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Abstract

We compare the integration by parts of contact forms - leading

to the definition of the interior Euler operator - with the so-called

canonical splittings of variational morphisms. In particular, we dis-

cuss the possibility of a generalization of the first method to contact

forms of lower degree. We define a suitable Residual operator for this

case and, working out an original idea conjectured by Olga Rossi, we

recover the Krupka-Betounes equivalent for first order field theories.

A generalization to the second order case is discussed.

Key words: Interior Euler operator; Residual operator; geometric integra-
tion by parts; Poincaré-Cartan form; Lepage equivalent.
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1 Introduction

The Euler–Lagrange operator can be geometrically described by means of
two interrelated geometric objects (and corresponding geometric integration
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by parts procedures), the one based on the concept of differential forms
and exterior differential modulo contact structures, the other based on the
interpretation of variational objects as fibered morphisms [7, 8, 3] etc.

Following an approach inaugurated by the works of Cartan and Lep-
age, the finite order variational sequence was introduced and developed by
Krupka; see e.g. [12], [13] and [14]. The problem of the representation of the
finite order variational sequence (whose objects, we recall, are equivalence
classes of local differential forms) has been discussed in terms of the so called
interior Euler operator; see e.g. [9] and [18].

On the other hand variational morphisms [3] not only provide a geomet-
ric formulation of the calculus of variations, but in general of a wide class
of differential operators. Their most relevant property is that they admit
canonical and algorithmic splittings and, by the introduction of a connec-
tion on the base manifold and a connection on the considered fiber bundle,
globality and uniqueness properties of these splittings can be assured.

The aim of this paper is to investigate the relation between these two
approaches which use different geometric integration by parts techniques.

We perform the identification of contact forms with variational morphisms
for 1-contact forms of degree at most n+ 1, where n is the dimension of the
base manifold of the considered fiber bundles. The two integration by parts
techniques are directly compared in the case of 1-contact n-horizontal (n+1)-
forms. A non-trivial manipulation of the interior Euler operator technique is
needed for the comparison in the case of 1-contact forms of lower degree.

We will show that in the first situation the two approaches produce the
same results, whilst in the second situation we get two different splittings
and we can give an account of their difference. Finally we observe that the
manipulations needed in this last case might be useful in order to obtain
an extension of the definition of the Krbek–Musilová interior Euler operator
at least to 1-contact forms of lower degree. We define a suitable Residual
operator for this case and we recover the Krupka-Betounes Lepage equivalent
for first order field theories.
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2 Contact structure and geometric integra-

tion by parts

Prolongations of fibered manifolds are a basic tool for the geometric formula-
tion of the calculus of variations. We recall the decomposition of pull-backs
of differential forms on jet prolongations of fibered manifolds. The decom-
position is performed by means of the jet projections and the holonomic lift
of tangent vectors (a canonical construction which allows a splitting of the
projection along the affine fibrations defining the contact structure of tangent
vectors in two components with remarkable properties). Moreover the de-
composition of forms leads to the introduction of the so-called contact forms,
which reveal to be another fundamental concept in the calculus of variations.
To fix notation we follow [15] ; other references on jet spaces are [22] and [8].

We recall that by a fibered manifold structure on a C∞ manifold Y we
mean a triplet (Y,X, π), where X is a C∞ manifold called the base and
π : Y −→ X is a surjective submersion of class C∞ called the projection.
We stress that, when dealing with local aspects of fibered manifolds, we will
always use the so-called fibered charts (i.e. charts adapted to the fibration).
Let Y be a fibered manifold with base X and projection π, let n = dimX
and m = dimY − n. We denote by JrY , where r ≥ 0 is any integer, the set
of r-jets Jr

xγ of Cr sections of Y with source x ∈ X and target y = γ(x) ∈ Y
(for more details on jet spaces see [22] and [8]); we fix the notation J0Y = Y .
For any s such that 0 ≤ s ≤ r we have surjective mappings, the canonical
jet projections, πr

s : J
rY −→ JsY and πr : JrY −→ X , defined by πr

s(J
r
xγ) =

Js
xγ, π

r(Jr
xγ) = x. Let (V, ψ), ψ = (xi, yσ), be a fibered chart on Y and let

(U, ϕ), ϕ = (xi), be the associated chart on X .
By setting V r = (πr

0)
−1(V ), a chart on the set JrY associated with the

fibered chart (V, ψ) is given by (V r, ψr) ψr = (xi, yσ, yσj1, y
σ
j1j2

, . . . , yσj1j2...jr),
with 1 ≤ i ≤ n, 1 ≤ σ ≤ m, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ n, k = 1, 2, 3, . . . , r.
The set of associated charts (V r, ψr), such that the fibered charts (V, ψ)
constitute a smooth atlas on Y , is a smooth atlas on JrY . With this smooth
structure JrY is called the r-jet prolongation of the fibered manifold Y .

Let Y be a fibered manifold with base X and projection π. Let Ξ be a π-
projectable vector field on Y , expressed in a fibered chart (V, ψ), ψ = (xi, yσ),
by Xi = ξi ∂

∂xi + Ξσ ∂
∂yσ

, then its s-th prolongation JsΞ is expressed in the
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associated chart (V s, ψs) by

JsΞ = ξi
∂

∂xi
+ Ξσ ∂

∂yσ
+

s
∑

k=1

∑

j1≤j2≤···≤jk

Ξσ
j1j2...jk

∂

∂yσj1j2...jk
,

where Ξσ
j1j2...jk

= djkΞ
σ
j1j2...jk−1

− yσj1j2...jk−1i
∂ξi

∂xjk
.

Let Jr+1
x γ ∈ Jr+1Y . To any tangent vector ξ of Jr+1Y at the point Jr+1

x γ
is assigned a tangent vector of JrY at the point πr+1

r (Jr+1
x γ) = Jr

xγ by hξ :=
TJrγ ◦ Tπr+1(ξ). We get a vector bundle morphism h : TJr+1Y −→ TJrY
over the jet projection πr+1

r called the horizontalization, and hξ is called
the horizontal component of ξ. Let ξ be given in a fibered chart (V, ψ),
ψ = (xi, yσ) as

ξ = ξi
∂

∂xi

∣

∣

∣

∣

Jr+1
x γ

+

r+1
∑

k=0

∑

j1≤j2≤···≤jk

Ξσ
j1j2...jk

∂

∂yσj1j2...jk

∣

∣

∣

∣

Jr+1
x γ

,

then

hξ = ξidi ,

where di =
∂
∂xi

∣

∣

∣

∣

Jr
xγ

+
∑r

k=0

∑

j1≤j2≤···≤jk
yσj1j2...jki

∂
∂yσj1j2...jk

∣

∣

∣

∣

Jr
xγ

, the i-th formal

derivative operator, is a vector field along the projection πr+1
r .

We can assign to every tangent vector ξ ∈ TJr+1
x γJ

r+1Y a tangent vector
pξ ∈ TJr

xγ
JrY by the decomposition Tπr+1

r (ξ) = hξ + pξ, where pξ is called
the contact component of the vector ξ. Then

pξ =
r

∑

k=0

∑

j1≤j2≤···≤jk

(

Ξσ
j1j2...jk

− yσj1j2...jkiξ
i
) ∂

∂yσj1j2...jk

∣

∣

∣

∣

Jr
xγ

.

For any open set W ⊂ Y , Ωr
qW denotes the C∞-module of q-forms on

the open set W r = (πr
0)

−1(W ) in JrY , and ΩrW is the exterior algebra of
differential forms on W r. In order to study the structure of the components
of a form ρ ∈ Ωr

qW , it will be convenient to introduce a multi-index notation.
A multi-index I is an ordered k-tuple I = (i1i2 . . . ik), where k = 1, 2, . . . , r
and the entries are indices such that 1 ≤ i1, i2, . . . , ik ≤ n. The number k is
the lenght of I and is denoted by |I|. If 1 ≤ j ≤ n is any integer, we denote
by Ij the multi-index Ij = (i1i2 . . . ikj).
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The notion of horizontalization of vectors can be used to define a mor-
phism h : ΩrW −→ Ωr+1W of exterior algebras.
Let ρ ∈ Ωr

qW , with q ≥ 1, and Jr+1
x γ ∈ W r+1. Consider the pullback (πr+1

r )∗ρ
and the value

(πr+1
r )∗ρ(Jr+1

x γ)(ξ1, ξ2, . . . , ξq) =

= ρ(Jr
xγ)(Tπ

r+1
r (ξ1), Tπ

r+1
r (ξ2), . . . , Tπ

r+1
r (ξq)) (1)

on any tangent vectors ξ1, ξ2, . . . , ξq of J
r+1Y at the point Jr+1

x γ. Decompose
each of these vectors into the horizontal and contact components, Tπr+1

r (ξl) =
hξl + pξl, and set

hρ(Jr+1
x γ)(ξ1, ξ2, . . . , ξq) := ρ(Jr

xγ)(hξ1, hξ2, . . . , hξq).

This formula defines a q-form hρ ∈ Ωr+1
q W , while for 0-forms hf := (πr+1

r )∗f .
It follows that hρ(Jr+1

x γ)(ξ1, ξ2, . . . , ξq) vanishes whenever at least one of the
vectors is πr+1-vertical. Thus, the q-form hρ must be πr+1-horizontal. In
particular hρ = 0 whenever q ≥ n + 1. The component hρ is called the
horizontal component of ρ. We say that ρ ∈ Ωr

1W is contact if hρ = 0. Let
us now set

pkρ(J
r+1
x γ)(ξ1, ξ2, . . . , ξq) :=

:=
1

k!(q − k)!

∑

σ∈Pq

(−1)|σ|ρ(Jr
xγ)(pξσ(1), . . . , pξσ(k), hξσ(k+1), . . . , hξσ(q))

where Pq is the set of permutations of q elements and |σ| is the sign of the
permutation σ ∈ Pq. Note that if k = 0, then p0ρ coincides with hρ, while
for 0-forms pf = 0. In particular, given a q-form η

η =

q
∑

s=0

AJ1
σ1
. . .Jsσsis+1...iq

dyσ1

J1
∧ · · · ∧ dyσs

Js
∧ dxis+1 ∧ · · · ∧ dxiq ,

the k-contact component of η has the chart expression

pkη = BJ1
σ1
. . .Jkσkik+1...iq

ωσ1

J1
∧ · · · ∧ ωσk

Jk
∧ dxik+1 ∧ · · · ∧ dxiq ,

with

BJ1
σ1
. . .Jkσkik+1...iq

=

q
∑

s=k

(

s

k

)

AJ1
σ1
. . .JkJk+1

σkσk+1
. . .Js

σs[is+1...iq
y
σk+1

Jk+1ik+1
. . . yσs

Jsis]
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where the antisymmetrization in the right hand side of the last equation is
performed only on the indices ik+1 . . . isis+1 . . . iq.

For any ρ ∈ Ωr
qW , q ≥ 0, the canonical decomposition of the form ρ is

given as

(πr+1
r )∗ρ = hρ+ p1ρ+ p2ρ+ · · ·+ pqρ.

We can see that the canonical decomposition of forms gives rise to the split-
ting of the pull-back of the exterior derivative

(πr+2
r )∗dρ = dHρ+ dCρ = dHρ :=

q
∑

k=0

pkdpkρ+

q
∑

k=0

pk+1dpkρ , ,

and characterized by the identities dH ◦ dH = 0, dC ◦ dC = 0, dC ◦ dH =
−dH ◦dC ; furthermore, if ρ is a q-form and η is an s-form, both on JrY , then

dH(ρ ∧ η) = dHρ ∧ (πr+2
r )∗η + (−1)q(πr+2

r )∗ρ ∧ dHη

dC(ρ ∧ η) = dCρ ∧ (πr+2
r )∗η + (−1)q(πr+2

r )∗ρ ∧ dCη.

2.1 The interior Euler operator

We recall some technical features of the interior Euler operator, seen as a
tool which allows to pass in a univocal way from equivalence classes of local
differential forms in the variational sequence, to (global) differential forms
in the representation sequence. First we recall the finite order variational
sequence as introduced by Krupka in [12]. A complete description of this
subject involves some topics of sheaf theory and sheaf cohomology; however,
since our purpose is to make direct calculations on the representation of the
variational sequence, we just refer to [15] for more details about those as-
pects. Then we shortly recall the notion of Lie derivative of forms and some
results on integration by parts formulae which lead directly to the definition
of the interior Euler operator. For more details and other related topics we
refer to [9] and [18].

Let Ωr
q, q ≥ 0, be the direct image of the sheaf of smooth q-forms over

JrY by the jet projection πr
0. We denote by

Ωr
q,c =

{

ker p0 for 1 ≤ q ≤ n,

ker pq−n for n+ 1 ≤ q ≤ dimJrY
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the sheaf of contact q-forms, if q ≤ n, or the sheaf of strongly contact q-forms,
if n + 1 ≤ q ≤ dimJrY .

We set

Θr
q = Ωr

q,c + dΩr
q−1,c

where dΩr
q−1,c is the image sheaf of Ωr

q−1,c by the exterior derivative d. Let
us consider the sequence of sheaves

{0} → Θr
1 → · · · → Θr

n → Θr
n+1 → · · · → Θr

P → {0} (2)

in which the arrows are given by exterior derivatives d and with P being the
maximal nontrivial degree. It can be shown that it is an exact subsequence
of the de Rham sequence. The resulting quotient sequence

{0} → RY → Ωr
0 → Ωr

1/Θ
r
1 → Ωr

2/Θ
r
2 → Ωr

3/Θ
r
3 → . . .

is called the variational sequence of order r and it is an acyclic resolution of
the constant sheaf RY over Y . We denote the quotient mappings as follows

Er
q : [ρ] ∈ Ωr

q/Θ
r
q −→ Er

q ([ρ]) = [dρ] ∈ Ωr
q+1/Θ

r
q+1.

Note that, in particular, the mappings Er
n and Er

n+1 correspond to the Euler-
Lagrange mapping and to the Helmholtz-Sonin mapping of calculus of vari-
ations, respectively.

Definition 2.1. Let (V, ψ), ψ = (xi, yσ), be a fibered chart on Y and let ρ
be a differential q-form on JrY . The Lie derivative of a q-form ρ on with
respect to a vector field hΞ along the map πr+1

r is given by

£πr+1
r

hΞ ρ = (πr+1
r )∗hΞ(hΞydρ) + d(πr+1

r )∗hΞ(hΞyρ) .

Here (πr+1
r )∗hΞ is a pull-back defined according to [9].

In particular, let di be the i-th formal derivative operator seen as a (hor-

izontal) vector field along a map. We have £πr+1
r

di
dxj = 0, £πr+1

r

di
dyσJ =

dyσJi, £πr+1
r

di
ωσ
J = ωσ

Ji, while for f a zero form, we have £πr+1
r

di
f = ∂f

∂xi +
∑r

|J |=0 y
σ
Ji

∂f

∂yσ
J

= dif .

Accordingly, by a slight abuse of notation, we will use at any degree the

symbol di = £πr+1
r

di
, and we will call it the total derivative of forms with

respect to the coordinate xi.
We recall that the total derivatives of forms enjoy the following properties
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1. the form dHρ can be locally decomposed as

dHρ = (−1)qdiρ ∧ dx
i

2. the Leibniz rule holds for total derivatives of the exterior product of
forms ρ and η

di(ρ ∧ η) = diρ ∧ η + ρ ∧ diη

3. let (V̄ , ψ̄), ψ̄ = (x̄j , ȳν), be a fibered chart on Y , such that V ∩ V̄ 6= ∅
and let d̄j be the total derivative with respect to the coordinate x̄j .

Then the transformation rule diρ =
∂x̄j

∂xi d̄jρ holds.

4. the total derivatives commute, i.e.

didjρ = djdiρ.

This last property allows us to use the notation dJ = djs ◦ · · · ◦ dj1 , where
J = (j1 . . . js) is a multi-index.

In the following we consider a generalization of the integration by parts
procedure to differential forms based on the concept of total derivative of
forms [9].

Let (V, ψ), ψ = (xi, yσ), be a fibered chart on Y and ρ ∈ Ωr
n+kV a form.

Let pkρ be expressed as

pkρ =
r

∑

|J |=0

ωσ
J ∧ ηJσ .

Then there exists the decomposition

pkρ = I(ρ) + pkdpkR(ρ) (3)

where I is the interior Euler operator, R is the Residual operator, and R(ρ)
is a local k-contact (n + k − 1)-form.

There exists a unique decomposition as above such that I is R-linear,
which is therefore globally defined. In local coordinates we have

I : Ωr
n+kW ∋ ρ −→ I(ρ) =

1

k
ωσ ∧

r
∑

|J |=0

(−1)|J |dJ(
∂

∂yσJ
y pkρ) ∈ Ω2r+1

n+k W . (4)

Let W ⊂ Y be an open set and let ρ ∈ Ωr
n+kW , 1 ≤ k ≤ dimJrY − n, be

a form. Then the following intrinsic properties uniquely characte the interior
Euler operator:
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(a) (π2r+1
r )∗ρ− I(ρ) ∈ Θ2r+1

n+k W ;

(b) I(pkdpkR(ρ)) = 0;

(c) I2(ρ) = (π4r+3
2r+1)

∗I(ρ);

(d) ker(I) = Θr
n+kW .

2.2 Variational morphisms and canonical splittings

We recall shortly the definition and the basic properties of variational mor-
phisms; see [3]. Then, in view of a comparison with the Krbek-Musilová
geometric integration by parts, we discuss in greater detail their algorith-
mic splitting properties, which correspond to the possibility of performing a
global and covariant integration by parts, distinguishing the case of codegree
s = 0 from the case 0 < s ≤ n. Finally we include some results about the
uniqueness properties of the aforementioned splittings.

The general situation that we will take into account dealing with varia-
tional morphisms is described by the following:

Definition 2.2. Let E = (E,X, π̃,Rl) be a vector bundle and π : Y −→ X
an arbitrary fiber bundle, both over X, with dimX = n. Let t, r and s be
integers. A bundle morphism

V : J tY −→ (JrE)∗ ⊗ An−s(X)

is called a variational E-morphism on Y . The (minimal) integer t is called
the order of V, r is called the rank and (n−s) is called the degree of V (being
s the codegree).

A fibered connection on E (i.e. a linear connection Γa
bi on X and a connec-

tion ΓA
Bi on E) induces on (JrE)∗⊗An−s(X) a set of local fibered coordinates

(xi; v̂i1...isA , . . . , v̂i1...isj1...jrA ) so that a variational morphism V can be locally
given there as

< V|JrΞ >=
1

s!

[

v̂i1...isA Ξ̂A + v̂i1...isjA Ξ̂A
j + · · ·+ v̂i1...isj1...jrA Ξ̂A

j1...jr

]

⊗ dsi1...is

where dsi1...is = ∂
∂xis

y . . . y ∂
∂xi1

y ds, if ds is the volume density on the base

manifold X . Each coefficient Vm = 1
s!
v̂i1...isj1...jmA of order 0 ≤ m ≤ r is the
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coefficient of a global variational morphism, the m-rank term of V (if m = r
it is called the highest rank term of V).

Let now Q : J tY −→ An−s(X) be a morphism of rank r = 0. The diver-
gence of Q is the variational morphism Div(Q) : J t+1Y −→ An−s+1(M) such
that

Div(Q) ◦ J t+1σ = d(Q ◦ J tσ)

for each section σ : X −→ Y .
Variational morphisms admit canonical and algorithmic splittings corre-

sponding to global and covariant integration by parts. We distinguish two
cases.

• the case of codegree s = 0.

Let V : J tY −→ (JrE)∗ ⊗An(X) be a variational E-morphism of code-
gree s = 0. Then we can define two global variational E-morphisms

E ≡ E(V) : J t+rC −→ E∗ ⊗An(X)

T ≡ T(V) : J t+r−1C −→ (Jr−1E)∗ ⊗ An−1(X)

such that the following splitting property holds true:

< V|JrΞ >=< E|Ξ > +Div(< T|Jr−1Ξ >) (5)

for each section Ξ of E . The variational morphism E is called the
volume part of V while T is called the boundary part of V.

In particular, we locally have:

< E|Ξ >=
[(

v̂A −∇j1 v̂
j1
A + · · ·+ (−1)r∇j1...jr v̂

j1...jr
A

)

ΞA
]

⊗ ds

and

< T|Jr−1Ξ >=
[

t̂iAΞ̂
A + t̂ij1A Ξ̂A

j1
+ · · ·+ t̂

ij1...jr−1

A Ξ̂A
j1...jr−1

]

⊗ dsi

where the coefficients of T are given by the recurrence relations

t̂
ij1...jr−1

A = v̂
ij1...jr−1

A

t̂
ij1...jr−2

A = v̂
ij1...jr−2

A −∇lt̂
lij1...jr−2

A (6)

. . .

t̂iA = v̂iA −∇lt̂
li
A .
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A similar splitting formula can be obtained for variational morphisms of
higher codegree. Let us first define the concept of a reduced morphism with
respect to a fibered connection.

Definition 2.3. Let V : J tY −→ (JrE)∗ ⊗ An−s(X) be a variational mor-
phism.
Let Vm = 1

s!
(v̂i1...isj1...jmA ) ⊗ dsi1...is be the coefficient of its term of rank

0 ≤ m ≤ r.
The term Vm is said to be reduced with respect to the fibered connection

(Γa
bi,Γ

A
Bi) if v̂

[i1...isj1]j2...jm
A = 0. The variational morphism V is reduced if all

its terms are reduced.

Notice that when n = dim(X) = 1, e.g. in the case of Mechanics, all
variational morphisms are reduced. However, a variational morphism might
be reduced with respect to a fibered connection, but not with respect to
another fibered connection, whenever its rank is at least two.

• the case of codegree s ≥ 1.

Let now V : J tY −→ (JrE)∗ ⊗ An−s(X) be a global variational E-
morphism of codegree s ≥ 1. Then we can define two global variational
E-morphisms

E ≡ E(V) : J t+rC −→ (JrE)∗ ⊗ An−s(X)

T ≡ T(V) : J t+r−1C −→ (Jr−1E)∗ ⊗ An−s−1(X)

where E is a reduced variational morphism and such that the following
holds true:

< V|JrΞ >=< E|JrΞ > +Div(< T|Jr−1Ξ >) (7)

for each section Ξ of E . Again, the variational morphism E is called
the volume part of V while T is called the boundary part of V.

Let a fibered connection be fixed; the volume part is uniquely determined,
while the boundary part is determined modulo a divergenceless term. When
r ≥ 2 one can proceed by further splitting thus obtaining

< T|Jr−1Ξ >=< S|Jr−1Ξ > +Div(< Q|Jr−2Ξ >) , (8)

where the variational morphism S : J t+2r−2Y −→ (Jr−1E)∗⊗An−s−1(X) is re-
duced by construction. Although by two different splittings of the variational
morphism V the volume part is uniquely determined while the boundary
parts are not, the reduced part of the boundary parts is uniquely determined
as well; one then speaks of a “canonical” boundary term in this sense.
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3 Comparison of the two approaches and new

results

We present some original results which clarify the similarities and differences
between the two integration by parts methods described above.

The basic idea is that 1-contact forms of degree n+1 can be seen as vari-
ational morphisms and viceversa to each variational morphism a 1-contact
form of degree n + 1 can be associated. In Proposition 3.1, we prove the
equivalence of decompositions (3) and (5) for 1-contact (n+1)-forms (which
we shall call top forms, because they are of the highest horizontal degree),
seen as variational morphisms of codegree s = 0.

Then the more difficult case of 1-contact (n− s+ 1)-forms, seen as vari-
ational morphisms of codegree 0 < s ≤ n, is discussed. We show that, in
general, for k-contact (n− s)-horizontal (n− s+ k)-forms, with an adequate
manipulation it is possible to obtain a decomposition similar to decomposi-
tion (3). In Proposition 4.2 we show that, when we restrict to k = 1, this
decomposition is equivalent to the application of a “canonical splitting”-like
algorithm to the corresponding variational morphism.

Using this fact we can finally compare, by Proposition 4.4, this “canonical
splitting”-like decomposition with the decomposition (7), showing that the
difference between the corresponding boundary terms is compensated by the
difference between the corresponding volume terms.

3.1 Contact forms as variational morphisms

Consider an arbitrary bundle π : Y −→ X with n = dimX . Let U ⊆ X be an
open subset and let W = π−1(U) be the ”tube” over U . Consider ρ ∈ Ωr

qW
a 1-contact q-form on W r = (πr

0)
−1(W ), with q ≤ n+1. Then, if (W r, ψr) is

a local chart on JrY associated with the fibered chart (W,ψ), ψ = (xi, yσ)
on Y , we can write

p1ρ =
r

∑

|J |=0

ωσ
J ∧ ηJσ ∈ Ωr+1

q W

where ηJσ are horizontal (q − 1)-forms defined on W r+1 and thence can be
expressed as

ηJσ = Ai1...isJ
σ (Jr+1y)dsi1...is , s = n− (q − 1).
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Now, considering the vector bundle V (W ) whose sections are vertical
vector fields defined over W and recalling that JrV (W ) ∼= V (JrW ), we can
define according to Definition 2.2 a variational morphism Vρ : J

r+1W −→
(JrV (W ))∗ ⊗ As(U) such that:

< Vρ|J
rΞ >= JrΞyp1ρ =

[

r
∑

|J |=0

Ai1...isJ
σ Ξσ

J

]

⊗ dsi1...is =

=
[

Ai1...is
σ Ξσ + Ai1...isj1

σ Ξσ
j1
+ · · ·+ Ai1...isj1...jr

σ Ξσ
j1...jr

]

⊗ dsi1...is

for every vertical vector field Ξ: W −→ V (W ).
The advantage of this approach consists in the possibility of working on

contact forms (although only in the particular case of 1-contact forms of
degree at most n+ 1) using the tools of the theory of variational morphisms
and returning back to forms at the end of the manipulation.

It appears that the above identification of 1-contact forms with variational
morphisms holds true up to (n+ 1)-forms and, indeed, this could be related
to the non-uniqueness of the source forms providing the so-called Helmholtz
conditions. In fact, as discussed in [18] (pag. 32), this feature appears for
k-contact n-horizontal (n + k)-forms with k ≥ 2.

3.2 Comparison for top forms

In this section we directly compare the two integration by parts procedures.
As a first step, in the following proposition we prove that the splitting (5)

of p1ρ, seen as a variational morphism Vρ of codegree s = 0,

< Vρ|J
rΞ >=< E|Ξ > +Div(< T|Jr−1Ξ >)

and the decomposition

p1ρ = I(ρ) + dHR(ρ)

give the same terms.

Proposition 3.1. Given ρ ∈ Ωr
n+1W a 1-contact (n + 1)-form. For every

section Ξ: W −→ V (W ),

< Vρ|J
rΞ >= JrΞyp1ρ

and

< E|Ξ >= JrΞy I(ρ) , Div(< T|Jr−1Ξ >) = JrΞy dHR(ρ).
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Proof. Step 1. The fact that < E|Ξ >= JrΞy I(ρ) follows directly from the
definition of each side of the equation. In fact, since W is a single coordinate
domain, we can always choose the fibered connection whose coefficients are
all null, then the covariant derivatives reduce to total derivatives and the
variational morphism E takes the form:

< E|Ξ >= [(Aσ − dj1A
j1
σ + · · ·+ (−1)rdj1...jrA

j1...jr
σ )Ξσ]⊗ ds.

On the other hand, from the definition of the interior Euler operator, we have

I(ρ) = ωσ ∧
r

∑

|J |=0

(−1)|J |dJη
J
σ = ωσ ∧

(

r
∑

|J |=0

(−1)|J |dJA
J
σ

)

ds =

= ωσ ∧ (Aσ − dj1A
j1
σ + · · ·+ (−1)rdj1...jrA

j1...jr
σ )ds.

Step 2. In order to compare JrΞy dHR(ρ) with Div(< T|Jr−1Ξ >) we
need to compute explicitly the Residual operator R(ρ). We now write p1ρ =
∑r

|I|=0 dI

(

ωσ ∧ ξIσ
)

, where

ξIσ =

r−|I|
∑

|J |=0

(−1)|J |
(

|J |+ |I|

|J |

)

dJη
IJ
σ =

( r−|I|
∑

|J |=0

(−1)|J |
(

|J |+ |I|

|J |

)

dJA
IJ
σ

)

ds .

The summand ωσ ∧ ξσ is the interior Euler operator, so we consider only
the remaining terms

∑r

|I|=1 dI

(

ωσ ∧ ξIσ
)

. Each form ωσ ∧ ξIσ is a 1-contact

(n + 1)-form and thence can be recast as ωσ ∧ ξIσ = χI ∧ ds, where χI is a
1-contact 1-form locally given as

χI = (

r−|I|
∑

|J |=0

(−1)|J |
(

|J |+ |I|

|J |

)

dJA
IJ
σ )ωσ.

Finally, the Residual operator is defined by

R(ρ) =

r−1
∑

|I|=0

(−1)1dIχ
iI ∧ dsi =

=

r−1
∑

|I|=0

−dI

( r−|iI|
∑

|J |=0

(−1)|J |
(

|J |+ |iI|

|J |

)

ωσdJA
iIJ
σ

)

∧ dsi.

Now, from the second equation above, we compute the coefficients of the
forms ωσ

L ∧ dsi according to the length of the multi-index L:



Geometric integration by parts and Lepage equivalents 15

|L| = r − 1. The only contribution to this coefficient comes from setting |I| =
r − 1 and applying all the total derivatives of forms dI to ωσ, thus
obtaining as coefficient AiL

σ .

|L| = r − 2. One contribution comes from setting |I| = r − 2 and applying
all the total derivatives of forms dI to ωσ, getting the coefficient

−(AiL
σ − rdlA

liL
σ ),

another contribution comes from setting |I| = r− 1 and applying r− 2
total derivatives to ωσ and one to AiI

σ , thus obtaining

−

(

r − 1

1

)

dlA
liL
σ ,

summing together these two terms, we get the coefficient

−(AiL
σ − dlA

liL
σ ).

|L| = r − 3. We can take |I| = r − 3 and apply all the total derivatives to
ωσ, getting a term

−AiL
σ +

(

r − 1

1

)

dlA
liL
σ −

(

r

2

)

dlkA
lkiL
σ ,

another contribution comes from setting |I| = r− 2 and applying only
r − 3 derivatives to ωσ, getting a term

−

(

r − 2

1

)

dlA
liL
σ +

(

r

1

)(

r − 2

1

)

dlkA
lkiL
σ ,

finally, we can take |I| = r−1 and apply r−3 derivatives to ωσ, getting
a term

−

(

r − 1

2

)

dlkA
lkiL
σ ,

summing all together these contributions we obtain the following coef-
ficient

−(AiL
σ − dlA

liL
σ + dlkA

lkiL
σ ) .

. . .
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It appears clear that the coefficients of the forms ωσ
L ∧ dsi are defined by

the same recurrence relations (6) which express the components tiJσ of the
variational morphism T, except for the sign. Thence we can write

R(ρ) =
r−1
∑

|J |=0

−tiJσ ω
σ
J ∧ dsi.

Therefore, dHR(ρ) = p1dp1R(ρ) =
∑r−1

|J |=0(dit
iJ
σ ω

σ
J ∧ ds + tiJσ ω

σ
Ji ∧ ds), and

since Ξσ
Ji = diΞ

σ
J , we finally get

JrΞy dHR(ρ) =

r−1
∑

|J |=0

(

dit
iJ
σ Ξσ

J + tiJσ Ξσ
Ji

)

∧ ds =

=
r−1
∑

|J |=0

(

dit
iJ
σ Ξσ

J + tiJσ diΞ
σ
J

)

∧ ds

= di

(

r−1
∑

|J |=0

tiJσ Ξσ
J

)

∧ ds = Div(< T|Jr−1Ξ >).

q.e.d.

Since dHdsi1...is = 0, the latter result can be generalized to hold true for
every 0 ≤ s ≤ n; we can then state the following.

Proposition 3.2. Let T : J tY −→ (Jr−1V (Y ))∗ ⊗An−s(X) be a variational
morphism according to Definition 2.2, with

< T|Jr−1Ξ >= (
r−1
∑

|J |=0

ti1...isJσ Ξσ
J) ∧ dsi1...is

for any vertical vector field Ξ over Y . Then there is a correspondence between
T and a (n− s)-horizontal 1-contact (n− s+ 1)-form R̃ such that

Div(< T|Jr−1Ξ >) = JrΞy dHR̃

where R̃ is defined by

R̃ = (
r−1
∑

|J |=0

−ti1...isJσ ωσ
J ) ∧ dsi1...is.
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4 The main result: comparison for lower de-

gree forms

Consider a fiber bundle π : Y −→ X , U ⊆ X an open subset and W =
π−1(U). Let ρ ∈ Ωr

n−s+kW be a (n− s)-horizontal k-contact (n− s+k)-form
defined on the r-order jet prolongation W r of W . In a local fibered chart
ψr = (xi, yσ, yσI ), we can write:

pkρ =

r
∑

|J |=0

ωσ
J ∧ ηJσ ∈ Ωr+1

n−s+kW

where ηJσ are local (n − s)-horizontal (k − 1)-contact (n − s + k − 1)-forms
defined on W r+1. We can write

pkρ =

r
∑

|J |=0

ωσ
J ∧ ηJσ =

r
∑

|I|=0

dI

(

ωσ ∧ ξIσ
)

= ωσ ∧ ξσ +
r

∑

|I|=1

dI

(

ωσ ∧ ξIσ
)

where

ξIσ =

r−|I|
∑

|J |=0

(−1)|J |
(

|J |+ |I|

|J |

)

dJη
IJ
σ .

As we did for the case s = 0, we concentrate our attention on the term
∑r

|I|=1 dI

(

ωσ ∧ ξIσ
)

. Each form ωσ ∧ ξIσ is a (n − s)-horizontal k-contact

(n− s+ k)-form, thus it can be recast in the following manner:

ωσ ∧ ξIσ = χi1...isI ∧ dsi1...is (9)

where the χi1...isI are local k-contact k-forms. Using equation (9), renaming
the multi-index I and extracting an antisymmetric part, we obtain:

r
∑

|I|=1

dI

(

ωσ ∧ ξIσ
)

= (10)

=

r
∑

|I|=1

dIχ
i1...isI ∧ dsi1...is =

r−1
∑

|I|=0

didIχ
i1...isiI ∧ dsi1...is =

=
r−1
∑

|I|=0

didI

(

χi1...isiI − χ[i1...isi]I
)

∧ dsi1...is + di

r−1
∑

|I|=0

dIχ
[i1...isi]I ∧ dsi1...is.
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In the following we show that the local form

di

r−1
∑

|I|=0

dIχ
[i1...isi]I ∧ dsi1...is (11)

can be expressed as the horizontal differential of a (n− s− 1)-horizontal k-
contact (n−s−1+k)-form, obtained by the application of a suitably defined
Residual operator for lower degree forms R.

Proposition 4.1. Let ρ ∈ Ωr
n−s+kW be a (n− s)-horizontal k-contact (n−

s+ k)-form defined on the r-order jet prolongation W r of W . We have

di

r−1
∑

|I|=0

dIχ
[i1...isi]I ∧ dsi1...is =

dH

( r−1
∑

|I|=0

(−1)k
1

(s+ 1)
dIχ

[i1...isi]I ∧ dsi1...isi

)

= dHR(ρ).

Proof. First we rewrite expression (11) using a summation over ordered in-
dices ĩ1 ≤ · · · ≤ ĩs instead of i1 . . . is:

di

r−1
∑

|I|=0

dIχ
[i1...isi]I ∧ dsi1...is = di

r−1
∑

|I|=0

s! dIχ
[̃i1...̃isi]I ∧ dsĩ1...̃is .

Then we expand this sum, using Einstein’s convention for the summation
over multi-indices I:

di

r−1
∑

|I|=0

s! dIχ
[̃i1...̃isi]I ∧ dsĩ1...̃is =

= s!
(

d1dIχ
[̃i1...̃is1]I ∧ dsĩ1...̃is + d2dIχ

[̃i1...̃is2]I ∧ dsĩ1...̃is + . . .

· · ·+ dndIχ
[̃i1...̃isn]I ∧ dsĩ1...̃is

)

.

The following step towards the thesis is to observe that

dsĩ1...̃is = dxi ∧ dsĩ1...̃isi
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without summation on the index i and with i 6= ĩ1, . . . , ĩs. Then we can
proceed as follows:

di

r−1
∑

|I|=0

s! dIχ
[̃i1...̃isi]I ∧ dsĩ1...̃is = (12)

= s!
(

d1dIχ
[̃i1...̃is1]I ∧ dx1 ∧ dsĩ1...̃is1 + d2dIχ

[̃i1...̃is2]I ∧ dx2 ∧ dsĩ1...̃is2 + . . .

· · ·+ dndIχ
[̃i1...̃isn]I ∧ dxn ∧ dsĩ1...̃isn

)

.

For each term of the last equation, we have the same indices in χ[̃i1...̃isi]I and
in dsĩ1...̃isi, though without summation on i.

Our goal is to take each term didIχ
[̃i1...̃isi]I ∧ dxi ∧ dsĩ1...̃isi without sum-

mation on any index and find a way to write it in the form

dldIχ
[̃i1...̃isi]I ∧ dxl ∧ dsĩ1...̃isi

with summation on the index l. In order to make explicit the reasoning, let
us consider the term with i = 1

d1dIχ
[̃i1...̃is1]I ∧ dx1 ∧ dsĩ1...̃is1

again without summation over any index. We have obviously that:

d1dIχ
[̃i1...̃is1]I ∧ dx1 ∧ dsĩ1...̃is1 =

∑

l 6=ĩ1,...,̃is

dldIχ
[̃i1...̃is1]I ∧ dxl ∧ dsĩ1...̃is1.

The remaining terms when l = ĩ1, . . . , l = ĩs can be found among the other
summands of the right hand side of equation (12). As an example, consider
the case when l = ĩ1: among the terms

dĩ1
dIχ

[j̃1...j̃s ĩ1]I ∧ dxĩ1 ∧ dsj̃1...j̃sĩ1

(with summation on the ordered indices j̃1 ≤ · · · ≤ j̃s) there will certainly
be a summand of the form

dĩ1
dIχ

[1̃i2...̃is ĩ1]I ∧ dxĩ1 ∧ ds1̃i2...̃is ĩ1

(this time without summation on any index) which can be recast as

dĩ1
dIχ

[̃i1...̃is1]I ∧ dxĩ1 ∧ dsĩ1...̃is1.
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This is exactly the term we were searching for. Proceeding the same way for
l = ĩ2, . . . , l = ĩs, we can finally obtain the expression

dldIχ
[̃i1...̃is1]I ∧ dxl ∧ dsĩ1...̃is1

(with summation on l) as wanted. Moreover, we remark that the total num-
ber of summands of equation (12) isN = n

(

n−1
s

)

, while the number of ordered
strings of (s+ 1) indices is N ′ =

(

n

s+1

)

, and N = (s+1)N ′. This means that

for every single term of equation (12) didIχ
[̃i1...̃isi]I ∧ dxi ∧ dsĩ1...̃isi (without

summation on any index), there are other s terms with the same indices, just
in a different order.

Therefore, it is not difficult to see that

di

r−1
∑

|I|=0

s! dIχ
[̃i1...̃isi]I ∧ dsĩ1...̃is = dl

r−1
∑

|I|=0

s! dIχ
[̃i1...̃is ĩs+1]I ∧ dxl ∧ dsĩ1...̃is ĩs+1

with summation on ordered indices ĩ1 ≤ · · · ≤ ĩs ≤ ĩs+1. Passing to a sum-
mation on non-ordered indices i1 . . . is+1 and using commutation properties
of wedge products, we can finally write:

di

r−1
∑

|I|=0

dIχ
[i1...isi]I ∧ dsi1...is =

= dl

r−1
∑

|I|=0

1

(s+ 1)
dIχ

[i1...is+1]I ∧ dxl ∧ dsi1...is+1
=

= (−1)n−s−1+kdl

( r−1
∑

|I|=0

(−1)k
1

(s+ 1)
dIχ

[i1...is+1]I ∧ dsi1...is+1

)

∧ dxl =

= dH

( r−1
∑

|I|=0

(−1)k
1

(s+ 1)
dIχ

[i1...is+1]I ∧ dsi1...is+1

)

= dHR(ρ).

q.e.d.

Now, in order to compare the decomposition of equation (10) with the
canonical splitting of variational morphisms, we can state the following result:
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Proposition 4.2. Restricting to the particular case k = 1, we have that the
decomposition

p1ρ = ωσ ∧ ξσ +
r−1
∑

|I|=0

didI(χ
i1...isiI − χ[i1...isi]I) ∧ dsi1...is +

+di

r−1
∑

|I|=0

dIχ
[i1...isi]I ∧ dsi1...is (13)

can be seen as the result of the application of a “canonical splitting”-like
algorithm to the variational morphism associated to p1ρ.

Proof. First of all we remark that when k = 1, we have:

ηJσ = Ai1...isJ
σ (Jr+1y) ∧ dsi1...is ,

thence

ξIσ = (

r−|I|
∑

|J |=0

(−1)|J |
(

|J |+ |I|

|J |

)

dJA
i1...isIJ
σ )dsi1...is

and consequently

χi1...isI =

r−|I|
∑

|J |=0

(−1)|J |
(

|J |+ |I|

|J |

)

dJA
i1...isIJ
σ ωσ. (14)

We remark that the indices i1 . . . is, which in the last two expressions are
contracted with the horizontal form dsi1...is have nothing to do with the
multi-index I.

By Proposition 4.1 and equation (14) we have that the third summand of
equation (13) can be expressed as the horizontal differential of a (n− s− 1)-
horizontal 1-contact (n− s)-form, in particular:

di

r−1
∑

|I|=0

dIχ
[i1...isi]I ∧ dsi1...is = (15)

= dH [
r−1
∑

|I|=0

−1

(s+ 1)
dIχ

[i1...isi]I ∧ dsi1...isi] =

= dH [
−1

(s+ 1)

r−1
∑

|I|=0

dI(

r−|iI|
∑

|J |=0

(−1)|J |
(

|J |+ |iI|

|J |

)

dJA
[i1...isi]IJ
σ ωσ) ∧ dsi1...isi].



Geometric integration by parts and Lepage equivalents 22

According to Proposition 3.2 this term corresponds to the divergence term of
the “canonical splitting”-like algorithm. Its explicit form can be computed
as described in Step 2 of the proof of Proposition 3.1. In particular, if we
develop the total derivatives dI inside the sum in equation (15) and collect the
coefficients of the contact forms of the same order, we obtain the expression

dH

[

−1

(s+ 1)

r−1
∑

|I|=0

dI

(

r−|iI|
∑

|J |=0

(−1)|J |
(

|J |+ |iI|

|J |

)

dJA
[i1...isi]IJ
σ ωσ

)

∧ dsi1...isi

]

=

= dH [−
1

(s + 1)

r−1
∑

|L|=0

t̂i1...isiLσ ωσ
L ∧ dsi1...isi] (16)

where the coefficients t̂’s are defined iteratively by:

t̂i1...isil1...lr−1

σ = A[i1...isi]l1...lr−1

σ

t̂i1...isil1...lr−2

σ = A[i1...isi]l1...lr−2

σ − dk t̂
i1...isil1...lr−2k
σ (17)

. . .

t̂i1...isiσ = A[i1...isi]
σ − dkt̂

i1...isik
σ .

In order to understand how the algorithm is defined, we have to com-
pute explicitly the other terms of decomposition (13). Let us start, using
equation (14), with:

χi1...isiI − χ[i1...isi]I =

r−|iI|
∑

|J |=0

(−1)|J |
(

|J |+ |iI|

|J |

)

dJ

(

Ai1...isiIJ
σ − A[i1...isi]IJ

σ

)

ωσ.

We call Bi1...isiIJ
σ = Ai1...isiIJ

σ − A
[i1...isi]IJ
σ and remark that this object is

antisymmetric in the indices i1 . . . is, symmetric in the indices of the multi-
indices IJ := (̂i1 . . . îlĵ1 . . . ĵm), but it is not completely symmetric in iI :=
(îi1 . . . îl).

So, what we want to make explicit can be written as:

r−1
∑

|I|=0

didI

(

χi1...isiI − χ[i1...isi]I
)

∧ dsi1...is = (18)

=
r−1
∑

|I|=0

didI

( r−|iI|
∑

|J |=0

(−1)|J |
(

|J |+ |iI|

|J |

)

dJB
i1...isiIJ
σ ωσ

)

∧ dsi1...is .
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Developing the total derivatives of forms of this expression, we obtain a linear
combination of the forms ωσ

L ∧ dsi1...is . We compute the coefficients of this
linear combination according to the length of the multi-index L:

|L| = r The only contribution to this coefficient comes from setting |I| = r−1
in equation (18) and applying all the total derivatives to ωσ. Renaming
the multi-index L = lL′ (hence with |L′| = |L| − 1), we obtain:

Bi1...islL
′

σ = Ai1...islL
′

σ − A[i1...isl]L′

σ .

|L| = r − 1 One first contribution comes from setting |I| = r−2 and applying
all the total derivatives to ωσ, getting:

Bi1...isL
σ − rdiB

i1...isLi
σ .

Another contribution comes from setting |I| = r − 1 and applying one
derivative to B and the others to ωσ, getting:

diB
i1...isiL
σ +

(

r − 1

1

)

diB
i1...isLi
σ .

Summing up these contributions, and renaming L = lL′, we obtain:

Bi1...islL
′

σ − diB
i1...islL

′i
σ + diB

i1...isilL
′

σ =

= Ai1...islL
′

σ − A[i1...isl]L′

σ − diA
i1...islL

′i
σ + diA

[i1...isl]L′i
σ +

+diA
i1...isilL

′

σ − diA
[i1...isi]lL′

σ =

= Ai1...islL
′

σ − A[i1...isl]L′

σ + diA
[i1...isl]L′i
σ − diA

[i1...isi]lL′

σ .

|L| = r − 2 One contribution comes from setting |I| = r − 3 and applying
all the derivatives to ωσ, getting a term (again we rename L = lL′):

Bi1...islL
′

σ −

(

r − 1

1

)

diB
i1...islL

′i
σ +

(

r

2

)

dabB
i1...islL

′ab
σ .

Another contribution comes from setting |I| = r− 2 and applying only
r − 2 derivatives to ωσ, getting:

diB
i1...isilL

′

σ +

(

r − 2

1

)

diB
i1...islL

′i
σ −

−rdiaB
i1...isialL

′

σ − r

(

r − 2

1

)

dabB
i1...islL

′ab
σ .
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One last contribution comes from setting |I| = r−1 and applying only
r − 2 derivatives to ωσ, getting:

(

r − 1

1

)

diaB
i1...isialL

′

σ +

(

r − 1

2

)

dabB
i1...islL

′ab
σ .

Summing first the terms with two total derivatives, we obtain:

−diaB
i1...isialL

′

σ + dabB
i1...islL

′ab
σ = diaA

[i1...isi]alL′

σ − dabA
[i1...isl]L′ab
σ .

Summing the terms with one total derivative of the B’s, we obtain:

diB
i1...isilL

′

σ − diB
i1...islL

′i
σ = −diA

[i1...isi]lL′

σ + diA
[i1...isl]L′i
σ

Summing all together, we finally obtain that the coefficient for |L| =
r − 2 is:

Ai1...islL
′

σ −A[i1...isl]L′

σ + diA
[i1...isl]L′i
σ − dabA

[i1...isl]L′ab
σ −

−diA
[i1...isi]lL′

σ diaA
[i1...isi]alL′

σ

. . .

It remains to see what is the coefficient for |L| = 0, i.e. the coefficient of
the form ωσ∧dsi1...is . The first term we need to consider is obviously ωσ∧ξσ,
where

ξσ =

( r
∑

|J |=0

(−1)|J |dJA
i1...isJ
σ

)

∧ dsi1...is .

The other contributions come from

r−1
∑

|I|=0

didI

( r−|iI|
∑

|J |=0

(−1)|J |
(

|J |+ |iI|

|J |

)

dJB
i1...isiIJ
σ ωσ

)

∧ dsi1...is

applying all the total derivatives to the B’s. In other words, renaming iI → I,
we want to compute the expression:

r
∑

|J |=0

(−1)|J |dJA
i1...isJ
σ +

r
∑

|I|=1

r−|I|
∑

|J |=0

(−1)|J |
(

|J |+ |I|

|J |

)

dIdJB
i1...isIJ
σ . (19)

Again, we collect the terms of equation (19) according to the length L of the
multi-index J in the first sum and IJ in the second sum:
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L = 0 Since the second double sum of equation (19) starts with |I| = 1, we
have only the first term Ai1...is

σ from the first sum.

L = 1 From the first sum we get the term −diA
i1...isi
σ , while from the second

sum, considering |I| = 1 and |J | = 0, we get diB
i1...isi
σ . Summing

together these contribution we obtain:

−diA
i1...isi
σ + diB

i1...isi
σ = −diA

[i1...isi]
σ .

L = 2 From the first sum we get the term dabA
i1...isab
σ , while in the second

sum we can choose |I| = 2 and |J | = 0, getting the term dabB
i1...isab
σ ,

or |I| = 1 and |J | = 1, getting the term −2dabB
i1...isab
σ . Summing all

together, we obtain:

dabA
i1...isab
σ − dabB

i1...isab
σ = dadbA

[i1...isa]b
σ .

. . .

It is not difficult to see that, for general length L, from expression (19), we
obtain the term:

(−1)Lda1...aLA
i1...isa1...aL
σ +

L−1
∑

k=0

(−1)k
(

L

k

)

da1...aLB
i1...isa1...aL
σ =

= (−1)L
(

da1...aLA
i1...isa1...aL
σ − da1...aLB

i1...isa1...aL
σ

)

=

= (−1)Lda1...aLA
[i1...isa1]a2...aL
σ .

where we used
∑L−1

k=0 (−1)k
(

L

k

)

= −(−1)L. Thence finally, the coefficient of
the form ωσ ∧ dsi1...is is given by:

Ai1...is
σ − da1A

[i1...isa1]
σ + da1da2A

[i1...isa1]a2
σ + . . .

· · ·+ (−1)rda1 . . . darA
[i1...isa1]a2...ar
σ .

The form of the coefficients of the forms ωσ
L∧dsi1...is , with |L| = 0, 1, 2, . . . , r,

that we have computed from expression (18), suggests us the definition of a
“canonical splitting”-like algorithm.

Let us consider the (n − s)-horizontal 1-contact (n − s + 1)-form p1ρ ∈
Ωr+1

n−s+1W as a variational morphism

Vρ : J
r+1W −→ (JrV (W ))∗ ⊗ An−s(U)
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with

< Vρ|J
rΞ >:= JrΞy p1ρ =

= (Ai1...is
σ Ξσ + Ai1...isj1

σ Ξσ
j1
+ · · ·+ Ai1...isj1...jr

σ Ξσ
j1...jr

) ∧ dsi1...is .

According to Propositions 3.1 and 3.2 and with respect to equation (13), we
can define two variational morphisms

E′ : J2r+1W −→ (JrV (W ))∗ ⊗ An−s(U)

T′ : J2rW −→ (Jr−1V (W ))∗ ⊗ An−s−1(U),

such that

< Vρ|J
rΞ >=< E′|JrΞ > +Div(< T′|Jr−1Ξ >)

and in particular we have the correspondences:

< E′|JrΞ >= JrΞy(ωσ ∧ ξσ +
r−1
∑

|I|=0

didI(χ
i1...isiI − χ[i1...isi]I) ∧ dsi1...is),

and

Div(< T′|Jr−1Ξ >) = JrΞy dH(

r−1
∑

|I|=0

−
1

(s+ 1)
dIχ

[i1...isi]I ∧ dsi1...isi).

Using equations (16) and (17) and Proposition 3.2 it is immediate to see that
the components of T′ are given by:

< T′|Jr−1Ξ >= (t̂i1...is+1

σ Ξσ + t̂i1...is+1j1
σ Ξσ

j1
+ . . .

· · ·+ t̂i1...is+1j1...jr−1

σ Ξσ
j1...jr−1

) ∧ dsi1...isis+1
.

Denoting with ê the components of E′, so that

< E′|JrΞ >= (êi1...isσ Ξσ + êi1...isj1σ Ξσ
j1
+ · · ·+ êi1...isj1...jrσ Ξσ

j1...jr
) ∧ dsi1...is

and comparing with the results of the calculations described above, we can
finally give the general form of the coefficients ê:

êi1...isj1...jrσ = Ai1...isj1...jr
σ − t̂i1...isj1...jrσ ,

êi1...isj1...jhσ = Ai1...isj1...jh
σ − dit̂

i1...isij1...jh
σ − t̂i1...isj1...jhσ 1 ≤ h < r,

êi1...isσ = Ai1...is
σ − dit̂

i1...isi
σ .

q.e.d.



Geometric integration by parts and Lepage equivalents 27

Remark 4.1. In the particular case of a form χi1...isiI antisymmetric in the
indices [i1 . . . isi] on its own, i.e. when χi1...isiI = χ[i1...isi]I , we obtain a de-
composition

p1ρ = ωσ ∧ ξσ + dH

[ r−1
∑

|I|=0

−
1

(s + 1)
dIχ

i1...isiI ∧ dsi1...isi

]

which first appeared in [18] and it formally resembles to the decomposition (3)
obtained by Krbek and Musilová for top forms.

Remark 4.2. We used the term “canonical splitting”-like algorithm to de-
scribe the decomposition of Proposition 4.2 because the coefficients ê of E′

are not symmetric in the indices (j1 . . . jh) (this is due to the presence of
the terms t̂i1...isj1...jhσ which are not symmetric in their last h indices) as they
should. Moreover the variational morphism E′ is not even reduced in the
sense of Definition 2.3, while the volume part is reduced in that sense.

Indeed, we can give an account for the difference between the splitting

< Vρ|J
rΞ >:= JrΞyp1ρ =< E|JrΞ > +Div(< T|Jr−1Ξ >), (20)

with

Vρ : J
r+1W −→ (JrV (W ))∗ ⊗ An−s(U)

E : J2r+1W −→ (JrV (W ))∗ ⊗ An−s(U)

T : J2rW −→ (Jr−1V (W ))∗ ⊗ An−s−1(U),

and the decomposition (13)

JrΞy p1ρ = JrΞy(ωσ ∧ ξσ +
r−1
∑

|I|=0

didI

(

χi1...isiI − χ[i1...isi]I) ∧ dsi1...is

)

+

+JrΞy dH(
r−1
∑

|I|=0

−
1

(s+ 1)
dIχ

[i1...isi]I ∧ dsi1...isi)

which, as we have just shown, can be seen as a local variational morphism
splitting

JrΞy p1ρ =:< Vρ|J
rΞ >=< E′|JrΞ > +Div(< T′|Jr−1Ξ >),
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with

E′ : J2r+1W −→ (JrV (W ))∗ ⊗ An−s(U)

T′ : J2rW −→ (Jr−1V (W ))∗ ⊗ An−s−1(U),

where the morphisms E′ and T′ are defined according to Proposition 4.2.
In particular, in view of possible applications to momentum morphisms, i.e.
1-contact (n− 1)-forms (related to the Poincaré-Cartan morphism), we can
state the following results (that we guess could be extended to the general
case).

Proposition 4.3. Let r = 1, 0 ≤ s < n and let ρ ∈ Ω1
n−s+1W be a 1-contact

(n− s)-horizontal form on W 1. Then the two splitting formulae:

< Vρ|J
1Ξ >=< E|J1Ξ > +Div(< T|Ξ >) =< E′|J1Ξ > +Div(< T′|Ξ >)

give the same result. In other words:

E′ = E , T′ = T.

Proof. We observe that locally we have

p1ρ =
(

Ai1...is
σ ωσ + Ai1...isj

σ ωσ
j

)

∧ dsi1...is ∈ Ω2
n−s+1W.

Thence, for any vertical vector field Ξ: W −→ V (W ), the variational mor-
phism Vρ : J

2W −→
(

J1V (W )
)∗

⊗An−s(U) is defined by:

< Vρ|J
1Ξ >=

1

s!

(

s!Ai1...is
σ Ξσ + s!Ai1...isj

σ Ξσ
j

)

∧ dsi1...is .

Applying to this expression of Vρ the canonical splitting algorithm from the
theory of variational morphisms, we easily obtain the following volume term
and boundary term, respectively:

E =
1

s!

[

s!
(

Ai1...is
σ − dkA

[i1...isk]
σ

)

ωσ + s!
(

Ai1...isj
σ −A[i1...isj]

σ

)

ωσ
j

]

∧ dsi1...is

T =
1

(s+ 1)!

[

s!A[i1...isi]
σ ωσ

]

∧ dsi1...isi.

On the other hand the recurrence formulae of our decomposition give as
results:

E′ =
[(

Ai1...is
σ − dkA

[i1...isk]
σ

)

ωσ +
(

Ai1...isj
σ − A[i1...isj]

σ

)

ωσ
j

]

∧ dsi1...is

T′ =
1

(s+ 1)

[

A[i1...isi]
σ ωσ

]

∧ dsi1...isi

which prove our proposition. q.e.d.
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Proposition 4.4. Let r = 2 and s = 1 and let ρ ∈ Ω2
nW be a 1-contact

(n− 1)-horizontal form on W 2. Then there exists a variational morphism

α : J4W −→ (J1V (W ))∗ ⊗An−2(U)

such that the decompositions

< Vρ|J
2Ξ >=< E|J2Ξ > +Div(< T|J1Ξ >) =< E′|J2Ξ > +Div(< T′|J1Ξ >)

are related by

E′ = E−Dα , T′ = T+ α , (21)

where

Dα : J5W −→ (J2V (W ))∗ ⊗ An−1(U)

is the unique variational morphism such that

< Dα|J2Ξ >= Div(< α|J1Ξ >)

Proof. Again we show this relation by direct calculations. For r = 2 and
s = 1, we have locally

p1ρ =
(

Ai
σω

σ + Aij1
σ ωσ

j1
+ Aij1j2

σ ωσ
j1j2

)

∧ dsi ∈ Ω3
nW.

It is not difficult to see that, choosing the fibered connection whose coef-
ficients vanish in the coordinate domain W ⊂ Y , we obtain the following
volume part and boundary part:

< E|J2Ξ >=
[(

Ai
σ − daA

[ia]
σ −

2

3
dbdaA

[ib]a
σ

)

Ξσ + (22)

+
(

A(ij1)
σ +

2

3
daA

aij1
σ −

2

3
daA

(ij1)a
σ

)

Ξσ
j1
+ A(ij1j2)

σ Ξσ
j1j2

]

∧ dsi

< T|J1Ξ >=
1

2

[(

A[i1i2]
σ −

2

3
daA

[i1i2]a
σ

)

Ξσ +
4

3
A[i1i2]j

σ Ξσ
j

]

∧ dsi1i2 .

In order to compute T′ from equation (15), we first report

χij1 = (Aij1
σ − 2daA

ij1a
σ )ωσ , χij1j2 = Aij1j2

σ ωσ ,



Geometric integration by parts and Lepage equivalents 30

then

T′ =
1

∑

|J |=0

1

2
dJχ

[i1i2]J ∧ dsi1i2 =
1

2
χ[i1i2] ∧ dsi1i2 +

1

2
daχ

[i1i2]a ∧ dsi1i2 =

=
1

2
(A[i1i2]

σ − 2daA
[i1i2]a
σ )ωσ ∧ dsi1i2 +

1

2
(daA

[i1i2]a
σ ωσ + A[i1i2]a

σ ωσ
a ) ∧ dsi1i2 =

=
[1

2
(A[i1i2]

σ − daA
[i1i2]a
σ )ωσ +

1

2
A[i1i2]a

σ ωσ
a

]

∧ dsi1i2 .

Comparing with equation (22) it is immediate to get:

α := T′ − T =
[

−
1

6
daA

[i1i2]a
σ ωσ −

1

6
A[i1i2]a

σ ωσ
a

]

∧ dsi1i2 .

For what concerns E′ we have, according to the “canonical splitting”-like
algorithm of Proposition 4.2:

E′ =
[

(Ai
σ − daA

[ia]
σ + dbdaA

[ib]a
σ )ωσ + (Aij1

σ − daA
[ia]j1
σ − A[ij1]

σ + daA
[ij1]a
σ )ωσ

j1
+

+(Aij1j2
σ − A[ij1]j2

σ )ωσ
j1j2

]

∧ dsi.

Thence the difference E′ − E is given by:

E′ − E =
[1

3
dbdaA

[ib]a
σ ωσ + (daA

[ai]j1
σ + (23)

+daA
[ij1]a
σ +

2

3
daA

(ij1)a
σ −

2

3
daA

aij1
σ )ωσ

j1
+ (A(ij1)j2

σ − A(ij1j2)
σ )ωσ

j1j2

]

∧ dsi .

On the other hand

−Dα = D(−α) = (24)

=
[1

3
dbdaA

[ib]a
σ ωσ + (

1

3
daA

[ij1]a
σ +

1

3
daA

[ia]j1
σ )ωσ

j1
+

1

3
A[ij1]j2

σ ωσ
j1j2

]

∧ dsi .

To complete our discussion we just have to compare the coefficients of the
respective contact forms in equations (23) and (24). The coefficients of ωσ

are precisely the same. Let us take the coefficients of ωσ
j1

and compute their
difference:

2

3
(daA

[ij1]a
σ + 2daA

[ai]j1
σ + daA

(ij1)a
σ − daA

aij1
σ ) =

=
2

3
(daA

ij1a
σ + daA

aij1
σ − daA

iaj1
σ − daA

aij1
σ ) = 0.



Geometric integration by parts and Lepage equivalents 31

Finally, consider the coefficient of ωσ
j1j2

and recast it as follows:

A(ij1)j2
σ −A(ij1j2)

σ =
1

2
(Aij1j2

σ + Aj1ij2
σ )−

1

3
(Aij1j2

σ + Aj1ij2
σ + Aj2j1i

σ ) =

=
1

6
Aij1j2

σ +
1

6
Aj1ij2

σ −
1

3
Aj2j1i

σ =
1

6
Aij1j2

σ −
1

6
Aj1ij2

σ +
1

3
Aj1j2i

σ −
1

3
Aj2j1i

σ =

=
1

3
A[ij1]j2

σ +
2

3
A[j1j2]i

σ .

When the last right hand side of the equations above is contracted with ωσ
j1j2

(which is symmetric in (j1j2)) only the first term 1
3
A

[ij1]j2
σ remains, which is

exactly the coefficient in equation (24), as we wanted to show. q.e.d.

If we consider the case of E given by the momentum morphism accord-
ing to the formulation of [3] and [4], then the relation (21) provides another
Lepage equivalent than the usual Poincaré-Cartan form (see also the discus-
sion about this point in [18]). The uniqueness and globality properties of
the terms E′ and T′ remain to be deeper investigated; in particular, when
defined globally, the difference E′ − E is a closed form, thus defining a de
Rham cohomology class. This feature deals with other topological aspects of
Lagrangian field theories [2, 5, 6, 17, 19] which will be the subject of future
research.

5 The Krupka–Betounes equivalent for first

order theories and a first glance to the sec-

ond order

Suppose we have a fibered manifold π : Y −→ X , with dimX = n and
dimY = n +m. Consider a local chart (xi, yσ), 1 ≤ i ≤ n, 1 ≤ σ ≤ m on Y ,
then on J1Y we have local fibered coordinates (xi, yσ, yσj ), with 1 ≤ i, j ≤ n
and 1 ≤ σ ≤ m.

Let us consider a Lagrangian λ, defined on J1Y , locally expressed as
λ = L (xi, yσ, yσj )ds. As we already remarked, in [18] a Residual operator for
lower degree forms was obtained by the first author for the antisymmetric
case; see Remark 4.1 above. Olga Rossi [20] conjectured that, making use of
it, the Krupka–Betounes Lepage equivalent for first order theories could be
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obtained by the application of the following recurrence formulae:

ρ1 = λ− p1R(dλ) = θλ (Poincaré-Cartan form of the Lagrangian)

ρ2 = ρ1 − p2R(dρ1)

ρ3 = ρ2 − p3R(dρ2)

. . .

ρn = ρn−1 − pnR(dρn−1)

with R and R the residual operator for top forms and lower degree forms,
respectively.

In the following, in view of a generalization to the second order case, we
apply the recurrence formulae by using the characterization of the Residual
operator for lower degree forms as given in the present paper by Proposition
4.1.

We compute explicitly the forms ρ1, . . . , ρn. First we have the well-known
Poincaré-Cartan form of λ:

ρ1 = θλ = L ds+ piσω
σ ∧ dsi piσ :=

∂L

∂yσi
.

In order to compute ρ2 we observe that the Residual operator R does not
change the order of contactness of its argument, i.e. p2R(dρ1) = R(p2dρ1).
Thus we can reduce ourselves to consider only the 2-contact component of
the differential of ρ1. In particular:

p2dρ1 = ωσ ∧ (∂σp
i
νω

ν ∧ dsi) + ωσ
j ∧ (∂jσp

i
νω

ν ∧ dsi) =

= ωσ ∧ [∂σp
i
νω

ν ∧ dsi − dj(∂
j
σp

i
νω

ν ∧ dsi)] + dj [ω
σ ∧ (∂jσp

i
νω

ν ∧ dsi)] .

Specializing Proposition 4.1 we have:

R(p2dρ1) =
1

2
∂jσp

i
νω

σ ∧ ων ∧ dsij.

Thus

ρ2 = ρ1 − p2R(dρ1) = L ds+ piσω
σ ∧ dsi +

1

2
∂iσp

j
νω

σ ∧ ων ∧ dsij.

Now we compute ρ3 = ρ2 − p3R(dρ2). Again we can restrict our attention
to the term

p3dρ2 =
1

2
(∂σ1

∂iσ2
pjσ3

ωσ1 ∧ ωσ2 ∧ ωσ3 ∧ dsij + ∂kσ1
∂iσ2

pjσ3
ωσ1

k ∧ ωσ2 ∧ ωσ3 ∧ dsij)

= ωσ1 ∧ (. . . ) + dk[ω
σ1 ∧

1

2
(∂kσ1

∂iσ2
pjσ3

ωσ2 ∧ ωσ3 ∧ dsij)].
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Thence

p3R(dρ2) = −
1

6
∂kσ1

∂iσ2
pjσ3

ωσ1 ∧ ωσ2 ∧ ωσ3 ∧ dsijk

and finally

ρ3 = ρ2 − p3R(dρ2) = L ds+ piσω
σ ∧ dsi +

1

2!
∂i1σ1

pi2σ2
ωσ1 ∧ ωσ2 ∧ dsi1i2 +

+
1

3!
∂i1σ1

∂i2σ2
pi3σ3

ωσ1 ∧ ωσ2 ∧ ωσ3 ∧ dsi1i2i3 .

Proceeding this way it is straightforward to see that at the end we obtain
the following result:

ρn = L ds+

n
∑

q=1

1

q!

∂qL

∂yσ1

i1
. . . ∂y

σq

iq

ωσ1 ∧ · · · ∧ ωσq ∧ dsi1...iq (25)

which is known as the Krupka-Betounes equivalent of the Lagrangian λ [1,
10, 11, 21, 23].

5.1 Lepage equivalents for second order theories

Let us now consider a second order Lagrangian λ = L (xi, yσ, yσj , y
σ
jk)ds. As

a first step we compute the Poincaré-Cartan form of the Lagrangian using
the first of Olga Rossi’s recurrence formulae: ρ1 = λ− p1R(dλ) = θλ.

dλ = pσω
σ ∧ ds+ pjσω

σ
j ∧ ds+ pjkσ ω

σ
jk ∧ ds =

= djdk(p
jk
σ ω

σ ∧ ds) + dj [(p
j
σ − 2dkp

jk
σ )ωσ ∧ ds] + (dkdjp

jk
σ − djp

j
σ + pσ)ω

σ ∧ ds.

Using the formula for the residual operator in this particular case:

R =

1
∑

|I|=0

(−1)1dIχ
Ij ∧ dsj,

we obtain:

p1R(dλ) = −[(pjσ − 2dkp
jk
σ + dkp

jk
σ )ωσ ∧ dsj + pjkσ ω

σ
k ∧ dsj].

Then, as expected, the Poincaré-Cartan form of the Lagrangian λ is:

θλ = L ds+ (pjσ − dkp
jk
σ )ωσ ∧ dsj + pjkσ ω

σ
k ∧ dsj.
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We now rename f j
σ := pjσ − dkp

jk
σ and f jk

σ := pjkσ and continue computing the
second of Rossi’s recurrence formulae: ρ2 = θλ − p2R(dθλ).

We are interested only in the 2-contact component of dθλ because p2R =
p2Rp2, i.e. the Residual operator R does not increase the order of contactness
of its argument, thus let us write

p2(dθλ) = ωσ ∧ (∂σf
i
σ2
ωσ2 ∧ dsi − ∂j1σ1

f i
σω

σ1

j1
∧ dsi − ∂j1j2σ1

f i
σω

σ1

j1j2
∧ dsi +

+∂σf
ij2
σ2
ωσ2

j2
∧ dsi) + ωσ

j ∧ (∂jσf
ij2
σ2
ωσ2

j2
∧ dsi − ∂j1j3σ1

f ij
σ ω

σ1

j1j3
∧ dsi) .

Now we recast this expression in the form
∑1

|I|=0 dI(ω
σ ∧ ξIσ) and apply the

integration by parts lemma, so to get for the Residual operator

p2R(dθλ) =
1

2
∂jσf

ij2
σ2
ωσ2

j2
∧ dsij −

1

2
∂j1j3σ1

f ij
σ ω

σ1

j1j3
∧ dsij =

=
1

2
∂jσf

ij2
σ2
ωσ2

j2
∧ dsij ,

being f ij
σ symmetric in (ij). Hence we obtain the following formula for ρ2:

ρ2 = L ds+ f i
σω

σ ∧ dsi + f ij
σ ω

σ
j ∧ dsi +

1

2
∂i1σ1

f i2j2
σ2

ωσ1 ∧ ωσ2

j2
∧ dsi1i2

It turns out that it is possible to apply this reasoning at any step of Rossi’s
recurrence formulae, e.g. at the third step we get

p3R(dρ2) = −
1

6
∂i1σ1

∂i2σ2
f i3j
σ ωσ1 ∧ ωσ2 ∧ ωσ

j ∧ dsi1i2i3 .

Proceeding this way, the final expression of ρn has the form:

ρn = L ds+ f i
σω

σ ∧ dsi +

+

n
∑

q=1

1

q!

∂L

∂yσ1

i1
. . . ∂y

σq−1

iq−1
∂y

σq

iqj

ωσ1 ∧ . . . ∧ ωσq−1 ∧ ω
σq

j ∧ dsi1...iq

We remark that the integration by parts is not uniquely defined in the case
r = 2. Indeed, if we take into account in the decomposition of p2(dρ1) =
p2(dθλ) also the term ωσ

j ∧ (∂jσf
i
σ2
ωσ2 ∧ dsi) and work on it as above, we

get an additional term in ρn, thus obtaining a sort of generalization of the
Krupka-Betounes equivalent at the second order, namely :

ρn = L ds+
n

∑

q=1

1

q!

∂L

∂yσ1

i1
. . . ∂y

σq−1

iq−1
∂y

σq

iqj

ωσ1 ∧ . . . ∧ ωσq−1 ∧ ω
σq

j ∧ dsi1...iq +

+f i
σω

σ ∧ dsi +
n−1
∑

q=1

1

(q + 1)!

∂f
iq+1

σq+1

∂yσ1

i1
. . . ∂y

σq

iq

ωσ1 ∧ . . . ∧ ωσq ∧ ωσq+1 ∧ dsi1...iqiq+1
,
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which exactly reduces to the Krupka-Betounes equivalent (25), when the
Lagrangian is of order r = 1 (see [16] for a review on Lepage equivalents of
order r ≥ 1).

Acknowledgements

Research partially supported by Department of Mathematics - University
of Torino through the projects PALM RILO 20 01 and written under the
auspices of GNSAGA-INdAM (MP). The first author (MP) would also like
to acknowledge the contribution of the COST Action CA17139. The third
author (FZ) is also supported by a PhD Grant of the University of Göttingen.

References

[1] D.E. Betounes: Extension of the classical Cartan form, Phys. Rev. D29
(1984) 599.

[2] F. Cattafi, M. Palese, E. Winterroth: Variational derivatives in lo-
cally Lagrangian field theories and Noether-Bessel-Hagen currents, Int.
Journ. Geom. Meth. Mod. Phys 13 (8) (2016)1650067.

[3] L. Fatibene, M. Francaviglia: Natural and Gauge Natural Formalism for
Classical Field Theories, Springer (2003).

[4] M. Ferraris: Fibered connections and global Poincaré-Cartan forms in
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