
Timecrystalline vorticity and anyonic exchange
in a cold atom Bose-Einstein condensate

Julien Garaud,1, ∗ Jin Dai,2, † and Antti J. Niemi2, 1, 3, 4, ‡

1Institut Denis Poisson CNRS-UMR 7013, Université de Tours, 37200 France
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Quantum vortices are the principal ex-
citations in many macroscopic quantum
systems, including superfluids and cold
atom Bose-Einstein condensates. They
are characterized by a quantized phase
circulation of the wave function around
a vortex core. Here we employ the
Gross-Pitaevskii equation to investigate
the structure of minimum energy vortices
in cold atom Bose-Einstein condensates, in
a nonrotating axially symmetric harmonic
trap. For a generic value of the angular
momentum along the symmetry axis, the
energy minima are eccentric vortices. We
find that the vortices precess around the
center of the trap uniformly, in a timecrys-
talline fashion. Furthermore, we demon-
strate that when two identical vortices ex-
change their position, the wave function
acquires a phase with an anyonic char-
acter. Our results reveal that quantum
vortices have an unexpectedly rich phe-
nomenology, suggestive of applications to
emerging subjects from quantum compu-
tation to simulation and information pro-
cessing.

Bose-Einstein condensate is a widely investigated real-
ization of a coherent macroscopic quantum state. In par-
ticular, dilute condensates of trapped ultra-cold atoms
have unique quantum features that facilitate a high level
of experimental control [1–3]. Various realizations are
studied vigorously, both in earth-bound and in earth-
orbiting laboratories [4]. Among the goals is the develop-
ment of ultra-sensitive sensors and detectors [5], and the
properties of cold atom condensates are also employed as
a platform for quantum computation and simulation [6].

Quantum vortices are the principal topological excita-
tions in a cold atom Bose-Einstein condensate [7–10]. A
vortex is characterized by an integer valued circulation

Figure 1. Examples of asymmetric vortex configurations of
a Bose-Einstein condensate in an axially symmetric harmonic
trap. The elevation of the semitransparent surface stems for
the condensate density |ψ|2, while the coloring projected onto
the xy-plane indicates the value of the phase arg[ψ] of the
macroscopic wave function. The examples shown are minima
of the two dimensional Gross-Pitaevskii free energy (4), with
non-integer values of the angular momentum (1) Lz = 0.80
(top panel) and Lz = 1.48 (bottom panel). The vortices pre-
cess around the trap center in accordance with the time de-
pendent Gross-Pitaevskii equation (3).

of the macroscopic wave function ψ(x)

1

2π

∮
d`·∇ arg[ψ] ∈ Z

around its core. The time-dependent Gross-Pitaevskii
equation [11, 12] governs the dynamics of the macroscopic
wave function, at the level of the mean field theory. This
is a nonlinear Schrödinger equation with quartic nonlin-
earity that accounts for interactions between the atoms
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[13–17]. Vortices that appear in rotating cold atom Bose-
Einstein condensates have been extensively studied, both
experimentally and theoretically [16, 18, 19]. At the level
of the Gross-Pitaevskii equation these vortices are com-
monly modelled as stationary solutions in a co-rotating
frame [13–17, 20–22]. The rotating condensate accom-
modates growing angular velocity by forming vortices.
This goes with a discontinuous increase in angular mo-
mentum. Hence a rotating condensate cannot support an
arbitrary value of the angular momentum [20]. However,
here we show that condensates with an arbitrary angu-
lar momentum do exist as minimum energy solutions of
a time dependent Gross-Pitaevskii equation. These solu-
tions are eccentric vortices that precess around the center
of a non-rotating axially symmetric trap, as illustrated in
Fig. 1.

We consider a two dimensional Gross-Pitaevskii equa-
tion on the xy-plane with an axially symmetric harmonic
trap. This approximates for example an anisotropic three
dimensional trap, resulting in an oblate condensate. The
macroscopic angular momentum along the z-axis

Lz ≡
∫
d2xψ?(−i~x ∧∇)ψ · ez (1)

and the number of atoms

N ≡
∫
d2xψ?ψ (2)

are conserved. Typically, in a Bose-Einstein condensate
of ultra-cold alkali atoms N ∼ 104− 106. In a mean field
theory the condensate is described by the time-dependent
Gross-Pitaevskii equation, which in dimensionless units
(with ~ = N = 1 [17]) amounts to

i∂tψ = −1

2
∇2ψ +

|x|2

2
ψ + g|ψ|2ψ ≡ δF

δψ?
. (3)

Here g is a dimensionless coupling that accounts for the
interactions between the atoms with typical values 101–
103, and F is the free energy

F =

∫
d2x

{
1

2
|∇ψ|2 +

|x|2

2
|ψ|2 +

g

2
|ψ|4

}
. (4)

The Lagrange multiplier theorem [23] states that with
fixed angular momentum (1) and fixed number of parti-
cles (2) the minimum of F is also a critical point of

Fλ = F + λz(Lz − lz) + λN (N − 1) , (5)

where λz, λN are the Lagrange multipliers that enforce
the values Lz = lz and N = 1, respectively. The critical
points of Fλ obey

− 1

2
∇2ψ+

|x|2

2
ψ+g|ψ|2ψ = −λNψ+iλzx∧∇ψ ·ez , (6)

together with the conditions (1) and (2).

Let ψmin(x) be a solution of (6) and let λminN and λminz

denote the corresponding values of the Lagrange multipli-
ers. Hence ψmin(x) is a critical point of Fλ and it is also a
minimum of the free energy (4) that simultaneously sat-
isfies the conditions N = 1 and Lz = lz. But whenever
the Lagrange multipliers do not vanish, ψmin(x) cannot
be a critical point of F . Its time evolution obeys

i∂tψ = −λminN ψ + iλminz x ∧∇ψ · ez (7)

with ψ(x, t = 0) = ψmin(x), and both λminN and λminz

are time independent [24]. As described in [24], if there
is no minimum energy solution with vanishing Lagrange
multipliers the time evolution is that of a Hamiltonian
time crystal [25, 26]. Indeed, both Lz and N are con-
served Noether charges, and the minimum energy wave
function ψmin(x) spontaneously breaks the ensuing sym-
metries. The time evolution equation (7) is a symmetry
transformation of ψmin(x) that is generated by a definite
linear combination of the two conserved Noether charges.
This is the essence of spontaneous symmetry breaking,
now realized in a time dependent context, that defines a
Hamiltonian time crystal [24].

To search for minimum energy solutions of the time-
dependent Gross-Pitaevskii equation, we numerically
minimize the free energy (4) subject to the conditions
Lz = lz and N = 1. The problem is discretized within a
finite-element framework [27], and the constrained mini-
mization problem is then solved using the Augmented La-
grangian Method [28]. Minimal energy states for angular
momentum values lz ∈ (0, 2] with N = 1, and for three
representative values of the interaction coupling g = 5,
g = 100 and g = 400 are displayed in Figure 2; see also
[28].

For non-vanishing values of the angular momentum
0 < lz < 1 the minimum energy configuration ψmin(x)
is an eccentric vortex (see regime A). As lz increases the
vortex core approaches the trap center. Similar eccen-
tric vortices have been previously described theoretically
in [20, 29], and apparently observed experimentally in
[30]. As shown in regime B, when lz = 1, the core
position coincides with the center of the trap, and the
Lagrange multipliers feature a discontinuity. This is the
single vortex solution that has been described extensively
in the literature [13–17, 21, 22]. When lz becomes larger
than one, a second vortex appears, and there are two
qualitatively different two-vortex configurations. As lz
increases, these are sequentially asymmetric (regime C)
and then symmetric (regime D) with respect to the trap
center. Because it depends on g, there is no universal
value of lz that separates these two regimes. At higher
values of angular momentum, lz ≈ 1.8 with the exact
value depending on g, additional vortices start entering
the condensate; this is the regime E in Fig. 2. Remark
that for g = 100 and g = 400 a third vortex moves to-
wards the trap center as lz increases, while for g = 5 a
pair of vortices enters. Further increase of the angular
momentum introduces additional vortices in the conden-
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Figure 2. Minimum energy states for angular momenta
lz ∈ (0, 2]. The bottom row shows the dependence of the
multipliers λmin

N and λmin
z on the angular momentum lz for

g = 5, 100 and 400. The panels on the top row display the
density of the condensate |ψ|2 for qualitatively different solu-
tions with g = 400, obtained for different values of lz (zoomed
to relevant data while the actual numerical domain is larger).
At the vortex core the density |ψ|2 vanishes and the phase
circulation is 2π. The five regimes A – E are detailed in the
text.

sate (not shown).

The case lz = 1, denoted by B in Fig. 2, is a particular
case. The core of the vortex coincides with the center of
the trap. The corresponding ψmin(x) is an angular mo-
mentum eigenstate with eigenvalue lz ≡ m = 1, and the
solution of the time-dependent Gross-Pitaevskii equation
(7) is simply an overall phase rotation with no change in
the core position,

ψ(x, t) = exp{i(λminq +mλminz )t}ψmin(x) . (8)

More generally, whenever ψmin(x) is an angular momen-
tum eigenstate the time evolution amounts to a multipli-
cation by a phase factor (8). However, for generic lz the
minimum energy configuration ψmin(x) is not an eigen-
state of the angular momentum and thus its time evo-
lution is more elaborate than mere multiplication by a
time dependent phase.

We simulate the time evolution (3) of the minimum
energy configuration ψmin(x) using a Crank-Nicolson al-
gorithm. Simulation details together with animation of
the time evolution can be found in the Supplementary
material [28]. For all values of lz the vortex configura-
tion rotates uniformly around the trap center. This uni-
form rotation is a consequence of the equation (7) which
determines the time evolution in terms of the two con-
served charges. As an example, in Figure 3 we analyze
the time evolution of a symmetric vortex pair in regime D
of Figure 2, with g = 5. The vortex pair rotates around
the trap center at a constant distance, with an angular

Figure 3. The evolution of a minimum energy configuration
ψmin(x), in the case of a symmetric vortex pair (with g =
5) in region D of Figure 2. The bottom panels show the
evolution of θ, the rotation angle of the pair, and of the value
of the phase arg[ψ] measured at the center of the trap. The
three panels A–C on the top row are snapshots displaying
the phase arg[ψ] after rotations θ = θ0, θ = θ0 + π and θ =
θ0 + 2π respectively. Since the Lagrange multipliers λmin

N

and λmin
z are not commensurate, arg[ψ](t) and θ(t) feature

different periodicities. As a result after π rotations of the pair
the phase profile is not simply an overall phase multiplication.
This stresses the anyonic nature of such an exchange.

velocity specified by λminz . At the same time the phase
of the wave function evolves with a rate that depends
on λminN . In short, the value λminN is the rate of change
in the phase arg[ψ](t), as measured at the center of the
trap. Similarly, the rate of change of θ(t) that measures
the rotation of the pair, equals λminz . Since the two La-
grange multipliers are in general not commensurate, θ(t)
and arg[ψ](t) have different periodicities. It follows that
when the vortices exchange their positions, the change in
the phase of the wave function is not by an integer mul-
tiple of π. Such a change in the phase of a wave function
is the hallmark of anyonic exchange statistics [31, 32].

In summary, we have investigated the static properties
and the time evolution of minimum energy vortex config-
urations of the two dimensional Gross-Pitaevskii free en-
ergy, as function of the angular momentum. This models
a Bose-Einstein condensate of ultra-cold alkali atoms in
an axially symmetric harmonic oscillator trap. There are
two Noether charges, which correspond to the number of
atoms and to the axial component of the macroscopic an-
gular momentum. For generic values of the angular mo-
mentum, the minimum energy configurations are eccen-
tric vortices. They precess uniformly around the center
of the trap, in a timecrystalline fashion. Whenever the
time evolution exchanges the positions of two vortices,
the phase of the wave function changes nontrivially, in a
way that is consistent with anyonic exchange statistics.
These properties could become relevant for example in
the development of future quantum technologies.
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Appendix A: Description of the supplementary animations (see ancillary files)

There are three animations that illustrate the results of presented in the manuscript. The supplementary animations
display the following:

• movie-1.mp4: shows the minimal energy configurations that simultaneously satisfy N =
∫
|ψ|2 = 1 and

lz ∈ [0, 2). Here, the interaction coupling is g = 400. The left panel shows the density |ψ|2 while the right
panel displays the phase arg[ψ] of the condensate. The elevation of the semitransparent surface stems for the
condensate density |ψ|2, while the coloring of the surface (also projected onto the xy-plane) indicates the values
of the density |ψ|2 and of the phase arg[ψ] of the macroscopic wave function.

• movie-2.mp4: shows the time-crystalline evolution of a single eccentric vortex. The starting configuration is
the minimum energy configuration ψmin(x) for an angular momentum lz = 0.8. Here the interaction coupling
is g = 5. On the left panel, the elevation of the surface and the coloring stem for the condensate density |ψ|2.
The right panel displays the phase arg[ψ] of the condensate.

• movie-3.mp4: shows the time-crystalline evolution of a symmetric pair of vortices. The starting configuration
is the minimum energy configuration ψmin(x) for an angular momentum lz = 1.7. Here the interaction coupling
is g = 5. On the left panel, the elevation of the surface and the coloring stem for the condensate density |ψ|2.
The right panel displays the phase arg[ψ] of the condensate.

Appendix B: Details of the numerical methods

In the numerical investigations in the main body of the paper, we use Finite-Element Methods (FEM) (see e.g.
[33, 34]) both for the minimization and for the time-evolution. In practice we use the finite-element framework provided
by the FreeFEM library [27]. Within the finite-element framework, the constrained minimization is addressed using
an Augmented Lagrangian Method together within a non-linear conjugate gradient algorithm. The time-dependent
Gross-Pitaevskii equation, is integrated using a Crank-Nicolson algorithm with a forward extrapolation of the nonlinear
term.

1. Finite-element formulation

We consider the domain Ω which a bounded open subset of R2 and denote ∂Ω its boundary. H(Ω) stands for the
Hilbert space, such that a function belonging to H(Ω), and its weak derivatives have a finite L2-norm. Furthermore,
H(Ω) = {u + iv |u, v ∈ H(Ω)} denotes the Hilbert spaces of complex-valued functions. The Hilbert spaces of real-
and complex-valued functions are equipped with the inner products 〈·, ·〉, defined as:

〈u, v〉 =

∫
Ω

uv , for u, v ∈ H(Ω) , and 〈u, v〉 =

∫
Ω

u?v , for u, v ∈ H(Ω) . (B1)

The spatial domain Ω is discretized as a mesh of triangles using for the Delaunay-Voronoi algorithm, and the regular
partition Th of Ω refers to the family of the triangles that compose the mesh. Given a spatial discretization, the
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functions are approximated to belong to a finite-element space whose properties correspond to the details of the

Hilbert spaces to which the functions belong. We define P
(2)
h as the 2-nd order Lagrange finite-element subspace of

H(Ω), and correspondingly P(2)
h for H(Ω). Now, the physical degrees of freedom can be discretized in their finite

element subspaces. And we define the finite-element description of the degrees of freedom as ψ 7→ ψ(h) ∈ P(2)
h . This

describes a linear vector space of finite dimension, for which a basis can be found. The canonical basis consists of the
shape functions φk(x), and thus

Vh(Th,P(2)) =
{
w(x) =

M∑
k=1

wkφk(x), φk(x) ∈ P
(2)
h

}
. (B2)

Here M is the dimension of Vh (the number of vertices), the wk are called the degrees of freedom of w and M the
number of the degrees of freedom. To summarize, a given function is approximated as its decomposition: w(x) =∑M
k=1 wkφk(x), on a given basis of shape functions φk(x) of the polynomial functions P(2) for the triangle Tik . The

finite element space Vh(Th,P(2)) hence denotes the space of continuous, piecewise quadratic functions of x, y on each
triangle of Th.

2. Constrained minimization: Augmented Lagrangian Method

In the main body of the paper, we aim to minimize the free energy while enforcing a set of two conditions. Such
problems, referred to as constrained optimization are studied in great details, see for example textbooks [35–38].
Here we describe the numerical algorithms that were used in the main body of the paper, to solve the constrained
optimization problem. The Augmented Lagrangian Method (ALM) used to solve the constrained optimization is
based on the following. In terms of the original energy functional to be minimized F , and the set of conditions Ci,
the augmented Lagrangian F aug is defined as

F aug := F +
µ

2

∑
j

C2
j

+
∑
j

λjCj . (B3)

Here µ is a penalty parameter and λj are the Lagrange multipliers associated with the conditions Cj . In the Augmented
Lagrangian Method, the augmented Lagrangian is minimized, and the penalty µ is iteratively increased while the
multipliers λj ← λj + µCj until all conditions are satisfied with a specified accuracy. The ALM algorithm has the
property to converge in a finite number of iterations. Our choice for the minimization algorithm within each ALM
iteration is a non-linear conjugate gradient algorithm [39–41].

In this work, the minimized functional F is the dimensionless Gross-Pitaevskii free energy [17]

F =

∫
d2x

{
1

2
|∇ψ|2 + V (x)|ψ|2 +

g

2
|ψ|4

}
, (B4)

where g is the dimensionless coupling that accounts for the interatomic interactions, and V (x) is the trapping potential.
In the main body we considered an harmonic oscillator trapping potential V (x) = |x|2/2. Since the derivations here
do not depend on the specific form of the potential, we keep in general in the following. The two conditions specifying
the particle number N = 1 and the value lz of the angular momentum are

CN = N − 1 ≡
∫
d2x|ψ|2 − 1 and Cz = Lz − lz ≡

∫
d2xψ?

[
ez · (−ix ∧∇)

]
ψ − lz . (B5)

Hence, the variations of the augmented Lagrangian with respect to ψ? and λi give the set of equations

−1

2
∇2ψ +

[
V (x) + g|ψ|2

]
ψ + λ̃Nψ + λ̃zLzψ = 0 , where λ̃i = (µCi + λi) (B6a)

Ci = 0 , and i = N, z , (B6b)

where the angular momentum operator is Lz = ez · (−ix∧∇). The associated weak form, is obtained by multiplying
the equation (B6a) by test functions ψw ∈ H(Ω), integrating over Ω and integrating by parts the Laplace operator.
Alternatively the weak form is calculated as the Fréchet derivative of the augmented Lagrangian as (B3). In terms of
the inner products (B1), we find

[ψw] · F ′(ψ) =
1

2
〈∇ψw,∇ψ〉+

〈
ψw,

[
V (x) + g|ψ|2

]
ψ
〉

+ λ̃N 〈ψw, ψ〉+ λ̃z 〈ψw,Lzψ〉 . (B7)
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This formulation, hence corresponds to the variations of the Lagrangian with respect to all degrees of freedom. It can
be seen as the gradient of a function to be minimized. To do so we choose a nonlinear conjugate gradient algorithm.

Figure 4. Details of the results of simulations where the particle number is N = 1. The dependence of the Lagrange multipliers
on the constrained angular momentum lz are displayed on the leftmost panel. The right panels illustrate that the time-evolution
algorithm (B15) used here indeed preserves the energy (bottom), the angular momentum (top) and the particle number (not
shown).

Error estimates

To estimate the quality of the solution, a global error can be derive by multiplying (B6a) by ψ? and integrating over
the domain Ω (and again integrating by part the Laplace operator). The error is alternatively obtained by replacing
the test functions ψw by ψ in (B7):∫

1

2
|∇ψ|2 +

[
V (x) + g|ψ|2

]
|ψ|2 + λ̃q

∫
|ψ|2 + λ̃z

∫
ψ?Lzψ =0 (B8a)

F +
g

2

∫
|ψ|4 + λ̃N (CN + 1) + λ̃z(Cz + lz) =0 (B8b)

1 +

∑
i λ̃i(Ci − li)

F + g
2

∫
|ψ|4

= err. (B8c)

In pratice during our constrained minimization simulations, we obtain the typical values for the relative error to be
around 10−5.

Numerical minimization of the weak formulation (B7) of the augmented Lagrangian (B3) gives the minimal energy
states under the specified values of the constraints (B5). In all generality we consider unit particle number N = 1 for
various values of the angular momentum lz. The corresponding values of the Lagrange multipliers are displayed in
Fig. 4.

3. Time evolution: forward extrapolated Crank-Nicolson algorithm

To address the question of the time-dependent Gross-Pitaevskii equation, the strategy is to use a Crank-Nicolson
algorithm [42] to iterate the time series. More precisely, for efficient calculations, we write a semi-implicit scheme
where the nonlinear part is linearized using a forward Richardson extrapolation. The time-dependent Gross-Pitaevskii
reads as:

i∂tψ = −1

2
∇2ψ +

[
V (x) + g|ψ|2

]
ψ . (B9)
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The weak from, obtained by multiplying by test functions ψw ∈ H(Ω) and integrating by parts reads as, in terms of
the inner products (B1),

〈ψw, i∂tψ〉 =
1

2
〈∇ψw,∇ψ〉+

〈
ψw,

[
V (x) + g|ψ|2

]
ψ
〉
. (B10)

The discretization of the time turns the continuous evolution into a recursive series over the uniform partition {t}Nn=0

of the time variable. The time variable is discretized as t = n∆t and the wave function at the step n is ψn := ψ(n∆t).
The Crank-Nicolson scheme, uses (Forward-)Euler definition of the time derivative, while the r.h.s of Eq. (B10) is
evaluated at the averaged times. Introducing the notations

∂tψ := δtψn =
ψn+1 − ψn

∆t
, and ψ̄n =

ψn+1 + ψn
2

, (B11)

the Crank-Nicolson scheme for the time-dependent Gross-Pitaevskii equation (B10) reads as:

〈ψw, iδtψn〉 =
1

2

〈
∇ψw,∇ψ̄n

〉
+
〈
ψw, V (x)ψ̄n

〉
+
〈
ψw, g|ψ̄n|2ψ̄n

〉
. (B12)

This fully implicit scheme results in a nonlinear algebraic system which is very demanding to solve. The alternative to
solving the nonlinear algebraic problem is to approximate the nonlinear part in terms of values at previous time steps.
Very schematically, the idea of the modified algorithm is to approximate the fields in the nonlinear term by using an
extrapolation of the previous time steps, that retains the same order of truncation error as the rest of time series. Thus,
using the forward extrapolation the averaged wave function in the non-linear term becomes ψ̄n ≈ (3ψn − ψn−1)/2.
Next, defining the time-discretized operators:

O1ψ =

〈
ψw,

iψ

∆t

〉
−
〈
∇ψw,

1

4
∇ψ

〉
−
〈
ψw,

1

2
V (x)ψ

〉
, (B13a)

O2ψ =

〈
ψw,

iψ

∆t

〉
+

〈
∇ψw,

1

4
∇ψ

〉
+

〈
ψw,

1

2
V (x)ψ

〉
, (B13b)

Unψ =
〈
ψw,

g

8
|3ψn − ψn−1|2ψ

〉
, (B13c)

allows to rewrite Eq. (B12) in the compact form

O1ψn+1 = O2ψn + Un(3ψn − ψn−1) . (B14)

Hence the time-evolution is formally given by the recursion

ψn+1 = O−1
1

[
O2ψn + Un(3ψn − ψn−1)

]
. (B15)

The spatial discretization is achieved by replacing the wave function ψ by its finite-element space representation
ψ(h) ∈ Vh(Th,P(2)) in the time-dependent Gross-Pitaevskii equation (B15). The test functions ψw now take values
in the same discrete space as ψ(h). Denoting the matrix representation of the time-discretized evolution operators
(B13), as:

O1 7→Mψ , O2 7→Nψ , and Un(3ψn − ψn−1) 7→ Lψ , (B16)

the recursion Eq. (B15) reduce to a linear system that read as:

[Mψ]
[
ψ

(h)
n+1

]
− [Nψ]

[
ψ(h)
n

]
= [Lψ] . (B17)

The vector Lψ which is a function of ψ
(h)
n and ψ

(h)
n−1, has to be recalculated at each step. The matrices Mψ and Nψ,

on the other hand, are constant matrices to be allocated just once and are in principle easily preconditioned. Finally
the recursion is thus given by [

ψ
(h)
n+1

]
= [Mψ]

−1
(

[Nψ]
[
ψ(h)
n

]
+ [Lψ]

)
, (B18)

which requires recalculating the vectors Lψ at each step and then multiplying by the inverse matrices.
The numerical simulations of the time-evolution algorithm (B18) representing the discretized evolution scheme (B15)

accurately reproduces the intrinsic physical properties of the time-dependent Gross-Pitaevskii equation. Namely it
preserves the conserved quantities like the energy, the angular momentum, and the particle number. A consistency
check, as displayed on Fig. 4, shows that these are indeed (exactly) conserved during the time-evolution.
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