was supported by a STSM Grant from COST
Action under Grant No. CA17139 (EUTOPIA). Furthermore, we
benefitted from stimulating discussions with D. Thirumalai dur-
ing the “Biological Physics of Chromosomes” program organized
at the Kavli Institute for Theoretical Physics (Santa Barbara, USA)
supported by the NSF under Grant No. PHY-1748958, the NIH
under Grant No. R25GM067110, and the Gordon and Betty Moore
Foundation under Grant No. 2919.02. Finally, we acknowledge
the computer facilities of FLMSN, notably of Pdle Scientifique de
Modélisation Numérique (PSMN) and Centre Blaise Pascal (CBP)

J. Chem. Phys. 154, 024903 (2021); doi: 10.1063/5.0028777
Published under license by AIP Publishing

154, 024903-16


https://scitation.org/journal/jcp

The Journal
of Chemical Physics

at Ecole Normale Supérieure de Lyon where simulations were
performed.

APPENDIX A: MONTE CARLO SIMULATIONS
AND DATA ANALYSIS

In the context of Sec. ITI, it was natural to first explore the
constant-elongation ensemble and, in the second step, to use the
obtained results as a basis for deriving the behavior in the constant-
force ensemble. For our numerical work, it turns out to be easier
to proceed in the opposite direction. Section A 1 outlines (almost
trivial) Monte Carlo simulations of stretched FENE-springs, BTB-
springs, and BRE-springs, while Sec. A 2 briefly describes high-
precision Monte Carlo (MC) computer simulations of a standard”®
numerical model of the corresponding WLC. In the second step,
discussed in Sec. A 3, we calculate the average force at given con-
stant elongation by analyzing the distribution function of spatial
elongations in the constant-force ensemble.

1. Elongation-force relations from Monte Carlo
simulations of stretched FENE-springs, BTB-springs,
and BRE-springs

Given an analytic expression for the end-to-end distance distri-
bution, Q(r), the expectation value

[ drQ(r) zexp(,ﬁ%)
T

J ar Qe (15) “

(z(N) =

is straightforward to sample using Metropolis Monte Carlo simula-
tions."’ Starting from an arbitrary initial elongation, 7, with || < L,
random changes in the end-to-end vector are accepted with a prob-

ability

acc(? - ?') =min| 1 (A2)

k
“Qien(L) )

where Q(|f| > L) = 0.

Specifically, a single Monte Carlo step consists of the following.
At each given force f, we extract two uniformly distributed random
numbers |#’|/L € [0,1] and z'/L € [-1, +1] and move to this new
position according to the probability equation (A2). New positions
are sampled each 10° Monte Carlo steps, for a total of 10° sampled
positions per each force f, which corresponds to the statistics used
for the WLC model (see Sec. A 2).

Results for FENE-springs [Q(7), Eq. (58)], BTB-springs [Q(7),
Eq. (59)], and BRE-springs [Q(7), Eq. (60)] modeling polymer
chains made of N, = 4, 8, 16, 32 persistence lengths are shown in
Figs. 13, 15, and 6 (symbols) and are in excellent agreement with
theoretical results (lines, see Appendixes C and D and Sec. IV D
for details). Reported error bars are calculated as the standard
deviations of the corresponding means.

ARTICLE scitation.org/journalljcp

2. Elongation-force relations from Monte Carlo
simulations of moderately stretched WLCs

Results for WLCs of numerical quality comparable to the
ones established for FENE-springs, BTB-springs, and BRE-springs
can be obtained from high-precision Monte Carlo (MC) computer
simulations of the following standard”® numerical model.

We have considered linear polymer chains made of N;, = L/b
= 512 rigid bonds, where b is the bond length. The energy of the
chain is expressed by the Hamiltonian

H = Haitt + Hrorce- (A3)
Hsier models the stiffness of the fiber and is given by

Ny—1

Haitt = —ksise , bi - s, (A4)

i=1

— Tzl

where ; = "= is the i-th unit bond vector and #; (i = 0, ..., N)
is the spatial position of the i-th bead. The stiffness parameter kg
determines the persistence length I, of the polymer chain. In fact, the
bond-bond correlation function for Heree = 0 is given by

(i 1) = exp(-bl1/lp), (A5)

with

) | (A6)
b 1og(c0th( %) - )

It is easy to see that limy_, oo Ip/b = kyift/ksT. The force term

Hforce = 7]? . (?Nb - ?0) = 7f(ZNb - ZO) (A7)

stretches the chain along the z-direction.

MC moves are based on the pivot algorithm.””" A monomer i
between 0 and N;, — 1 is randomly selected, and the portion of the
chain comprising monomers i, ..., Ny is rotated by an angle ran-
domly picked in [0, 271] around an axis centered on the monomer i
and randomly oriented on the unit sphere. The move changes the set
{7} of chain coordinates into {#'} and is then accepted according to
the probability

acc(? - 7") = min(l,exp(—%)). (A8)

Single chain conformations are sampled at each 10°N » MC moves,
for a total of 10° conformations per each force f.
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As in the case of FENE-springs, BTB-springs, and BRE-springs
(Sec. A 1), we have simulated chains of a total length of N, = L/I,
=32, 16, 8, 4 persistence lengths, in order to be able to extrapolate to
the asymptotic limit and to explore finite chain-length effects. While
ideally we would like to study the WLC in the continuum limit with
b — 0, we have obtained data for discrete bond lengths of b/, = 1/16,
1/32, 1/64, 1/128 < 1 or N}, = 16, 32, 64, 128N,. In particular, the
choice of a bond length limits the range of forces, f <« kpT/b, which
we can explore without encountering discretization effects. In prac-
tical terms, we have sampled f in the interval [fmax/1024, fmax] in
log-steps of 2 with frax = %]“‘TT. Corresponding results shown in
Fig. 9 (symbols) are in good agreement with theoretical results for
BRE-springs (lines).

3. Force-elongation relations from data obtained
in the constant-force ensemble

The elongation-force relation in the constant-force ensemble is
given by the sampled average chain elongations, (z(f)). In addition,
one can sample corresponding histograms, ps(z). Following the dis-
cussion in Sec. I1I B, these histograms are peaked at an elongation
z*(f), which is, in general, different from (z(f)). By correcting for
the sampling bias due to the applied force, these histograms also pro-
vide a local estimate of the partition function, Z(z), in the constant
elongation ensemble,

2(2) e py(2) e L5 (49)

This estimate will be efficiently sampled in the vicinity of z*(f),
and multiple such local estimates could be tiled to estimate all of
Z(z). Using Eq. (13), we can directly estimate the force-elongation
relation over the sampled z-range as

100

1

3
- 2‘3.;_!_.*- %ot capsin ol s G e
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p(2)
=f—kgT ——. Al0
() =f -kt S (A10)
In particular,
(f(z) =f (AlD)

at the peak of the sampled distribution, where the statistical quality
of the results is highest.

The average location of the peak as a function of f is determined
as follows. At each applied force f, we computed ten independent dis-
tributions ps(z) from the 10° sampled elongations (Sec. A 1). Then,
the position of the peak of each distribution is estimated by the best
fit of log py(2) to the function a— kzi (z-z")*-sign(z-z*) log(1+ % |z
- z*P), ie., the Gaussian function corrected for “skewness” with fit
parameters a, k, k3, and z*. We have found that the position of the
maximum is accurately captured by limiting the fit to +1 standard
deviation around the corresponding mean and estimating ps(z) from
the histogram obtained by partitioning this interval into 40 equally
spaced bins.

The symbols in Figs. 12, 14, 5, and 8 represent (z*(f)) for
FENE-springs, BTB-springs, BRE-springs, and WLC, respectively.
Reported error bars indicate the standard error of the estimated
means.

We take the excellent agreement of our numerical results for
FENE-springs with the exact solution of the model (symbols vs
lines in Figs. 12 and 13) as proof of the reliability of our method
for converting between the two ensembles. The numerical data
for BTB-springs and BRE-springs serve to validate our analysis
of their asymptotic behavior (Figs. 5 and 6) and can be directly
compared to results for BTB-springs and WLC of finite length
(Figs. 8 and 9).

100
—_—— 07()+0Z(,)

(b) (c)

. 1100
10 di: - Sl 10
ﬂ 10
= x =
x = y ~ 1
> 1 =0 > 1
< @ 1.0] e 0.10
08
] % g-i% -0.25 0. 00
0.10 - - A bt — 0.10
\ o B sz/L
0.0‘?"'""'""""""
0002040608 1.0
0.01 -2/ z/L oo1l |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 06 08 1.0 “110 ~05 0.0 05 10
z/L z/L 6211,

FIG. 12. FENE-springs in the constant-elongation ensemble: (a) force—elongation relations, (b) finite-size corrections to the force-elongation relation, and (c) finite-size
corrections to the inverted force-elongation relation. Symbols represent the most likely elongation of FENE-springs in MC simulations in the constant-force ensemble (see

Sec. A 3). Label notation is as in Fig. 5.
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FIG. 13. FENE-springs in the constant-force ensemble: (a) elongation—force relations, (b) finite-size corrections to the inverted force—elongation relations for chains of the
same length, and (c) finite-size corrections to the asymptotic elongation—force relation. Dashed colored lines in panel (a) indicate the result of the Olver expansion, Eq. (C6),
while solid lines indicate the exact elongation—force relation, Eq. (C4). Symbols represent the average elongation of FENE-springs in MC simulations in the constant-force
ensemble (see Sec. A 1). Note that all results are shown with the dependent variable on the abscissa to simplify the comparison with Fig. 12. Label notation is as in

Fig. 6.
APPENDIX B: STRETCHING GAUSSIAN SPRINGS it is straightforward to see that Eq. (30) yields, indeed, the correct
1. Exact solution result

Adopting the Gaussian chain model, Eq. (57), for arbitrary dis- foy(=/L) _3z (B4)
tances, different spatial dimensions remain uncoupled. As a conse- ksT/ Iy 2L
quence, Z(z) o< exp(—%Np(%)z), and the exact force-elongation
relation, 3. Finite chain length corrections

(f(z)) 3z Do we understand the absence of corrections? It turns out that

=--, (B1) Z,(y(z/L,x) = Z,)(z/L) independently of chain length. As there

ksT/lp 2L are no finite size corrections to the dominant free energy contri-
) bution, 7, .y(z/L), there are also no corresponding corrections,
follows immediately. Similarly, with Z( f) o< exp(%NP( %) ), one Eq. (31), to the elastic response,
obtains
Of ) (z/L)
(©)
—— =0 B5
{z(N) 2 f (B2) ksT/l, (B)

. . Similarly, there is neither a finite-size correction, Eq. (38), to the
for the elongation-force relation. . .

force—elongation curve due to transverse fluctuations,
2. Asymptotic behavior 6f(i)(z/L) )

-0, B6
As there are no finite-size corrections to the force—elongation ksT/l, (B6)

and elongation-force relations of Gaussian chains, Eqs. (B1) and
(B2), the two relations are each other’s inverse.

Following the analysis in Sec. III A 2, we should be able to
derive the same result from the asymptotic partition function per
persistence length for chains extended to the minimal end-to-end

nor a correction to the elongation—force relation, Eq. (56), due to
longitudinal fluctuations,

distance, r = z. With M -0, (B7)
3 2 . . . . _ .
Z,(y(z/L) o< exp| - ( z ) i (B3) since the asymptotic force-elongation relation, f(z) = kz, is
4\L harmonic.
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APPENDIX C: STRETCHING FENE-SPRINGS
1. Exact solution

For FENE-springs, Eq. (58), all quantities of interest can be
calculated exactly. Integrating out transverse fluctuations yields

2\ 3N+
Z(z/L,N,) (1 - (%) ) . (C1)

Figure 12(a) illustrates the resulting force-elongation relation,

ksT/l,

U@ (3, 1) ( -
2 NpyJq

for a number of chain lengths, N, = 1/x = 4, 8, 16, 32. As expected,
the elastic response reduces to the Gaussian behavior for small elon-
gations and diverges on approaching the limit of maximal elon-
gation. There are discernable finite-size effects as shorter chains
require a larger force to be constrained at a given relative elongation.

The partition function for the constant-force ensemble,
Eq. (39), can also be calculated exactly and is given by

Sy
fo Lan, (Mo
Z(m;Np ol — e P (C3)

where I,(x) denotes the modified Bessel function of the first kind
and order v. By using Egs. (40) and (42) and employing the iden-
tity x I(x) = x L41(x) + v L (x), the corresponding elongation-force
relation takes the form

() _ T (Mo ) -

L g (vi)

Equations (C3) and (C4) are difficult to interpret, since both, the
order and the argument of the involved Bessel functions, depend on
Np. With 0 < z = x/v < + oo, Olver’s uniform asymptotic expansion,

()
(1+22)/4

n(z)=Q1 +zz)1/Z +log

L(x) ~

(C5)
z

1+ (1+22)1/2

depends on their ratio and helps reduce the chain length depen-
dence to a correction. Substituting in Eq. (C3), using dimensionless
variables, and differentiating yield

/9 +36K(1 +x) + 1647
(C(¢)) = y”

3901 +2x)° +16(1 + 8x/3) ¢ (C6)
46  9+36Kk(1+k)+16¢*
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Figure 13 shows elongation-force relations for the same chain
lengths as in Fig. 12. The results are shown with the dependent
variable on the abscissa to simplify the comparison with the force-
elongation curves. The two sets of curves are qualitatively similar,
but the finite-size effects are stronger for elongation—force relations.
For chains with N, > 8, the Olver approximation, Eq. (C6), becomes
virtually indistinguishable from the exact result, Eq. (C4).

2. Asymptotic behavior

The asymptotic force—elongation relation for FENE-springs,

(C7)

can be read off straightforwardly from Eq. (C2) and is indicated in
Figs. 12(a) and 13(a) as a dashed black line. In particular, with

L G 3

3
- s C8
z—L kBT/lp 41— Z/L ( )

the elastic response diverges on approaching full elongation.
The same result, f(z/L) = f(.)(z/L), also follows directly from
Q(r) via Eq. (30) by neglecting fluctuations in the asymptotic limit

4

2,0 (z/L) = (1 _ (L)Z)i. (C9)

The inverse of the asymptotic force-elongation relation,

9+ 16(%)2 3 kT

<A SR ULV S-S Ly (C10)
L 4]% 4 fly

agrees with Eq. (C6) in the k¥ — 0-limit, where the Olver expansion
becomes exact.

3. Finite chain length corrections
to the force-elongation relation
The finite-size corrections to the force-elongation relation,

)

S(/LN) 2 (
ks T/l

z

= L, Cl1
Np1-(2)? (1o
can again be read off straightforwardly from Eq. (C2). They turn out
to be proportional to the asymptotic response and are shown for dif-
ferent chain lengths, N, in the inset of Fig. 12(b). In particular, the
corrections are linear in « with all higher order terms vanishing iden-
tically. As a consequence, they perfectly superimpose, when they are

(/L) _ o (Z/L) i
kB;/lp = kB;/L [Fig. 12(b)].

Following the analysis in Sec. IIl A 2, we can try to better
understand the origin of the finite size corrections. As in the case of
Gaussian chains, Z, () (z/L, ) = Z,,.)(z/L) independently of chain

rescaled as N,,
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length. In the absence of finite size corrections to the dominant free
energy contribution, F, .y(z/L), there are also no corresponding
corrections, Eq. (31), to the elastic response,

) (/L Np) _ c12)

kgT/l,
However, for FENE-springs, the effective spring constant, k., for
transverse fluctuations diverges on approaching full elongation.
The corresponding finite-size correction, Eq. (38), for the force-
elongation curve reads

(Sf(l)(Z/L NP) 2 (

L
C13
ksT/ly — Npp- ( (19

)
)

so that, indeed, f(.) + 8f .y + 0f (1) = (f) for all values of N.

4, Finite chain length corrections
to the elongation-force relation

To first order in «, the finite chain length corrections to the
elongation—-force relation [Eq. (C6)] read

6z(¢$Np) 13 8¢ 9
L __(2(p+9+16¢2_2¢\/9+16¢2). (c19

Again, we can try to understand the origin of these finite size cor-
rections following the analysis in Secs. III A and III B. In Figs. 12
and 13, we distinguish (i) the difference between the inverted force-
elongation relations for chains of finite length and the asymptotic
elongation force relation [Fig. 12(c)], (ii) the difference between the
elongation—force relation and the inverted force-elongation rela-
tion for chains of a given length [Fig. 13(b)], and (iii) the difference
between the elongation—force relations for chains of finite length and
the asymptotic elongation—force relation [Fig. 13(c)], which is the
sum of the first two terms. In all three cases, insets show the abso-
lute corrections, which are largest for short chains, while the main
panels show rescaled corrections, Ny(8z/L) = 8z/l,. All three cor-
rections display qualitatively similar features. They are largest for
chains, which are extended to about half of their maximal elonga-
tion, z*/L ~ 1/2, and they vanish in the limits of small forces, z*/L —
0, and of maximal elongation, z*/L — 1.

For a quantitative analysis, consider first the finite-size cor-
rections to the inverted force—elongation relation [Fig. 12(c)]. As
expected, they converge to the sum of the first-order corrections
arising from the dominant term and from transverse fluctuations,
Egs. (49) and (50), which, for FENE chains, are given by

52(4) (Z*/L, Np)

=0, C15
T (C15)

0z(1)(z" /L, Np) __4
L 3
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and which we have indicated as a dashed black line in Fig. 12(c).
Note that there are higher order corrections to 6z even though Jf
is linear in «, since the asymptotic force—elongation relation is non-
linear.

Next, consider the difference between the elongation-force
relation, (z(f)), and the inverse of the force-elongation relation,
(f(2)) [Fig. 13(b)]. In agreement with our theoretical arguments
for the effect of elongation-dependent longitudinal fluctuations, they
converge to Eq. (56), which reads, for FENE chains,

82(“)(2*/[,,1\717) B
L

[SSRN S}

2
12 2
ﬁ% (2) 1| @1
p 1+(%)

Last but not least, the total finite-size correction to the asymp-
totic elongation—force relation converges to the sum, 8z(.y + 8z(,)
+ 0z())), of the three correction terms [Fig. 13(c)]. In particular, this
sum can be shown to be equal, Eq. (C14), by using the asymptotic
force-elongation relation, Eq. (C7), to express the stretching force
through z*/L.

APPENDIX D: STRETCHING “BTB-SPRINGS”
REPRESENTING LONG WLCs

1. Asymptotic behavior

In the asymptotic limit, the free energy per persistence length is
dominated by the exponential term in Eq. (59),

Fpo (L) 3 1
- (r/L)*

ksT 41

Differentiating with respect to the elongation, Eq. (30), yields

foGL) 3 2L
kBT/lp 2(1_(Z/L)2)2

(D1)

for the asymptotic force-elongation relation of BTB-springs [shown
as a dashed black line in Figs. 14(a) and 15(a)]. BTB-springs display
the same (Gaussian) small elongation behavior as FENE-springs,
but their elastic response diverges more quickly on approaching full
elongation,

foGL) 3 1
=L ksT/l, 8 (1-2/L)®

(D2)

Note that the limiting behavior perfectly agrees with the result of the
corresponding direct variational calculation for stretched WLCs.”'
The closed expression, Eq. (D1), appears to be a new result.

The asymptotic elongation-force curve, z(y(f), can be
expressed in closed form as a root of a third order polynomial.
We, nevertheless, show results in the constant-force ensemble
as parametric plots of the type f(z*) vs z(f(z*)) discussed in
Sec. I1I B.
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FIG. 14. BTB-springs in the constant-elongation ensemble: (a) force-elongation relations, (b) finite-size corrections to the force-elongation relation, and (c) finite-size
corrections to the inverted force-elongation relation. Symbols represent the most likely elongation of BTB-springs in MC simulations in the constant-force ensemble (see

Sec. A 3). Label notation is as in Fig. 5.
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FIG. 15. BTB-springs in the constant-force ensemble: (a) elongation—force relations, (b) finite-size corrections to the inverted force—elongation relations for chains of the
same length, and (c) finite-size corrections to the asymptotic elongation—force relation. Symbols represent the average elongation of BTB-springs in MC simulations in the
constant-force ensemble (see Sec. A 1). Note that all results are shown with the dependent variable on the abscissa to simplify the comparison with Fig. 14. Label notation

isas in Fig. 6.

2. Finite chain length corrections
to the force-elongation relation

In contrast to FENE-springs, the relative finite chain length
corrections to the force-elongation relation of BTB-springs are elon-
gation dependent [panels (a) and (b) in Figs. 12 and 14]. While they
vanish close to full elongation, they are more than twice as strong for
moderate elongations. In particular, they are of opposite sign.

For BTB-springs, the finite-size correction, Eq. (38), due to
transverse fluctuations,

z[L

6f(l)(Z/L,K) - 4
1- (z/L)?’

ks T/l (D3)

has the exact same functional form as Eq. (C13) for FENE-springs
but is twice as strong. In particular, Eqs. (D3) and (C13) have
the same sign, since they result from the suppression of transverse
fluctuations with increasing elongation.

The difference in behavior is due to the presence of finite-size
corrections to the dominant free energy contribution, .7-'1,,(.) (z/L,x),
from aligned chains with the minimal elongation, r = z. As there is
no explicit chain length dependence of the subdominant prefactor
in Eq. (59), there are no higher order corrections to 8.7, (.y(z/L, )
beyond the linear term,

5.7:1,,(.) (Z/L,K) ~ 9

T = Exlog(l—(z/L)z).
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Again, the corresponding correction, Eq. (31), for BTB-springs,

5f(.)(Z/L> x) B z/L
ksT/l, " 1- (/L)

(D4)

has a FENE-like functional form. However, the sign is opposite

2\—9/2
because the diverging subdominant factor of (1 - (f) ) in

Eq. (59) reduces the drop in Q(r) on approaching full elongation.
A comparison of the prefactors with Eq. (D3) shows that this lat-
ter effect is larger and, hence, the overall correction of opposite
sign compared to FENE-springs. Our numerical results for BTB-
springs are in excellent agreement with the results of this analysis
[Fig. 14(b)].

3. Finite chain length corrections
to the elongation-force relation

Following the discussions in Secs. III A and III B, the finite
chain length corrections to the asymptotic force-elongation rela-
tion also cause first-order corrections to its inverse. For BTB-springs,
Egs. (49) and (50) read

d2y (2 Lw) (/D1 (=" /L)?)?

L I PETe T

Sz (Z /LK) 8 (FL)(1- (/L))
L T3 1L

(D6)

The two functions and their sum are shown in Fig. 14(c). Like for
FENE-springs, the corrections are strongest around z/L ~ 1/2 and
flplkpT ~ 1. However, the total correction has the opposite sign, and
its magnitude is about 50% larger. Once more, the numerical results
for BTB-springs are in excellent agreement with our analysis results.

In addition, we expect a correction due to the elongation-
dependence relations. For BTB-springs, Eq. (56) reads

dxp (& /LNy, (/1) + (2 /1)")(1 - (*/1)*)’
L (1+3(z*/1)%)° '

(D7)

The correction is qualitatively similar but stronger than that for
FENE-springs [panel (b) in Figs. 13 and 15]. Again, our numerical
results converge to the theoretical prediction.

The total finite chain length corrections to the elongation rela-
tion of BTB-springs are shown in Fig. 15(c). Curiously, the theo-
retically predicted first order correction, 8z(.) + dz(1) + &z()), for
BTB-springs almost cancels each other. Once more, the results of
our simulations for BTB-springs representing WLCs with a length
of Ny =4, ..., 32 persistence lengths converge to the theoretically
predicted first order correction.
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The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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