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Abstract

We prove that with a (2 + 1)-dimensional Toda type system are associated algebraic skeletons which are 
(compatible assemblings) of particle-like Lie algebras of dyons and triadons type. We obtain trix-coaxial 
and dyx-coaxial Lie algebra structures for the system from algebraic skeletons of some particular choice 
for compatible associated absolute parallelisms. In particular, by a first choice of the absolute parallelism, 
we associate with the (2 + 1)-dimensional Toda type system a trix-coaxial Lie algebra structure made of 
two (compatible) base triadons constituting a 2-catena. Furthermore, by a second choice of the absolute 
parallelism, we associate a dyx-coaxial Lie algebra structure made of two (compatible) base dyons, as well 
as particle-like Lie algebra structures made of single 3-dyons. Some explicit examples of applications such 
as conservation laws related to special solutions, and an inverse spectral problem are worked out.
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1. Introduction

Toda type systems are nonlinear models which play a role in a variety of physical and, more 
in general, natural phenomena.

The problem of integrability of nonlinear models has been recognized to be related to their 
algebraic properties in discrete and continuous, as well as, classical and quantum formulations. 
Algebraic properties can often be interpreted as the counterpart of the concept of integrability 
given as of having ‘enough’ conservation laws to exhaustively describe the underlying field or 
associated dynamics. Indeed, from an historical point of view, algebraic-geometric approaches 
are based on the requirement for the existence of conservation laws which emerge from internal 
symmetries (given in terms of algebraic structures).

In the Seventies, in fact, Wahlquist and Estabrook [41,5] proposed a technique for systemat-
ically deriving, from an integrable system, what they called a ‘prolongation structure’ in terms 
of a set of ‘pseudopotentials’ related to the existence of an infinite set of associated conserva-
tion laws. They also conjectured that, as a characterizing feature of the integrability property, the 
structure was ‘open’ i.e. not a set of structure relations of a finite–dimensional Lie group. Since 
then, ‘open’ Lie algebras have been extensively studied in order to distinguish them from freely 
generated infinite-dimensional Lie algebras.

Their interest in the study of integrability is in the fact that Lax pairs of the inverse spec-
tral transform containing an isospectral parameter can be obtained by an homomorphism of 
the infinite-dimensional open Lie algebra in a finite-dimensional ‘closed’ Lie algebra. In their 
approach, conservation laws are written in terms of ‘prolongation’ forms and integrability is 
intended as a Frobenius integrability condition for a ‘prolonged’ ideal of differential forms de-
scribing intrinsically the given nonlinear model in the sense of É. Cartan.

Attempting a description of symmetries in terms of Lie algebras implies the appearance of 
an homogeneous space and thus the interpretation of prolongation forms as Cartan–Ehresmann 
connections. It is clear that here the unknowns are both conservation laws and symmetries, and 
the main point in this is how to realize the form of the conservation laws and thus the explicit 
expression of the prolongation forms. Different prolongation ideals give rise to both different 
algebraic structures (symmetries) and corresponding conservation laws. By an inverse procedure 
based on the intrinsic duality between Lie algebras and differential systems [4,18], open Lie 
algebraic structures can ‘generate’ whole families of different nonlinear systems bound by the 
same internal symmetry structure.

In a series of papers [24–26,28–30], we explicated an algebraic-geometric interpretation of the 
above mentioned ‘prolongation’ procedure in terms of towers with infinitesimal algebraic skele-
tons (in the sense of [20]) and we will refer to that framework in this paper. It is noteworthy that 
slight modification of the internal symmetry properties generates new models which can contain 
possible integrable subcases. For example, activator-substrate systems have been obtained by 
performing a slight modification of the internal symmetry algebra of twisted reaction-diffusion 
equations [26].

The structure itself with which the tower forms are postulated can produce open algebraic 
structures or just Lie algebras. Our aim in this work is to investigate some common features of 
them and to show the emerging of particle-like Lie algebras structure as symmetry structures of 
integrable systems (associated with Poisson structures the compatibility of which is worthy of 
study [6,16]). Indeed, in general, infinite dimensional open Lie algebras are the main object of 
the search in view of the application of the inverse spectral transform to obtain soliton solutions, 
Bäcklund transformations and so on; recent examples of applications can be found e.g. in [13,
2
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14,21,42–44] and references therein. Although these features are not our prominent task in this 
paper, an inverse problem will be obtained in Section 3.3.1.

Prolongation forms bringing to finite dimensional Lie algebras (without a spectral parameter) 
are generally discarded when searching for a Lax pair to be used within the inverse spectral 
transform.

However, integrable systems, admitting infinite-dimensional prolongation Lie algebras can 
also admit finite-dimensional Lie algebras, which still can be related to some kind of internal 
symmetries of the systems themselves and to associated conservation laws, or even to Bäck-
lund transformations. We refer, in particular, to the paper “More prolongation structures” by 
C. Hoenselaers [11], which pointed out two important features of the algebraic structures ob-
tained by the method of Wahlquist and Estabrook.

First feature: it can be that the prolongation forms can not always be solved in such a way that 
one obtains commutators among vector fields depending only on the ‘pseudopotentials’ coordi-
nates. A typical example is, in fact, the most general prolongation problem associated by such a 
procedure to equation (1): in [27] the prolongation problem was formally solved by introducing 
suitable operators of Bessel type, however a prolongation algebra (and then an inverse problem) 
could not be obtained explicitly.

It is noteworthy that a certain arbitrariness is given by postulating the structure of the tower in 
the search of a skeleton. Say, to a given equation can be associated different towers with different 
skeletons; for different choices of the prolongation ideal see also e.g. [9]. It was already stressed 
by Estrabrook himself [4] that the same algebraic structure ‘contains’ families of equations, as-
sociated linear spectral problems and Bäcklund transformations, interrelated by transformations 
between dependent and independent coordinates.

The motivation of our previous research for the interpretation of prolongation structures as 
skeletons of towers was the aim of deeply understanding such a feature: equations, linear prob-
lems, Bäcklund transformations, are local coordinates expressions of common intrinsic struc-
tures; this is of help also in practical questions: solutions of systems can be obtained by simpler 
systems having in common (part of) skeletons. In Section 3.2.1 we show that each one of the two 
compatible 4-triadon constituting the skeleton given by a trix-coaxial Lie algebra structure gen-
erates the same conservation law and related special solutions. This justifies the possible choice 
of a more restricted (instead of the most general one) form of the tower (then of the algebraic 
skeleton) still getting ‘solutions’ (with this term meaning analytical solutions as well as particular 
conservation laws) of the original equation.

Second feature: even if the prolongation algebra is a finite dimensional (even abelian in 
his example) Lie algebra, nevertheless there can exist Bäcklund transformations. It is found an 
exterior differential of genus 3 associated with the prolongation structure of a NLS equation, 
and it is stressed that we can choose dependent and independent variables in an arbitrary way. 
We can also lower the genus (in our skeleton formulation this means the choice of different 
representations ρ or even different vector spaces V ) so obtaining a reduced ideal where one of the 
independent coordinates is turned into a dependent coordinate. This turning a global symmetry in 
a local one provides Miura type transformations between the modified NLS and another system, 
the prolongation structure of which is finite dimensional and there is only one nontrivial potential 
entering a Bäcklund transformation acting on the modified NLS equation.

In few words the Wahlquist-Estabrook method not always produces infinite dimensional open 
Lie algebras, but it could be that by that ‘procedure’ we get only a part of an algebraic skeleton. 
Therefore we can not automatically infer that, being the prolongation structure finite dimensional, 
then the system is not integrable. The results in [11] are a counterexample, which suggests that 
3
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we could extend a finite dimensional prolongation structure in order to implement the skeleton 
structure of an integrable family of nonlinear systems. These aspects are related to Olver’s sym-
metry reduction [23]. For hydrodynamic reductions of multidimensional systems see [7] and, in 
particular, for hydrodynamic reductions of the heavenly equation, see [8].

Moreover, we guess that the skeleton can be further implemented by a finer structure related 
to particle-like Lie algebra structure and this is the inspiring idea of our investigations. In this 
note we show that such (otherwise discarded) symmetries deserve a more careful study. We take a 
(2 +1)-dimensional Toda type system as a study case and show that it posses algebraic properties 
related to the recently introduced concept of particle-like Lie algebra structures [39,40].

Vinogradov developed a completely abstract theory of compatibility of Lie algebra struc-
tures starting from the corresponding compatibility theory of Poisson structures. Although the 
mathematical aspects of the theory are quite involved the nice point is that simple criteria of 
compatibility or non compatibility have been obtained which somehow have a certain grade of 
automatism.

Furthermore, as for the physical side, Vinogradov speculated that this particle-like structures 
could be related to the ultimate particle structure of the matter: he noted that since

‘the symmetry algebra u(2) = so(3) of a nucleon can be assembled in one step from three 
triadons [...] one might think that this structure of the symmetry reflects the fact that a nucleon 
is made from three “quarks” ’.

This is of course only a speculation, but it also suggests a quite fascinating new perspective 
on internal symmetries of integrable systems.

2. Internal symmetries of Toda type systems in (2 + 1) dimensions

Consider the (2 + 1)-dimensional system, a continuous (or long-wave) approximation of a 
spatially two-dimensional Toda lattice [37]:

uxx + uyy + (eu)zz = 0 , (1)

where u = u(x, y, z) is a real field, x, y, z are real local coordinates (if we want, z playing the 
rôle of a ‘time’) and the subscripts mean partial derivatives. It can be seen as the limit for γ → ∞
of the more general model

uxx + uyy +
[
(1 + u/γ )γ−1

]
zz

= 0

covering (for γ �= 0, 1) various continuous approximations of lattice models, among them the 
Fermi-Pasta-Ulam (γ = 3) [1]. This model is almost ubiquitus, it appears in differential geome-
try; in mathematical and theoretical physics (Newman and Penrose); in the theory of Hamiltonian 
systems; in general relativity; in the large n limit of the sl(n) Toda lattice; in extended conformal 
symmetries, and theory of gravitational instantons; in strings theory and statistical mechanics 
etc. (see e.g. [3,15,17,31,33]).

It can be seen as the particular case with d = 1 of so-called 2d-dimensional Toda-type systems 
[35,34] obtained from a ‘continuum Lie algebra’ by means of a zero curvature representation 
uww̄ = K(eu), (in our particular case w = x + iy and K is the differential operator given by K =
∂2

∂z2 ). In particular, it has been studied in the context of symmetry reductions [2,10] and a (1 +1)-
dimensional version in the context of prolongation structures [1]. The (2 +1)-dimensional system 
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has been associated with a Kač–Moody Lie algebra and related to Saveliev’s continuum Lie 
algebras of particular kind [29].

The Toda system (1) can be put in the complex form

∂ζ ∂ζ̄ u = −1/4∂2
z eu ,

by the transformations ζ = g(η), ζ̄ = ḡ(η̄), u = ũ − ln(g′ḡ′), where ζ = x + iy, ζ̄ = x − iy, 
∂ζ = 1

2 (∂x − i∂y), ∂ζ̄ = 1
2 (∂x + i∂y), g′ = gη(η), ḡ′ = gη̄(η̄) and g(η) is an arbitrary holomorphic 

function of η = x′ + iy′. A Lax pair for this complex form of the 2D Toda equation has been 
found; see e.g. Manakov and Santini [19] and references therein; original references are [12,36], 
as well as [45].

2.1. Skeletons for the (2+1) Toda system

Let us first recall a few mathematical tools constituting the background for a detailed treatment 
of which we refer to [28–30] and [20,32].

From one side global properties of partial differential equations such as internal symmetries 
and invariance properties having an issue in dynamics can be described by mathematical tools 
which enable us to deal with global properties at large scales, connecting local data to global 
ones. On the other side transformations of configurations of a system can be globally studied by 
means of the theory of the action of Lie groups on manifolds. The differential content carried by 
a Lie group (and its Lie algebra) and by its structure equations provides differential equations.

We observe that two ingredients constitute the nonlinear phenomena: symmetries on the one 
side (algebraic content) and changes in time and space on the other side (differential content). In 
particular, to keep account of the ‘interaction’ of both aspects, we recognize a refined structure 
of open Lie algebraic structures associated with them: we introduce a notion which generalizes 
the concept of a homogeneous space, i.e. that of an algebraic skeleton E = g ⊕ V on a finite-
dimensional vector space V , with g a possibly infinite dimensional Lie algebra. The further step 
is introducing a tower with such a skeleton.

An algebraic skeleton on a finite-dimensional vector space V is a triple (E, G, ρ), with G a 
(possibly infinite-dimensional) Lie group, E = g ⊕ V is a (possibly infinite-dimensional) vector 
space not necessarily equipped with a Lie algebra structure, g is the Lie algebra of G, and ρ is a 
representation of g on E such that it reduces to the adjoint representation of g on itself. The fact 
that E is not a direct sum of Lie algebras, but an open algebraic structure is fundamental in order 
to be able to generate whole families of nonlinear differential systems, starting from it.

We now consider a suitably constructed differentiable structure which is somewhat modeled
on the skeleton above. Let us introduce a differentiable manifold P on which a Lie group G, 
with Lie algebra g, acts on the right; P is a principal bundle P → Z � P /G. By construction, 
we have that Z is a manifold of type V , i.e. ∀z ∈ Z, TzZ � V .

Suppose we have a way to define a representation ρ of the Lie algebra g on TzZ � V , in such 
a way that it could be possible under certain conditions to find a homomorphism between the 
open infinite dimensional Lie algebra, constructed by ρ, and a quotient Lie algebra. Let us call k
the (possibly infinite dimensional) Lie algebra obtained as the direct sum of such a quotient Lie 
algebra with g. From the differentiable side, a tower P (Z, G) on Z with skeleton (E, G, ρ) is an 
absolute parallelism ω on P valued in E, invariant with respect to ρ and reproducing elements of 
g from the fundamental vector fields induced on P , i.e. R∗

gω = ρ(g)−1ω, for g ∈ G; ω(Ã) = A, 

for A ∈ g; here Rg denotes the right translation and Ã the fundamental vector field induced on 
P from A. In general, the absolute parallelism does not define a Lie algebra homomorphism.
5
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Let then k be a Lie algebra and g a Lie subalgebra of k. Let G be a Lie group with Lie al-
gebra g and P (Z, G) be a principal fiber bundle with structure group G over a manifold Z as 
above. A Cartan connection in P of type (k, G) is a 1-form ω on P with values in k such that 
ω|TpP : TpP → k is an isomorphism ∀p ∈ P , R∗

gω = Ad(g)−1ω for g ∈ G and reproducing ele-
ments of g from the fundamental vector fields induced on P . It is clear that a Cartan connection 
(P , Z, G, ω) of type (k, G) is a special case of a tower on Z.

The vector space V is finite dimensional and generated by some of the vector fields in the 
prolongation structure. It has the property that each bracket of some of remaining vector fields 
of the prolongation structure (freely generating an infinite dimensional Lie algebra g) with its 
generators is again in V . In particular unknown commutators in the freely generated Lie algebra 
are related in such a way that their assigned relations are elements of V .

As an example of application of such an abstract formulation to the real world we refer e.g. to 
[26], whereby activator-substrate systems have been obtained by performing a slight modification 
of the internal symmetry algebra of twisted reaction-diffusion equations: the necessary condition 
for the generation of stable patterns (related to general integrability properties in the limit of a 
null normalized diffusion constant) is formulated in terms of ‘closeness’ properties within the 
symmetry algebra vector space.

Following [29], we recall how to get both some skeletons and towers over them associated 
with the system (1).

On a manifold with local coordinates (x, y, z, u, p, q, r), we introduce the closed differential 
ideal defined by the set of 3-forms: θ1 = du ∧ dx ∧ dy − rdx ∧ dy ∧ dz, θ2 = du ∧ dy ∧ dz −
pdx ∧ dy ∧ dz, θ3 = du ∧ dx ∧ dz + qdx ∧ dy ∧ dz, θ4 = dp ∧ dy ∧ dz − dq ∧ dx ∧ dz +
eudr ∧dx ∧dy +eur2dx ∧dy ∧dz. It is easy to verify that on every integral submanifold defined 
by u = u(x, y, z), p = ux , q = uy , r = uz, with dx ∧ dy ∧ dz �= 0, the above ideal is equivalent 
to the Toda system under study.

By an ansatz first introduced in [28], we look for suitable 2-forms (generating associated 
conservation laws)

	k = θk
m ∧ ωm

where θk
m = −Âk

mdx − B̂k
mdy − Ĉk

mdz, with Âk
m, B̂k

m, Ĉk
m elements of N × N constant regular 

matrices, and the absolute parallelism forms are given by

ωm = dξ̂m + F̂ mdx + Ĝmdy + Ĥmdz , (2)

i.e.

	k = Hk(u,ux,uy,uz; ξm)dx ∧ dy + Fk(u,ux,uy,uz; ξm)dx ∧ dz + (3)

+Gk(u,ux,uy,uz; ξm)dy ∧ dz + Ak
mdξm ∧ dx + Bk

mdξm ∧ dz + dξk ∧ dy ,

where ξ = {ξm}, k, m = 1, 2, . . . , N (N arbitrary), and Hk , Fk and Gk are, respectively, the pseu-
dopotentials and functions to be determined, while Ak

m and Bk
m denote the elements of two N ×N

constant regular matrices related to the previous ones and we have rescaled the coordinates ξk. 
In particular note that (see also [28,24])

Fk = Ĉk
mF̂m − Âk

mĤm , (4)

Gk = Ĉk
mĜm − B̂k

mĤm , (5)

Hk = B̂k
mF̂m − Âk

mĜm , (6)

ξk = Ĉk
mξ̂m . (7)
6
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The integrability condition for the ideal generated by forms θj and 	k finally yields

Hk = euuzL
k(ξm) + P k(u, ξm) , (8)

Fk = −uyL
k(ξm) + Qk(u, ξm) , (9)

Gk = uxL
k(ξm) + Mk(u, ξm) , (10)

where Lk , P k , Qk , Mk are functions of integration.
It turns out that Qk(u, ξm) can be written in terms of the others. Indeed we have (see 

e.g. [22,38]) Hk = Bk
mFm − Ak

mGm so that euuzL
k(ξ l) + P k(u, ξ l) = −Ak

m(uxL
m(ξ l) +

Mm(u, ξ l)) + Bk
m(− uyL

m(ξ l) + Qm(u, ξ l)), i.e. Bk
mQm

u (u, ξ l) = euuzL
k(ξ l) + P k

u (u, ξ l) +
Ak

mMm
u (u, ξ l), which can be integrated once the dependence on of P k(u, ξ l) and Mk(u, ξ l) on 

u is given. As a consequence, the desired representation ρ for the skeleton is provided by the 
following equations (we omit the indices for simplicity) [27,29].

Pu = eu[L,M] , Mu = −[L,P ] , [M,P ] = 0 . (11)

Note that here L depends only on ξm, while P and M still have a dependence on u determined by 
the first two differential equations. A tower with P and M given in terms of L has been obtained 
by suitable operator Bessel coefficients [27].

Note that formally this tower shall provide the Lax pair of an inverse spectral problem; how-
ever, it is a non trivial task to characterize explicitly its algebraic skeleton by means of the 
representation provided by the relations [M,P ] = 0, i.e. to obtain a spectral problem in a man-
ageable form.

Particular choices for the absolute parallelism can provide us explicit representations of the 
prolongation skeleton; in particular a Kač–Moody Lie algebra has been obtained [29] (see Propo-
sition 3.5, case 1. (b) below). In the following we will concentrate on those choices that generate 
particle-like Lie algebra structures. We shall see that it is yet possible to obtain a spectral problem 
with a particular choice of the tower.

3. Particle-like Lie algebra structure

Recently, Vinogradov proved that any Lie algebra over an algebraically closed field or over 
R can be assembled in a number of steps from two elementary constituents, that he called dyons 
and triadons [39]. He considered the problems of the construction and classification of those Lie 
algebras which can be assembled in one step from base dyons and triadons, called coaxial Lie 
algebras. The base dyons and triadons are Lie algebra structures that have only one non-trivial 
structure constant in a given basis, while coaxial Lie algebras are linear combinations of pairwise 
compatible base dyons and triadons [40]. Here for the convenience of the reader we recall some 
basic facts of the theory in the original Vnogradov’s notation.

Definition 3.1. Lie algebra structures g1 and g2 on a vector space V are called compatible if 
[, ]g1 + [, ]g2 is also a Lie algebra product.

A Lie algebra g is called simply assembled from Lie algebra structures g1, . . . , gm on |g| =
V if the Lie algebras gi ’s are pairwise compatible and [, ]g = [, ]g1 + . . . [, ]gm . Note that if 
the Lie algebras gi ’s are compatible, then any linear combination of compatible Lie algebras 
commutators is a Lie algebra commutator (or product).
7
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Definition 3.2. Fix a basis B = e1, . . . en in the representation vector space of a given Lie al-
gebra. Let i, j , and k be integers, 1 ≤ i, j, k ≤ n, no two of them equal, and denote by {i, j |k}
(respectively, {i|j}) the n-triadon (respectively, the n-dyon) such that [ei, ej ] = −[ej , ei] = ek

(respectively, [ei, ej ] = −[ej , ei] = ej ) are the only non-trivial Lie commutators of basis vec-
tors. Vinogradov called them ‘base triadon’ and ‘base dyon’, respectively or by the unifying 
term ‘base lieon’.

An n-dyon is the direct sum of a dyon with an n − 2-dimensional abelian Lie algebra, n ≥ 2, 
(i.e. there is only one non vanishing bracket and it is a dyon). Analogously an n-triadon is the 
direct sum of a triadon with an n − 3-dimensional abelian Lie algebra, n ≥ 3 (i.e. there is only 
one non vanishing bracket and it is a triadon). They can also be referred generically as n-lieons.

A linear combination of pairwise compatible base lieons is called a coaxial Lie algebra struc-
ture. A Lie algebra structure will be called trix-coaxial (respectively, dyx-coaxial) if it consists 
only of base triadons (respectively, base dyons). A coaxial Lie algebra g may be presented as a 
linear combination,

g=
∑

α(i,j |k){i, j |k} +
∑

β(m|n){m|n}

of pairwise compatible base lieons.
The vectors ei, ej , and ek (respectively, ei, ej ) are called the vertices of the triadon {i, j |k}

(respectively, of the dyon {i|j}). The vectors ei and ej are called the ends of the triadon {i, j |k}, 
while ek is the center of the triadon. The origin and the end of the dyon {i|j} are ei and ej , 
respectively. The base triadons {i, j |k} and {j, i|k} = −{i, j |k} are not distinguished since they 
have identical compatibility properties.

We now recall Proposition 3.1 of [40] stating some necessary and sufficient conditions for the 
compatibility or incompatibility of particle-like Lie algebra structures:

• Two base triadons are non-trivially compatible if and only if they have a common center, a 
common end, or both.

• Two base dyons are incompatible if and only if the origin of one is the end of the other and 
they have no other common vertices.

• A base dyon is non-trivially compatible with a base triadon if and only if its origin coincides 
with one of the ends of the triadon.

For further notation and vocabulary we refer the reader to Vinogrados’s papers.

3.1. Trix-coaxial, dyx-coaxial and particle-like Lie algebra structures for the Toda system

We prove that with a (2 +1)-dimensional Toda type system are associated algebraic skeletons 
which are compatible assemblings of particle-like Lie algebras of dyons and triadons type. We 
obtain trix-coaxial and dyx-coaxial Lie algebra structures for the system from skeletons of some 
particular choice for compatible associated absolute parallelisms. In particular, we find a trix-
coaxial Lie algebra structure made of two (compatible) base triadons constituting a 2-catena (see 
Proposition 3.1, pag 5 [40]).

Let us indeed now look for special skeletons.
8
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3.2. Trix-coaxial Lie algebra structures

Proposition 3.3. Associate with the Toda type system (1) is a trix-coaxial Lie algebra structure 
made of two (compatible) base triadons constituting a 2-catena.

Proof. If we look for operators P(u, ξ) = euP̄ (ξ), M(u, ξ) = M(eu, ξ), we get M(eu; ξ) =
−eu[L(ξ), P̄ (ξ)] + M̄(ξ) and thus P̄ (ξ) = −eu[L(ξ), [L(ξ), P̄ (ξ)]] + [L(ξ), M̄(ξ)]. There 
are additional relations determined by the third prolongation equation [−eu[L(ξ), P̄ (ξ)] +
M̄(ξ), euP̄ (ξ)] = 0.

Let us then put L = X1, M̄ = X2, P̄ = X3, [X1, X3] = X4. From the above we have the fol-
lowing prolongation closed Lie algebra

[X1,X2] = X3 , [X1,X3] = X4 , [X1,X4] = [X2,X3] = [X2,X4] = [X3,X4] = 0 .

The above is a trix-coaxial Lie algebra structure made of two compatible 4-triadons.
Indeed, by taking X4 = 0, we get [X1, X2] = X3 , [X1, X3] = [X2, X3] = 0 and [X1, X4] =

[X2, X4] = [X3, X4] = 0 trivially.
On the other hand by taking X2 = 0, we get [X1, X3] = X4 , [X1, X4] = [X3, X4] = 0 and 

[X1, X2] = [X2, X3] = [X2, X4] = 0 trivially.
According to [40] the two 4-triadons above are non trivially compatible having a common 

end X1, and they constitute a 2-catena. �
3.2.1. Conservation laws and special solutions associated with a 2-catena

Let us now explicate the tower corresponding to such 4-triadons.
For the sake of simplicity let us put Ak

m = Bk
m = δk

m, were δk
m is the Kronecker symbol. By 

substituting the above commutators into equations (8) and (10) (the expression of (9) being con-
strained in this case by the relation F = G + H ), we get

H = euuzX1 + euX3 , (12)

G = uxX1 − eu[X1,X3] + X2 . (13)

Now from equation (3), by sectioning we obtain

Hk − ξk
y = −ξk

x , (14)

Gk + ξk
y = ξk

z , (15)

(together with Fk + ξk
x = ξk

z which depends on the two others).
We note that each one of 4-triadons above can be represented in a space of local coordinates 

ξk providing conservation laws related to two compatible Poisson structures.
Indeed let us consider the 4-triadon given by X2 = 0. A representation in the coordinates 

{ξ1, ξ2, ξ3} is given by X1 = ξ2∂/∂ξ1, X3 = ξ3∂/∂ξ2 and X4 = −ξ3∂/∂ξ1.
The tower corresponding to this case gives

euuzξ
2∂/∂ξ1 + euξ3∂/∂ξ2 − ξk

y ∂/∂ξk = −ξk
x ∂/∂ξk ,

uxξ
2∂/∂ξ1 + euξ3∂/∂ξ1 + ξk

y ∂/∂ξk = ξk
z ∂/∂ξk ,

which gives us the system

ξx = ξy + Mξ (16)

ξ z = ξy + Nξ (17)
9
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where ξ = (ξ1, ξ2, ξ3)T , M and N are 3 × 3 matrices such that M12 = −euuz, M23 = −eu, 
N12 = ux , N13 = eu, and all the other entries are zeros. In view of (4)-(6) and (2) this system 
can be interpreted as a conservation law. It is a first order system which can be manipulated 
by resorting to the method of characteristics so that it turns out to be useful to find out special 
solutions of the Toda system.

Note indeed that this system is equivalent to the following system of coupled equations of 
Maxwell type

ξ1
yy − ξ1

xx = (euuzξ
2)x + (euuzξ

2)y , (18)

ξ2
yy − ξ2

xx = (euξ3)x + (euξ3)y , (19)

ξ1
zz − ξ1

yy = (euξ3 + uxξ
2)z + (euξ3 + uxξ

2)y , (20)

where euuzξ
2, euξ3 and euξ3 +uxξ

2 can be recognized as charge/current densities. On the other 
hand, the system can be simplified since ξ2

y = ξ2
z ; we have that (19) can also be written as

ξ2
zz − ξ2

xx = (euξ3)x + (euξ3)y , (21)

from which we obtain the Maxwell-type equation

ξ2
yy = ξ2

zz . (22)

Further manipulations can be made by using ξ3
y = ξ3

y = ξ3
z .

We remark that the same conservation law and related outcomes are obtained by the 4-triadon 
given by X4 = 0. Therefore existence of that tower with a finite dimensional skeleton which is a 
2-catena says us that the two Poisson structures corresponding to each 4-triadon are compatible 
also in a sense which is interpretable from a physical point of view: they are structures associated 
with the same Toda system, and more precisely with the same conservation law and related 
special solutions. Compatibility of Poisson structures is beyond the scope of this paper, however 
this result suggests interesting links between special solutions and compatible Poisson structures, 
which will be the object of further investigations (in particular for meron-like configurations or 
gravitational instantons).

3.3. Dyx-coaxial and particle-like Lie algebra structures

In the following we analyze with more detail the case of choice P(u, ξ) = lnuP̄ (ξ), 
M(u, ξ) = M(eu, ξ) studied in [29] also leading to an infinite dimensional skeleton homomor-
phic to a Kač-Moody Lie algebra. We carefully distinguish the various cases.

This choice of the absolute parallelism associates with the Toda system (1) dyx-coaxial and 
particle-like Lie algebra structures.

First we need a preliminary result (see also [29]).

Lemma 3.4. Let P(u, ξ) = lnuP̄ (ξ), M(u, ξ) = M(eu, ξ). We get the following infinitesimal 
algebraic skeleton with the structure of an open Lie algebra:

[X1,X2] = X4 , [X1,X3] = X5 , [X4,X5] = [X2,X7] , [X3,X4] = [X2,X5] , (23)

[X1,X4] = X6 , [X1,X5] = X7 , [X2,X3] = X8 ,

[X1,X8] = [X2,X4] = [X2,X6] = [X3,X7] = 0 , . . .
10
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Proof. Put L = X1(ξ).
By derivation we get M(eu, ξ) = −(lnu − 1)u[X1(ξ), X3(ξ)] + X2(ξ), and P(u, ξ) =

ueu lnu[X1(ξ), M].
For u �= 0, 1 (which are trivial solutions of the Toda system), from [P, M] = 0 we get

[[X1,M],M] = 0 ;
from which we get

[[X1,X2],X2] = 0 , [X1, [X1,X3]],X2] + [[X1,X2], [X1,X3]] = 0 ,

[[X1, [X1,X3]], [X1,X3]] = 0 .

By putting [X1, X2] = X4, [X1, X3] = X5, [X1, X4] = X6, [X1, X5] = X7, [X2, X3] = X8, we 
obtain an infinite dimensional skeleton as follows

[X1,X8] = [X2,X4] = [X2,X6] = [X3,X7] = 0 ,

[X4,X5] = [X2,X7] , [X3,X4] = [X2,X5] , (24)

. . . �
Here the dots means that we can continue this structure by introducing new generators still 

obtaining the peculiar relations of the type (24) which distinguish this algebraic structure from a 
freely generated Lie algebra (see the discussion in [26]).

Proposition 3.5. The homomorphism X4 = λX2 and X5 = μX3 associates with the Toda system 
(1) dyx-coaxial and particle-like Lie algebra structures as well as an infinite-dimensional Lie 
algebra homomorphic with a Kač-Moody Lie algebra.

Proof. We essentially distinguish the two cases X8 �= 0 and X8 = 0, together with various dif-
ferent subcases.

1. if [X2, X3] = X8 �= 0, then μ = −λ must old; we can distinguish different subcases
(a) in general the case X8 �= 0 and μ = −λ �= 0 can provide infinite-dimensional Lie alge-

bras homomorphic with Kač-Moody type Lie algebras.
(b) the particular case X8 = νX3 and μ = −λ = 1 (i.e. X4 = X2 and X5 = −X3) giving 

an infinite-dimensional Lie algebra homomorphic with a Kač-Moody Lie algebra was 
obtained in [29].

(c) the particular case X8 = νX3 and μ = −λ = 0 (i.e. X4 = X5 = 0; see [29]) gives a 
particle-like Lie algebra as a base 3-dyon:

[X1,X2] = 0 , [X1,X3] = 0 , [X2,X3] = νX3 . (25)

2. if [X2, X3] = X8 = 0, then X6 = X4, X7 = X5, and we distinguish the following different 
subcases (the case μ = λ = 0 giving an abelian Lie algebra):
(a) the case μ = 0 and λ �= 0 provides us with a particle-like Lie algebra as a base 3-dyon:

[X1,X2] = λX2 , [X1,X3] = 0 , [X2,X3] = 0 . (26)

(b) the case λ = μ �= 0 provides a dyx-coaxial Lie algebra structure as an assembling of two 
compatible base 3-dyons

[X1,X2] = λX2 , [X1,X3] = λX3 , [X2,X3] = 0 . (27)
11
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(c) the particular case λ = μ = 1 (i.e. X4 = X2 and X5 = X3) gives

[X1,X2] = X2 , [X1,X3] = X3 , [X2,X3] = 0 ,

and it was obtained in [29]. �
Remark 3.6. We can try to check the compatibility of the above particle-like Lie algebra struc-
tures. The latter Lie algebra (27) is constituted of two mutually compatible dyons (dyx-coaxial 
Lie algebra), whose the first is given by (26), while the Lie algebras (25) and (26) are made 
of a single dyon and they are not compatible. Indeed we note that the first dyon of (27) is not 
compatible with (25), while the second dyon of (27) is.

The question now is can we still construct a different dyx-coaxial Lie algebra from the original 
skeleton? For example the following would be a dyx-coaxial Lie algebra of compatible dyons

[X1,X3] = λX3, [X2,X3] = νX3, [X1,X2] = 0 (28)

We ask if we can get it from the prolongation skeleton by a suitable quotienting, i.e. if it is 
somehow compatible with (or derivable from) the skeleton structure. However, we note that if 
we put X4 = 0 from the beginning (which is the case when we assume that [X1, X2] = 0), and if 
X8 = νX3, this would imply also [X1, X3] = 0, then we would get (25) back.

Thus it appears that the case X8 = νX3 corresponds or to a particle-like Lie algebra structure 
or to a Kač-Moody type Lie algebra (it is noteworthy that the latter is anyway an infinite-
dimensional loop Lie algebra of a dyx-coaxial Lie algebra) and these two cases appear to be 
non compatible.

Let us then investigate from a more general point of view this feature. We ask whether we can 
look for different quotient homomorphisms.

Let now consider the case X4 = 0 from the beginning, and X8 �= 0, and look for a quotient lie 
algebra given by X8 = −γX2, X5 = μX3, and we obtain the Lie algebra structure depending on 
two parameters

[X1,X2] = 0 , [X1,X3] = μX3 , [X3,X2] = −γX2 . (29)

By applying the Jacobi identity we get μγX2 = 0 which, if we require X2 �= 0, is verified either 
for μ = 0 and γ �= 0 (see below (30)) or for μ �= 0 and γ = 0 (see below (31)), or for μ = 0 and 
γ = 0 (trivial case of an abelian Lie algebra).

Proposition 3.7. The case X4 = 0 from the beginning, and with X8 �= 0, provides us with two 
base 3-dyons.

Proof. 1. the case with μ = 0 and γ �= 0.
By putting X8 = −γX2, and X4 = X5 = X6 = X7 = 0 we get the 3-dyon

[X1,X2] = 0 , [X1,X3] = 0 , [X3,X2] = −γX2 . (30)

The above dyon is incompatible with (25) while it is compatible with (26).
2. the case μ �= 0 and γ = 0.

We get the 3-dyon

[X1,X2] = 0 , [X1,X3] = μX3 , [X3,X2] = 0 . � (31)
12



M. Palese and E. Winterroth Nuclear Physics B 960 (2020) 115187
Remark 3.8. It appears that the dyx-coaxial Lie algebra (27) can be assembled by one step from 
the case (26) and the latter one, (31), by putting μ = λ.

We note in particular that (29) can not be seen as a dyx-family of dyons since the two dyons 
[X1, X3] = μX3, [X3, X2] = −γX2 are incompatible and indeed if we apply the Jacobi identity 
we get particle-like structures made of single base dyons.

It seems therefore that the prolongation skeleton is homomorphic with quotient finite dimen-
sional Lie algebras which have always the structure of a family of compatible dyons or single 
base 3-dyons. We note that the first dyon of (27) is compatible with (30), while the second dyon 
of (27) is not.

Summing up we were able to associate with the infinitesimal skeleton (23) a dyx-coaxial Lie 
algebra structure (27) and particle-like Lie algebra structures made of three base 3-dyons which 
are only partially compatible among them, i.e.

• the first dyon of (27) is compatible with (30), while the second dyon of (27) is not.
• the first dyon of (27) is not compatible with (25), while the second dyon of (27) is.

Note that (25), (26), (30) and (31) are not all compatible among them, even they are not 
compatible in triples, but they are only compatible when took in couples.

3.3.1. A Lax pair associated with the dyx-coaxial Lie algebra structure of two compatible base 
3-dyons

Following a procedure similar to that of Section 3.2.1 we shall now derive a Lax pair related 
to the Lie algebra (27) to which the tower skeleton (24) is homomorphic.

We refer again to equations (8) and (10). The tower associated with case 2.(b) in Proposi-
tion 3.5 becomes in this specific case

H = euuzX1 − u2eu lnu(lnu − 1)[ X1, [X1,X3]] + ueu lnu[X1,X2] , (32)

G = uxX1 − u(lnu − 1)[X1,X3] + X2 . (33)

By taking into account the representation ρ given by relations (27) we then get

H = euuzX1 − λ2u2eu lnu(lnu − 1)X3 + λueu lnuX2 , (34)

G = uxX1 − λu(lnu − 1)X3 + X2 . (35)

Now, let us represent the dyx-coaxial Lie algebra above in a space of ‘pseudopotentials’ ξk

by X1 = −ξ1∂/∂ξ1 + ξ2∂/∂ξ2, X2 = −λξ3∂/∂ξ1, X3 = λξ2∂/∂ξ3.
Again by sectioning the tower, equations (14) and (15) provide the following

eu(uzξ
1 + λ2u lnuξ3)∂/∂ξ1 − euuzξ

2∂/∂ξ2 +
+λ3u2eu lnu(lnu − 1)ξ2∂/∂ξ3 + ξk

y ∂/∂ξk = ξk
x ∂/∂ξk ,

−ux(ξ
1 + λξ3)∂/∂ξ1 + uxξ

2∂/∂ξ2 − λ2u(lnu − 1)ξ2∂/∂ξ3 +
+ξk

y ∂/∂ξk = ξk
z ∂/∂ξk ,

which gives us the inverse spectral problem

ξx = ξy + M̂ξ (36)

ξ z = ξy + N̂ξ (37)
13
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Where ξ = (ξ1, ξ2, ξ3)T , M̂ and N̂ are 3 × 3 matrices such that M̂11 = euuz, M̂13 = euλ2u lnu, 
M̂22 = −euuz, M̂32 = λ3u2eu lnu(lnu − 1) N̂11 = −ux , N̂13 = −λux , N̂22 = ux , N̂32 =
−λ2u(lnu − 1) and all the other entries are zeros. Here λ plays the role of a spectral parameter 
and, in view of (4)-(6) and (2), M̂ and N̂ can be considered a Lax pair related to the multidimen-
sional Toda system (1) (for spectral problems related to multidimensional nonlinear system see, 
e.g. [22,38]). This Lax pair should be compared with [19].

Compatibility of Lie algebraic structures being expressions of compatibility of the corre-
sponding Poisson structures, we note here that Fernandes [6] studied the relationship between 
the master symmetries and bi-Hamiltonian structure of the Toda lattice. We stress that dyons pro-
vide indeed particular examples of master symmetries of related ordinary differential equations.

3.4. Concluding remarks

The structure of trix-coaxial and dyx-coaxial Lie algebras assembled in one step from couples 
of particle-like Lie algebra structures appears as an intrinsic feature of the Toda system (1), 
at least associated with the chosen absolute parallelisms. Indeed the similitude transformations 
seems to be the fundamental internal symmetries of the system (see e.g. [2]).

As final remark, since (30) is compatible with (26), and since (25) is compatible with (31), 
we could construct the following dyx-coaxial Lie algebras:

[X1,X2] = λX2 , [X1,X3] = 0 , [X3,X2] = −γX2 , (38)

and

[X1,X2] = 0 , [X1,X3] = μX3 , [X2,X3] = νX3 . (39)

However, it is important to realize that they could not be obtained from the skeleton (23) by the 
choice of an homomorphism, and therefore they are not identified as internal symmetries of the 
Toda system by the choice of the absolute parallelism given by Lemma 3.4. The question if the 
choice of other forms of the absolute parallelism could identify them is open and will be the 
object of future investigations.
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