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In this work a general Monte Carlo framework is proposed for applying numerical knot
invariants in simulations of systems containing knotted one-dimensional ring-shaped ob-
jects like polymers and vortex lines in fluids, superfluids or other quantum liquids. A
general prescription for smoothing the sharp corners appearing in discrete knots consist-
ing of segments joined together is provided. Smoothing is very important for the correct
evaluation of numerical knot invariants.

A discrete version of framing is adopted in order to eliminate singularities that are
possibly arising when computing the invariants. The presented algorithms for smoothing,
eliminating potentially dangerous singularities and speeding up the calculations are quite
general and can be applied to any discrete knot defined off or on-lattice.

This is one of the first attempts to use numerical knot invariants in order to avoid
potential topology breakings during the sampling process taking place in computer sim-
ulations, in which millions of knot conformations are randomly generated. As an applica-
tion, the energy domain of knotted polymers rings subjected to short-range interactions
is studied using the so-called Vassiliev knot invariant of degree 2.

Keywords: Statistical mechanics, structure of matter; finite type and quantum invariants,
topological quantum field theories (TQFT); Monte Carlo methods.
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1. Introduction

There are many situations in which it is necessary to distinguish the topological
properties of ring-shaped quasi one-dimensional objects. This is for instance the
case of polymers [1,2], vortex structures in nematic liquid crystals [3] or 3He su-
perfluid [4,5] and disclination lines in chiral nematic colloids [6,7,8]. In order to
ascertain the type of a knot, it is possible to apply the so-called knot invariants.
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These mathematical quantities, which remain unchanged under ambient isotopy,
are usually represented in the form of polynomials, like for example the Alexander
[9], Kauffman [10] or the HOMFLY polynomials [11]. Alternatively, certain knot
invariants may be defined in terms of multiple curvilinear integrals, in which the
integrations are performed along the loop formed by the knot in space or elements
of it [12,13,14,15,16,17]. The latter invariants belong to the family of the so-called
numerical invariants and are not limited only to knots, as there exist also numeri-
cal invariants for links. They may be derived from the Wilson loop amplitudes of
topological field theories [16,17].

Particularly important for applications is the case in which knots (or links) are
constructed by joining together at their ends a set of N segments. Discrete knots of
this kind are in fact the most common concrete realizations of knots in numerical
simulations. Formally, a discrete knot is a C0−curve, i. e. a curve that is piecewise
smooth and is characterized by sharp corners at the joints between contiguous seg-
ments. While there exist already well established mathematical algorithms in order
to compute numerically polynomial knot invariants, see for instance the pioneering
work [18], there are not many studies concerning the numerical computation of
knot invariants given in the form of multiple line integrals for such discrete knots.
This works aims to fill this gap. Of course, the calculation of line integrals over
discrete data is a textbook subject [19,20]. Moreover, problems in which knots are
discretized using splines have been investigated for example in [21]. However, we
are facing here a somewhat different problem that is specific to the calculation of
knot invariants expressed as multiple curvilinear integrals in computer simulations.
Such invariants turn out to be not well defined in the case of discrete knots. As we
show in this paper, any attempt to compute the exact value of an invariant like
the Vassiliev knot invariant of degree 2 fails. The reason of this failure is due to
the presence of the non-smooth corners at the joints between contiguous segments.
One of the main goals of this work is to solve this difficulty by replacing the piece-
wise smooth curve representing a discrete knot with a more regular one. Several
techniques for smoothing curves are already available, see for example Refs. [22,23]
and [24,25,26], but a dedicated fast algorithm for smoothing discrete knots that is
suitable for numerical simulations in which millions of different knot conformations
are sampled is still missing.

In order to provide a smoothing procedure that is sufficiently fast and is valid
for any discrete knot without destroying its topology, the following strategy has
been adopted. First, it is determined a region around each sharp corner that is
free from other elements of the knot apart from the two contiguous segments that
have their joint at that corner. This task is relatively simple on a lattice, but not
off-lattice or whenever the segments composing a knot are allowed to get arbitrarily
close to each other. We develop here a technique that is valid in the most general
case. The idea is to surround each sharp corner with a sphere. The radii of these
spheres are chosen in such a way that different spheres do not overlap. Next, we
replace the sharp corners with a special family of arcs of smooth curves. These arcs



August 22, 2020 14:22 WSPC/INSTRUCTION FILE article

Application of numerical invariants in computer simulations: A comprehensive MC approach 3

are constructed in such a way that they lie entirely inside the spheres. We show
that the proposed procedure transforms the original discrete loops into G1−curvesa
without altering their topological configurations. This is sufficient to determine the
topological type of the smoothed knot using numerical knot invariants, a task that
is crucial in computer simulations of polymers rings with non-trivial topology. In
fact, during the sampling process, the conformations of a discrete knot are ran-
domly changed very fast and it is important to check that the topology of the knot
is preserved after each change, see for instance Ref. [29] on that point. We provide
here a comprehensive Monte Carlo approach for the computation of the value of
general numerical topological invariants. The time necessary to evaluate the sev-
eral multiple curvilinear integrals appearing in the expressions of these invariants
is considerably reduced by adopting several speeding up tricks. Together with the
addition of an high degree of parallelisation and the use of GPUs, the detection of
the type of a knot via numerical invariants becomes competitive with respect to
polynomial invariants. Indeed, already the calculation of a relatively simple poly-
nomial invariant like that of Alexander requires that the knot is projected onto a
plane and all the crossing points in which the lines of the projected knot intersect
themselves must be inspected. The expression of the Alexander polynomial for a
given knot is then obtained by computing the determinant of a matrix of dimension
M×M, where M is the number of crossings. In a tight knot M can grow very large
as it is well illustrated by Fig. 1, in which a knot composed by 3994 segments on
a cubic lattice is represented. With the provided algorithms, numerical invariants
become a valid alternative.

As an application, we search for conformations of minimal energy in the concrete
case of knots formed by polymers whose monomers are subjected to very short-range
attractive interactions. This is a computationally demanding problem in the case of
long polymers because billions of conformations have to be explored in a reasonable
time while keeping the topology of the knot fixed. To detect possible topology
changes during the sampling, we use the Vassiliev knot invariant of degree 2 of a
knot C [28], denoted here ϱ(C). The main advantages of choosing this numerical
invariant are its relative simplicity and the fact that its exact values for different
knot types are known. This makes easier to test the correctedness of numerical
results. With the smoothing procedure and the Monte Carlo approach proposed in
this work, ϱ(C) may be calculated numerically with an arbitrarily high precision. We
stress the fact that while all knots treated in our polymer simulations are originally
defined on a simple cubic lattice, this is no longer true after the transformations
made in order to speed up the calculations. In particular, this is due to an algorithm
that has been provided in order to reduce by a factor three the number of segments
without changing the topology of a knot.

In order to derive the Vassiliev invariant of degree 2, the evaluation of compli-

aWe recall that a G1−curve is a tangent vector geometrically continuous curve characterized by
the fact that the unit tangent vector to the curve is continuous [27].
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Fig. 1. A knot 91 composed by N = 3994 segments in a cubic lattice. The knot is compressed in
a volume of 30× 30× 30 lattice units.

cated quadruple and triple line integrals is required. In this case, the Monte Carlo
integration scheme adopted in this work is more suitable than traditional integra-
tion methods [30]. To randomly transform the knots, the pivot moves have been
exploited [31], but there are several other valid alternatives like the pull moves
[32] and the BFACF moves [33,34]. Our sampling strategy consists in a applying
successively random transformations starting from a seed C0. In this way, a set
of loops C1, C2, . . . , Ci, . . . is generated. In order to prevent unwanted changes of
topology in passing from Ci to Ci+1, it is shown here that is much more convenient
to compute the difference ϱ(Ci+1)−ϱ(Ci) rather then evaluating ϱ(Ci) and ϱ(Ci+1)

separately. The reason is that the whole information about the topology of Ci and
Ci+1 is not necessary if we only wish to assess possible topological differences be-
tween two knots of which one of them has been obtained after a random change of
a portion of the other. To this purpose it is just sufficient to know if the quantity
ϱ(Ci+1)− ϱ(Ci) is equal to zero or not.

The material presented in this paper is divided as follows. In the next Section
the Vassiliev invariant of degree 2 is defined in the case of general smooth curves.
This invariant will be used throughout this work as a case study. In Section 3 a suit-
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able discretization scheme is provided for knots that are represented as piecewise
smooth curves parametrized by a continuous variable S ∈ [0, N ]. Next, a Monte
Carlo based formula for computing numerical knot invariants is introduced. In order
to regularize singularities that are possibly arising in some of the terms to be inte-
grated, a numerical version of the so-called framing [35] procedure is implemented.
Section 4 starts with a simple example showing that the calculation of numerical
topological invariants does not converge to the exact result in the case of a discrete
knot. To avoid this problem, a smoothing algorithm is provided in order to trans-
form a general discrete knot into a G1−curve. This algorithm is very fast and works
well on various kinds of lattices. Yet, there are situations, for instance in off-lattice
calculations, in which the topology of the knot can turn out to get modified after
smoothing. For that reason, in Section 5 the smoothing algorithm is extended to
ensure the preservation of topology in the most general case. The values of ϱ(C)

before and after smoothing are numerically computed for knots originally defined
on a lattice and compared with the exact results. We show that, after smoothing,
the Vassiliev invariant of degree 2 can be evaluated with an arbitrary precision.
This is not true in the case of discrete knots. We find that the departure from the
exact value of ϱ(C) is roughly proportional to the number of sharp corners that are
present in the conformation of the discrete knot. In Section 6 methods for speeding
up the calculations of numerical knot invariants are discussed. In particular, an
algorithm that enables to decrease considerably the number of segments contained
in a discrete knots is developed. Section 7 presents a practical application of the
above findings, namely the search of rare, ultra-low energy configurations of a knot
formed by a polymer ring fluctuating in a bad solution. Finally, the Conclusions
are drawn in Section 8.

2. The Vassiliev invariant of degree 2

Let us consider a general knot of length L in the flat three dimensional space
R3 spanned by a set of cartesian coordinates x = (x1, x2, x3). The space indices
are labeled with greek letters µ, ν, ρ, . . . = 1, 2, 3. The Alexander-Briggs notation for
denoting knots is used. In this Section, the spatial loop C formed in the space by the
knot is chosen to be a smooth curve x(s) : [0, L] −→ R3 parametrized using its arc-
length 0 ≤ s ≤ L. Different points on the curve corresponding to different values of
the arc-length s, t, u and v will be denoted with the symbols xµ(s), yν(t), zρ(u) and
wσ(v), with µ, ν, ρ, σ = 1, 2, 3. As a convention, summation over repeated indices
is understood. Moreover, let ẋµ(s) be the derivative of xµ(s) with respect to s. An
analogous notation holds for ẏν(t), żρ(u) and ẇσ(v). Finally, ϵµνρ is the completely
antisymmetric tensor uniquely defined by the condition ϵ123 = 1.

With the above settings, the Vassiliev knot invariant of degree 2 ϱ(C) of a knot
C can be written as follows [15,16,36]:

ϱ(C) = ϱ1(C) + ϱ2(C) (2.1)
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where ϱ1(C) and ϱ2(C) are two path ordered multiple line integrals given by:

ϱ1(C) =

∫ L

0

ds

∫ s

0

dt

∫ t

0

duF1(x(s),y(t), z(u); ẋ(s), ẏ(t), ż(u)) (2.2)

and

ϱ2(C) =

∫ L

0

ds

∫ s

0

dt

∫ t

0

du

∫ u

0

dvF2(x(s),y(t), z(u),w(v); ẋ(s), ẏ(t), ż(u), ẇ(v))

(2.3)
The quantities F1 and F2 are defined below:

−32π3F1(x,y, z; ẋ, ẏ, ż) = C1C2C3 [ẏ · ż(ẋ · c) + ẋ · ż(ẏ · b)− ẋ · ẏ(ż · a)]

− C1C
2
2C3

[
ẏ · (a× b)

(
a+ b

a

b

)
· (ż × ẋ)

+ ż · (a× b)

(
b+ a

b

a

)
· (ẏ × ẋ)

]
+ C1C2

[
ẏ · (a× b)

(
b
c− a

b2
+ c

a+ b

c2

)
· (ż × ẋ)

+ ż · (a× b)

(
a
c− b

a2
− c

a+ b

c2

)
· (ẏ × ẋ)

]
(2.4)

F2(x,y, z,w; ẋ, ẏ, ż, ẇ) =
1

8π2

(
ẋ·

(
ż × b

b3

))(
ẏ·

(
ẇ × c

c3

))
(2.5)

In Eqs. (2.4) and (2.5) we have put:

a = y − x b = z − x c = y − z (2.6)

and

C1 =
2π

abc
(2.7)

C2 =
1

ab+ aµbµ
(2.8)

C3 = a+ b− c (2.9)

Let us note that in Eq. (2.8) we have used a convention for which repeated indices
are summed. It is known that ϱ(C) is related to the second coefficient a2(C) of the
Conway polynomial of a knot C through the following relation [16]:

a2(C) =
1

2

[
ϱ(C) +

1

12

]
(2.10)

The coefficients of the Conway polynomials are known for every knot topology. ϱ(C)

is also called the Casson knot invariant, see Ref. [37].
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3. A Monte Carlo algorithm for computing numerical invariants

In physical applications, where a sum over all the conformations of a knot with
fixed topology should be performed in order to compute the partition function,
it is possible to use a path integral approach, see for instance [38,39]. Yet, the
path integration over all loops x(s) is highly non trivial. For this reason, whenever
there are systems in which topological relations play a relevant role, the problem
of predicting their properties is mostly tackled with numerical simulations. To that
purpose it is necessary to introduce a suitable discrete representation of knots. In
the rest of this Section, such representation will be provided together with a general
formula for computing multiple line integrals within the Monte Carlo integration
scheme. Later, this formula will be applied to the case of the Vassiliev knot invariant
of degree 2 of Eq. (2.1).

A discrete knot will be considered here as a set of N points:

xi = x(si)

{
i = 1, . . . , N

0 < s1 < s2 · · · < sN = L
(3.1)

joined together by N segments

li = xi − xi−1 i = 2, . . . , N (3.2)
l1 = x1 − xN (3.3)

The discrete knot may be regarded as a piecewise smooth curve X(S) : [0, N ] −→ R,
where

0 ≤ S ≤ N (3.4)

Explicitly, a general point located on the i−th segment of X(S) is identified by the
relations:

X(S) = xi−1 + (S − [S])li

{
i− 1 < S ≤ i

i = 2, . . . , N
(3.5)

and

X(S) = xN + (S − [S])l1 0 < S ≤ 1 (3.6)

In the above equations [S] denotes the integer part of S. The example of a curve
X(S) with eight segments is given in Fig. 2. In the limit in which N approaches
infinity and the lengths of the N segments become vanishingly small, a continuous
representation of the knot is obtained. If li = |li| denotes the length of the i−th
segment and ΛN =

∑N
i=1 li is the total length of the discretized curve, then the

length L of the continuous knot is given by:

lim
N→∞

li→0, i=1,...,N

ΛN = L (3.7)

At this point it is possible to compute the contributions ϱ1(C) and ϱ2(C) to the
Vassiliev invariant of degree 2 for a general discrete knot C with path X(S). With
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Fig. 2. Example of an off lattice discrete knot (a trefoil) with only eight sides. A generic point
X(S) on the loop is shown.

the above definitions, the same prescriptions of Eqs. (2.2) and (2.3), which are valid
for a smooth curve x(s), can be formally applied in the present context. It is suffi-
cient to substitute the smooth curves x(s),y(t), z(u) and w(v) with their discrete
analogs X(S),Y (T ),Z(U) and W (V ). In the following, the symbols F1(S, T, U)

and F2(S, T, U, V ) will denote the integrands of Eqs. (2.2) and (2.3) in the case of
a discrete knot in which the variables s, t, u, v are replaced by S, T, U, V . Of course,
in these equations the upper integration boundary L should be replaced by N . The
derivatives Ẋ(S), Ẏ (T ), Ż(U) and Ẇ (V ) require some more care. On the i−th
segment, away from the joints, the curve is trivially smooth and the computation
of Ẋ(S), Ẏ (T ), Ż(U), Ẇ (V ) is straightforward:

Ẋ(S) = li

{
i− 1 < S < i

i = 2, . . . , N
(3.8)

Ẋ(S) = l1 0 < S < 1 (3.9)

At the points x1, . . . ,xN in which the segments join together, instead, the curve
X(S) ceases to be differentiable. Still, it is possible to define formally the deriva-
tives at these points by assuming that the tangent to the discrete curve in xi−1 is
proportional to the segment li. Using this convention we obtain:

Ẋ(i− 1) = li i = 2, . . . , N (3.10)
Ẋ(N) = l1 (3.11)

The above definition is clearly not unique. In an equivalent manner we could have
chosen Ẋ(i− 1) = li−1, i = 2, . . . , N and Ẋ(N) = lN .

With the prescriptions (3.4–3.6) and (3.8–3.11) given above in order to
parametrize the discrete knot, the evaluation of the multiple line integrals appear-
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ing in numerical discrete knots, like ϱ1(C) in Eq. (2.2) and ϱ2(C) in Eq. (2.3), may
be performed using numerical integration techniques. Possible choices are the rect-
angle rule method, trapezoidal rule method, Simpson’s rule method, Newton-Cotes
method, Romberg method, Gauss method etc. [40]. The problem of computing the
necessary integrals in this way is that the volume spanned by the variables over
which we have to sum is huge. Considering again ϱ(C) as a concrete example, this
volume is given by

V1 =
N3

6
(3.12)

in the case of the first integral ϱ1(C) of Eq. (2.2), while the variables S, T, U and
V appearing in ϱ2(C), see Eq. (2.3), span a space of volume

V2 =
N4

24
(3.13)

Eq. (3.12) has been obtained by putting
in Eq. (2.2) F1(x(s),y(t), z(u); ẋ(s), ẏ(t), ż(u)) = 1. In this way the right hand
side of Eq. (2.2) becomes an integral over the volume form dV1 = dsdtdu. After
computing that integral, the result is V1 = L3

6 . After passing to the dicrete version
of the knot and supposing that all the N segments composing the discrete knot
have the same length l, we obtain V1 = (Nl)3

6 . Eq. (3.12) corresponds to the par-
ticular case in which all segments have unit length, i. e. l = 1. Eq. (3.13) has been
derived in an analogous way. V1 and V2 provide good measures of how the number
of points to be considered when ϱ1(C) and ϱ2(C) are computed with the standard
integration methods grows with growing values of N .

When N is large, the volumes V1 and V2 become too large to be treated with
quadrature methods and it is more convenient to compute the right hand sides
of Eqs. (2.2) and (2.3) using a Monte Carlo approachb. Let us consider at this
point multiple contour integrals in which the contour is the curve describing a knot
conformation. The curve may be parametrised by any parameter ξ. ξ could be for
instance the arc-length, i. .e. ξ = s, or in the case of a discrete knot ξ = S. After
choosing a suitable parametrisation, the multiple countour integral becomes that
of a function of m variables f(ξ1, · · · , ξm) with integration boundaries like those
in Eqs. (2.2) and (2.3). To evaluate the integral it is possible to apply the Monte
Carlo formula: ∫ b1

a1

dξ1

∫ ξ1

a2

dξ2 · · ·
∫ ξm−1

am

dξmf(ξ1, · · · , ξm)

≈ 1

n

[
n∑

ν=1

f(ξ
(ν)
1 , · · · , ξ(ν)m )(b1 − a1)

m∏
s=2

(ξ
(ν)
s−1 − as)

]
(3.14)

bNonstandard methods like that based on Particle Swarm Optimization proposed in [40] could
probably also be successfully applied.
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where the index ν = 1, · · · , n numbers the ν−th sample of the parameters ξ1, . . . , ξm
and s = 1, · · · ,m. The ξ

(ν)
s ’s are randomly sampled with an uniform distribution

in the following intervals:

ξ
(ν)
1 ∈ [a1, b1]

ξ
(ν)
s ∈ [as, ξs−1] when s = 2, . . . ,m

(3.15)

The details of the sampling procedure will be provided later in Section 7. Here we
consider numerical knot invariants Ξ that may be reduced in the general form of a
linear combination of K multiple integrals:

Ξ =

K∑
z=1

∫ b
(z)
1

a
(z)
1

dξ1

∫ ξ1

a
(z)
2

dξ2 · · ·
∫ ξ

(m(z)−1)

a
(z)
m

dξm(z)f (z)(ξ1, . . . , ξm(z)) (3.16)

Let us notice that in the above formula we have taken into account the general
situation in which the boundary limits of the integrations depend on the index z =

1, . . . ,K. The approximate value ⟨Ξ⟩ of Ξ is obtained after computing each of the
multiple integrals in the right hand side of Eq. (3.16) by applying the Monte Carlo
formula of Eq. (3.14). To evaluate each of the K integrals appearing in Eq. (3.16)
we choose the same number of sampling points n. In a similar way it is possible to
evaluate the variance:

σ2 = ⟨Ξ2⟩ − ⟨Ξ⟩2 (3.17)

The standard deviation σ is important in order to estimate how close is the result
⟨Ξ⟩ from the exact value of Ξ for a given knot C.

The naive procedure discussed above is plagued by two systematic errors. First
of all, the discrete knots treated here are not smooth at the joints between two
segments. This spoils the calculation of numerical topological invariants. For in-
stance, we have verified on a simple cubic lattice that the values of ϱ(C) computed
for a discrete knot are always greater than the exact values, a fact that is certainly
related to the presence of sharp corners at these joints. This excess from the exact
value is indeed roughly proportional to the number of corners.

The second source of errors is connected with possible singularities arising in
some of the terms appearing in the integrands f (z)(ξ1, . . . , ξm(z)), z = 1, . . . ,K,
of Eq. (3.16). Of course, these singularities cancel out when considering the whole
sum of integrands because the value of a knot invariant should be finite. However,
the fact that single terms could become arbitrarily large is not easy to handle in
numerical calculations and may endanger the obtained results. To avoid this to
happen, a regularization is needed to remove all potential singularities. A conve-
nient regularization is the framing of paths described in [35]. To illustrate how the
discretised version of framing works, we consider ϱ(C) as an example. In this case
both integrands F1(S, T, U) and F2(S, T, U, V ) of Eqs. (2.2) and (2.3) respectively
are regular for every value of S, T, U and V as it has been proved in [16]. Yet,
some of the terms entering the expressions of F1(S, T, U) and F2(S, T, U, V ) could



August 22, 2020 14:22 WSPC/INSTRUCTION FILE article

Application of numerical invariants in computer simulations: A comprehensive MC approach 11

become divergent. Looking at Eqs. (2.4–2.9), it is easy to realize that divergences
may indeed occur whenever one or more of the following conditions are met:

Y (T )−X(S) = 0(3.18)
Z(U)−X(S) = 0(3.19)
Y (T )−Z(U) = 0(3.20)

|Y (T )−X(S)| |Z(U)−X(S)|+ (Y (T )−X(S)) · (Z(U)−X(S)) = 0(3.21)

The framing consists in a slight deformation of the curves X(S), Y (T ), Z(U) and
W (V ):

Xµ(S) −→ Xµ
ϵX (S) = Xµ(S) + ϵnµ(S) (3.22)

Y ν(T ) −→ Y ν
ϵY (T ) = Y ν(T ) + 2ϵnν(T ) (3.23)

Zρ(U) −→ Zρ
ϵZ (U) = Zρ(U) + 3ϵnρ(U) (3.24)

Wσ(V ) −→ Wσ
ϵW (V ) = Wσ(V ) + 4ϵnσ(V ) (3.25)

where nµ(S), nν(T ), nρ(U) and nσ(V ) denote unit vectors normal to the curves
X(S), Y (T ), Z(U) and W (V ) respectively. ϵ is a very small parameter. Clearly,
the prescription provided in Eqs. (3.22–3.25) is able to remove the divergences at
the locations defined in (3.18–3.21). Moreover, in the limit ϵ → 0, one recovers the
exact expression of ϱ(C) independently of the choice of the normal unit vectors
nµ(S), nν(T ), nρ(U) and nσ(V ) as it has been proved in Ref. [16]. For example,
in calculations on a simple cubic lattice the framing can be implemented by small
shifts of the paths X(S), Y (T ), Z(U) and W (V ) along the direction (1, 1, 1). If
ϵ is sufficiently small, it is possible to regularize all potentially divergent terms in
F1(S, T, U) and F2(S, T, U, V ) without introducing undesired intersections between
the lines of the shifted knots. Obviously, these intersections should be forbidden.
From our simulations it turns out that the results of the computations of ϱ(C)

are not much sensitive to the values of the ϵ−parameter. This is connected to
the fact that the points in which the singularity conditions of Eqs. (3.18–3.21)
are satisfied represent a very small subset of the set of all sampled points. Yet,
untreated singularities at these points could generate large terms and eventually
affect the entire evaluation of ϱ(C).

To eliminate the systematic error due to the presence of the sharp corners is
much more difficult. This will be the subject of the next Section, in which a smooth-
ing procedure will be presented that transforms C0 curves into G1−curves.

4. A fast smoothing procedure for dicrete knots

In the previous Section the fundamental formulas for the evaluation of numerical
topological invariants in the case of discrete loops X(S) have been provided. The
discretization process is needed in order to apply invariants of this type to nu-
merical simulations, where knots are typically represented as systems of segments
joined together. Yet, while it is perfectly fine to have knots with sharp corners,
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Fig. 3. (a) An unknot with smooth path; (b) An unknot defined on a simple cubic lattice.

this representation is not entirely suitable to the main purpose for which numerical
knot invariants are used. Indeed, if the topology of a knot has to be determined
with the help of numerical knot invariants, then the fact that the knot is not de-
scribed by a smooth curve becomes an obstacle. The problem is that such knot
invariants are expressed in the form of multiple line integrals like ϱ(C) and cease
to be topological invariants if knots are smooth only piecewise. In the next Section
it will be shown more in details taking ϱ(C) as an example how the computation
of numerical topological invariants in this case does not provide reliable results. As
a consequence, a procedure that is able to smooth up a discrete knot so that nu-
merical topological invariants could be used is highly necessary. This is the subject
of this Section. We will prove here that to this aim it is sufficient to transform the
C0−curve representing a discrete knot X(S) into a G1−curve.

The effect of the sharp corners at the joints of the segments on the computation
of ϱ(C) can be checked using the very simple example of an unknot with two
different conformations:

• A smooth circle defined by the parametric curve x1(θ) = cos(θ), x2(θ) =

sin(θ) and x3(θ) = 0, θ ∈ [0, 2π], see Fig. 3(a).
• A square defined on a simple cubic lattice as shown in Fig. 3(b).

The exact value of the Vassiliev invariant of degree 2 for the unknot is − 1
12 ∼

−0.083. The Monte Carlo computation of ϱ(C) gives a result that is very near to
the exact one in the case of the circle: ϱ(C) = −0.083±1.72×10−4. However, for the
square we obtain ϱ(C) = 0.050±1.17×10−4, which is far from the expected result.
To avoid these ambiguities in the calculation of numerical topological invariants for
discrete knots like ϱ(C), a smoothing procedure for eliminating the sharp corners
will be presented.

The idea is to replace the sharp corners at the joints xi with arcs of smooth
curves. To illustrate the method, we pick up a triplet of contiguous segments li−1, li
and li+1, see Fig. 4. The two corners to be smoothed up appearing in the figure are
respectively formed by the contiguous segments li−1, li and li, li+1. At this point
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Fig. 4. This figure shows the three contiguous segments li−1, li and li+1 subtending the corners
xi−1 and xi.

we further divide each segment li, i = 1, . . . , N , into three subsegments:

l−i = x−
i − xi−1 (4.1)

l0i = x+
i − x−

i (4.2)
l+i = x+

i − xi (4.3)

Considering Fig. 5 in order to fix the ideas, the corners subtended by the subseg-
ments l+i−1, l

−
i and l+i , l

−
i+1 will be substituted with arcs of smooth functions as

shown in Fig. 6. This procedure will be repeated for each corner subtended by the
couples of segments l+i , l

−
i+1 for i = 1, . . . , N − 1 and l+N , l−1 for i = N .

The ends x−
i and x+

i are fixed in such a way that the lengths of l−i , l0i and l+i
are d′i−1, li − d′i−1 − di and di respectively:

x−
i = xi−1 +

xi − xi−1

li
d′i−1 (4.4)

x+
i = xi +

xi−1 − xi

li
di (4.5)

The values of d′i−1 and di will be chosen in such a way that
1) the topology of the discrete knot is not destroyed after the smoothing proce-

dure and
2) the length of none of the subsegments l±i and l0i exceeds li

2 .
An algorithm to determine d′i−1 and di will be provided later. After performing

the above splitting for li−1, li and li+1, the subsegments l+i−1 and l−i subtend the
corner centered in xi−1, while the corner in xi is subtended by l+i and l−i+1.

The smooth arcs that will replace the corners at the points xi, i = 1, . . . , N ,
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Fig. 5. The segments li−1, li and li+1 of Fig. 4 are split into three subsegments in such a way
that the corners in xi−1 and xi are subtended by segments that are not in common. In the given
example, after the splitting, the corner in xi−1 is subtended by the subsegments l+i−1 and l−i . The
corner in xi is subtended instead by l+i and l−i+1.

subtended by the subsegments l+i and l−i+1 are defined in parametric form as follows:

X+
i (S) = − di

li

li+1

d′i

sin θ+i (S)

1− 1√
2
+ 1√

2
di

li

li+1

d′
i

l+i

− (cos θ+i (S)− 1)

1− 1√
2
+ 1√

2
li
di

d′
i

li+1

l−i+1 + l+i + xi (4.6)

X−
i+1(S) = −

(sin θ−i+1(S)− 1)

1− 1√
2
+ 1√

2
di

li

li+1

d′
i

l+i

− li
di

d′i
li+1

cos θ−i+1(S)

1− 1√
2
+ 1√

2
li
di

d′
i

li+1

l−i+1 + l−i+1 + xi (4.7)
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with

θ+i (S) =

(
li
2di

(S − [S])− li − di
2di

)
π

2

li − di
li

≤ S − [S] ≤ 1 (4.8)

θ−i+1(S) =

(
li+1

2d′i
(S − [S]) +

1

2

)
π

2
0 ≤ S − [S] ≤ d′i

li+1
(4.9)

Eqs. (4.6–4.9) are defined for i = 1, . . . , N − 1. Their extension to the corner in xN

is straightforward. In these formulas the superscript + refers to the arc of the curve
replacing the segment l+i , while the superscript − refers analogously to l−i+1.

It is easy to verify that, after replacing the sharp corners at the vertices xi with
the arcs X+

i (S) and X−
i+1(S), a G1−curve is obtained:

(1) First of all, at the point in which X+
i (S) and X−

i+1(S) are joined together,
identified by the condition θ+i (1) = θ−i+1(0) =

π
4 , it is possible to verify that the

curve obtained after the replacement is continuous.
(2) Second, both X+

i (S) and X−
i+1(S) are differentiable and their derivatives,

which are continuous too, coincide.
(3) Third, at the point x+

i in which the arc X+
i (S) and the subsegment l0i are

joined together, the unit vector that is tangent to l0i coincides with the unit
vector that is tangent to X+

i (S). A similar statement is true in the case of
the junction point x−

i between X−
i (S) and l0i . To show that, we note that

X+
i (S) maps the subsegment l+i into a continuous arc of a curve with unit

tangent vector t+i at the end point x+
i given by t+i = − l+i

l+i
. To have a G1−

curve, t+i must coincide with the tangent t0i computed at x+
i , but staying on

the subsegment l0i . It is easy to check using the parametrization (3.5–3.6) of
the knot on l0i that t0i = li

li
. Thus, taking into account the fact that l+i and li

are antiparallel, it is possible to conclude that t+i = t0i as desired. In a similar
way it is possible to prove that the unit tangent vector computed on the curve
X−

i+1(S) at x−
i+1 coincides with the unit tangent vector computed on l0i+1 at

the point x−
i+1.

(4) Finally, we have also checked numerically that, for a wide range of the variable
x = dili+1

di+1li
entering the expressions of X+

i (S) and X−
i+1(S), more precisely

for 0.01 ≤ x ≤ 100, the distance between the point xi in which the original
corner to be substituted was centered and any of the points of the arc of the
curve X+

i (S) (X−
i+1(S)) that has replaced the subsegment l+i (l−i ) never grows

beyond a fraction of di (d′i). This fact will be used in the next Section to endow
the smoothing procedure with a topology preservation algorithm. Moreover,
since the path of the smooth arc sticks very close to the path of the old discrete
knot, it is more likely that the topology of the knot obtained after smoothing a
sharp corner will not be destroyed if the length of this arc is increased to cover
the largest possible region. This is very relevant for speeding up the Monte
Carlo calculation of numerical topological invariants. In fact, if only very small
portions of the knot around the centers of the corners xi, i = 1, . . . , N may
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Fig. 6. Substitution of the sharp corner in xi by an arc of the smooth curve defined in Eqs. (4.6–
4.7). It is shown that the subsegments l+i and l−i+1 subtending this corner are replaced by a smooth
path. The replaced part has been denoted with dashed lines.

be replaced because otherwise the knot topology is modified, at the end the
smoothed version of the knot will coincide with the original discrete knot almost
everywhere apart from tiny arcs of a smooth curve around the points xi. If this
happens, a more extensive sampling is certainly necessary in order to explore
these arcs which, on the other side, are fundamental in order to ensure that
the Monte Carlo evaluation of a numerical knot invariant delivers the correct
result.

Concluding, after the smoothing procedure presented in this Section 4 is completed,
the path of the discrete knot becomes a G1−curve. At least in the case of the
Vassiliev knot invariant of degree 2, we will see that this is sufficient in order to
remove all the systematic errors related to the presence of the sharp corners.

5. Adding topology preservation to the smoothing algorithm

The greatest challenge when smoothing a knot is to avoid potential changes in its
topology. Any smoothing procedure is in fact potentially dangerous in this respect,
especially if the segments composing the knot are allowed to get arbitrarily close to
each other as it happens in off-lattice simulations. An example of dangerous situa-
tion in which the topology of the knot is modified after the replacement of the sharp
corners with arcs of a smooth curve is illustrated in Fig. 7. In the previous Section
we have verified that the knot obtained after substituting the region around the
sharp corners with arcs is a G1−curve. We have still to ensure that the topology
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xi

lnli
ln li

xi

Fig. 7. A situation that should be avoided: before the smoothing of the corner in the point xi, the
segment ln was passing under the segment li. After smoothing, the segment li has been replaced
by an arc of a smooth curve in such a way that the segment ln now passes over that arc, potentially
changing the topology of the knot.

of the knot before and after the smoothing procedure remains unaltered. This goal
will be achieved here by a careful definition of the lengths di and d′i of the sub-
segments l±i . In practice, the subsegments l±i to be replaced have to be chosen to
be short enough, that their arc replacements X±

i (S) will not modify the knot type
avoiding situations like that in Fig. 7. From the remarks made in point 4 at the end
of the previous Section, see page 15, we already know that for calculation purposes
it is desirable that di and d′i are as large as possible. We have also seen that the
ansatz (4.6-4.7) is very convenient for that purpose, because the loop obtained after
smoothing sticks close to the path of the original knot.

In the following, an algorithm to derive suitable values di, d
′
i for i = 1, . . . , N

will be provided. Strictly speaking, the presented procedure is valid only for i =

1, . . . , N − 1. but this is for a pure technical reason. The problem when dealing
with the case i = N is that the segment lN is followed by l1 and not by lN+1. The
solution is simply to add an extra segment lN+1 and to identify it with l1. This is
a trivial modification of the procedure.

The lengths di, d
′
i are determined starting from the first corner located in x1

and then proceeding recursively with the next corners x2,x3, . . . At each joint xi,
we should check first of all if li and li+1 are parallel or not. If they are parallel, i. e.
li·li+1

lili+1
= 1, this simply means that li and li+1 are just forming a longer segment and

there is no sharp corner. As a consequence, no action is required and it is possible
to pass to the next corner in xi+1. Thus, we concentrate to the case in which the
two contiguous segments at the i−th joint are not parallel.

Starting from i = 1, the first task is to find the point xk,1 belonging to the knot
which is nearest to the joint x1. Let’s denote with dk,1 the distance between xk,1

and x1. The composite index k, 1 is used to remember that the point xk,1 is lying on
the segment lk with k ̸= 1, 2 and that it is the nearest point to x1. The restriction
k ̸= 1, 2 is needed to exclude trivial nearest points belonging to the segments l1
and l2.

The technical details of how the position of xk,1 and its distance dk,1 from x1
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are computed are presented in the Appendix. After xk,1 and dk,1 are known, we
choose the lengths d1 and d′1 of the subsegments l+1 and l−2 that will be replaced
by arcs of smooth curves as follows:

d1 = d′1 = min

{
dk,1,min

{
l1
2
,
l2
2

}}
(5.1)

In words, d1 is set to be equal to d′1. Moreover, depending on the distance dk,1 of
the point xk,1 from x1 and on the lengths of the segments l1, l2, we can have the
three different possibilities displayed in Fig. 8. Fig. 8 (b) refers to the case in which
l1 < l2 and dk,1 ≥ l1

2 . Fig. 8 (c) shows the analogous situation in which l2 ≤ l1
and dk,1 ≥ l2

2 . In both cases, according to the prescription (5.1), the lengths d1, d
′
1

can never be greater than half of the length of the shortest segment between l1
and l2. When dk,1 ≤ min

{
l1
2 ,

l2
2

}
, we have the situation depicted in Fig. 8 (a).

Eq. (5.1) implies that dk,1 cannot be greater than min
{

l1
2 ,

l2
2

}
. This requirement is

not strictly necessary. It has been added just to limit the lengths of the subsegments
l+i , l

−
i+1 to be less or equal to half of the total length of the shortest between the

two segments li, li+1. Let us notice that, if the values d1, d
′
1 are selected according

to Eq. (5.1), then both subsegments l+1 and l−2 , lie inside a sphere Sx1
of radius

d1 centered in x1. Moreover, this sphere contains also the arc of a smooth curve
replacing the segments l+1 and l−2 (see point 4 of the previous Section on page 15).
Finally, in the worse situation in which d1 = dk,1, the point xk,1 will be located at
the border of the sphere. This is very important in order to prevent breakings of
topology. In fact, since xk,1 is the point on the knot which is nearest to x1 excluding
the points on the replaced segments l+1 and l−2 , this implies that no unwanted
segment or part of it can be inside Sx1

. In summary, dangerous situations such as
those presented in Fig. 7 are not possible.

Now we suppose that all the values of dj = d′j have been computed up to j < i.
Implicitly, excluding corners in which the segments lj−1, lj are parallel, we should
assume that the subsegments l±j with j < i and l−i have already been replaced by
the smooth arcs of Eqs. (4.6–4.7). We also assume that the smoothing procedure
has been carried out in such a way that, for j < i − 1, the arcs substituting the
subsegments l+j , l

−
j+1 are inside a sphere Sxj

of radius dj and no other part of
the knot after the replacements made so far can be inside this sphere. The same
statement is valid in the case j = i− 1 too, so that the sphere Si−1 of radius di−1

contains only the arcs of curves which replaced the subsegments l+i−1, l
−
i .

At this point we have to deal with the corner corresponding to the vertex in xi.
As we did for the first corner in x1, we determine the position of the point which is
nearest to xi and does not belong to li or li+1. First, we deal with the case in which
this point is on a part of the knot that is unaffected by the smoothing procedure.
Let us call this point xl,i. Its distance from the center of the corner to be replaced
xi will be denoted with the symbol dl,i. xl,i may be located on one of the segments
of the knot that have still to be smoothed, i. e. l > i, or in the subsegments l0k with
k < i that have been left unaffected by the smoothing process. The last possibility is
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Fig. 8. This set of pictures illustrates the meaning of Eq. (5.1). In panel (a) the point xk,1 of
the knot, which is nearest point to the vertex x1, is located at a distance dk,1 from x1 that is
less than min

{
l1
2
, l2

2

}
. In this case the length of the segments l+1 and l−2 to be replaced by arcs

of smooth curves in order to eliminate the sharp corner in x1 (represented with dashed lines) is
chosen to be equal to dk,1. The arc of smooth curve with parametric equations (4.6–4.7) replacing
l+1 and l−2 is constructed in such a way that all of its points are at distances that cannot exceed
dk,1. As a consequence, this arc is entirely inside the sphere Sx1 of radius d1 = d′1 = dk,1. Panels
(b-c) describe two situations in which xk,1 is at a distance dk,1 from x1 which is greater than
min

{
l1
2
, l2

2

}
. In this case the length of the segments l+1 and l−2 is chosen to be equal to half of

the length of the shortest among the segments l1 and l2. Next l+1 and l−2 are replaced with arcs
of smooth curves. Now the replaced arc lies by construction inside a sphere Sx1 whose radius is
given by: d1 = d′1 = min

{
l1
2
, l2

2

}

that xl,i lies on two contiguous segments lj , lj+1 with j+1 < i that are parallel, so
they have been left untreated. The second case is that in which the nearest point to
xi lies on the smooth arc that has replaced the portion of the knot centered at some
sharp corner xl, with l < i. Let us call this point x′

l,i with a prime to remember
that it is on a smooth arc and not on the original discrete knot. Despite the fact
that the shape of this arc is much more complicated than that of two freely jointed
segments, we know that this portion of the new knot obtained after smoothing is
confined within the sphere Sxl

of radius dl and l < i. For this reason, instead of
computing the distance between x′

l,i and xi, for practical purposes it is much more
convenient to compute the minimal distance between xi and the sphere Sxl

. This
distance is given by dxlxi

−dl, where dxlxi
denotes the distance between the points

xl and xi and dl is the radius of the sphere Sxl
centered around the point xl. To

distinguish the situations in which the nearest point to xi is a point xl,i in the
unchanged part of the knot or a point x′

l,i in the part that has been affected by
smoothing, we define the following new distance d∗i :

d∗i = min
k=1,...,i−1

{dl,i, dxkxi − dk} (5.2)

The meaning of d∗i is illustrated in Figs. 9 and 10.
The radius di of the sphere Sxi

surrounding the sharp corner in xi to be replaced
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Fig. 9. This picture explains the meaning of the quantity d∗i appearing in Eq. (5.2). We suppose
here that m < i is the value of the index k = 1, . . . , i− 1 that minimizes the difference dxkxi − dk
and that this difference is smaller than dl,i, see Eq. (5.2). This means that after the points xk

with k < i have undergone the smoothing process, the surface of the sphere Sxm centered around
xm has a point that it is nearer to xi, the center of the corner to be smoothed, than the point
xl,i. The latter is the point lying on the path of the knot that is nearest to xi. The distance
between xl,i and xi is dl,i. In order to perform a safe smoothing of the corner around xi we need
to surround it with a sphere of a suitable radius di such that does not contain any point of the
knot. This is to avoid unwanted self-intersections of the lines of the knot after smoothing. The
points belonging to the path of the knot that has already undergone the smoothing process, i. e.
for k < i, are all contained inside spheres of radii dk centered around the points xk. Thus, it is
safe to choose as radius di of the new sphere Sxi di = dxmxi − dm. If dxmxi − dm < dl,i, this
setting ensures also that the sphere Sxi does not contain points of the portion of the knot where
there are still sharp corners, i. e. on the segments xl, l = i+ 1, . . . , N , or on the subsegments l0k,
k = 1, . . . , i− 1.

can be set to be no less than d∗i . In analogy with Eq. (5.1), we may write:

di = d′i = min

{
d∗i ,min

{
li
2
,
li+1

2

}}
(5.3)

With this choice of di c, the topology of the knot is preserved after the corner in xi

is replaced with a smooth arc according to the prescription (4.6–4.7). As a matter
of fact, d∗i satisfies the condition d∗i ≤ dl,i ensuring that any point on the part of
the knot that is unaffected by the smoothing procedure is at least at a distance
dl,i from xi. Moreover, from Eq. (5.2) d∗i turns out to be smaller or equal to the
distance between xi and any point of the spheres Sxk

that surround the regions
in which the corners xk, k = 1, . . . , i − 1, have already been substituted. Thus, a
sphere Sxi of radius di = d∗i will certainly not contain any point of the knot apart
from the subsegments li and li+1 that are going to be substituted with a smooth
arc. Finally, using the ansatz (4.6–4.7), we know that no point of that arc will be
outside Sxi

. All that is sufficient to prevent dangerous intersections of the lines of
the knot that could happen after smoothing the corner in xi, so that unwanted
changes of the topology of the knot are forbidden. Figure 10 provides a graphical
illustration of the situation in a particular case.

cThe exceptional case in which d∗i will be discussed below.
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Fig. 10. In this figure we suppose that the nearest point xl,i to xi is located on the segment
ll, with l < i. Moreover, xl,i is within the distance dl−1 from the vertex xl−1. Thus, the sharp
corner at xl−1 has been already replaced by the arcs of smooth curves X+

l−1(S) and X−
l (S) of

Eqs. (4.6) and (4.7). The distance dl−1 is smaller by assumption than the distance dxl−1xi from
xi to xl−1. Moreover, dl,i is smaller than the distance of the point xi to the border of any of the
spheres Sxk surrounding the vertices xk for k < i and k ̸= l − 1. To be safe, the radius of the
sphere Sxi around the point xi is chosen to be di = min

{
dxl−1xi − dl−1,min

{
li
2
,
li+1

2

}}
.

We have still to treat the exceptional condition in which d∗i = 0. Looking at the
definition (5.2) of d∗i , this implies that the center xi of the corner to be substituted
lies on the border of the sphere Sxm of radius dm centered at the point xm for some
value of m ≤ i − 1. This situation could take place only if xi is the nearest point
to xm, i. e.: xi = xi,m. After the corner centered in xm is replaced by an arc of a
smooth curve, the radius of the sphere Sxm

containing no other point of the knot
apart from the substituted arc, could turn out to be equal to dm = dm,i according
to the prescription (5.3). Due to the fact that dm,i is also the distance between xm

and xi, the result is that the point xi is located on the border of the sphere Sxm
.

For this reason, to prevent topology breakings after replacing the i−th corner that
could result if Sxm

and Sxi
are overlapping, the only solution is to surround the

point xi with a sphere of radius di = d∗i = 0. While the definition of d∗i in Eq. (5.2)
gives the correct value of di also in this exceptional case, this solution is of course
not desirable. The recipe for overcoming this problem is very simple. First of all,
the value of the old radius of the sphere Sxm

should be decreased together with



August 22, 2020 14:22 WSPC/INSTRUCTION FILE article

22 Franco Ferrari & Yani Zhao

the portion around the corner in xm to be replaced. For example, the new radius
of Sxm

could be chosen as follows:

dnewm −→ doldm

2
(5.4)

Next, the radius of the sphere Sxi
should be selected within the interval 0 < di <

dnewm =
dold
m

2 . To this purpose we have to compute once again the value of d∗i using
the formula of Eq. (5.2), which we repeat here for convenience:

d∗i = min
k=1,...,i−1

{dl,i, dxkxi
− dk} (5.5)

The only difference between Eqs. (5.2) and (5.5) is that in Eq. (5.5) we have to
take into account that, when k = m, the value of the radius of the sphere Sxm

is
now dnewm . At this point, we may proceed as before and choose the values di and
d′i using Eq. (5.3). For what it has been said before, this is sufficient to prevent
unwanted topology breakings. We do not discuss here the situations in which the
point xi is located at the border of several spheres Sxm

, Sxn
, . . . with m,n, . . . < i.

In this case the new value of d∗i computed according to Eq. (5.5) turns out to be
zero because there is for instance another sphere Sxn

for n < i and n ̸= m such
that dxnxi

− dn = 0. This situation can be easily tackled by rescaling the radius dn
of Sxn using Eq. (5.4) with the index n instead of m. After that, it is possible to
compute the new value of d∗i applying Eq. (5.5). The final radius of the sphere Sxi

will be given once again by Eq. (5.3).
Summarizing, in this Section an algorithm has been provided in order to pre-

vent during the smoothing procedure of a knot unwanted breakings of its topology
following undesired self-intersections of its path. An example of curve describing a
discrete knot 31 off-lattice before and after the smoothing procedure is shown in
Fig. 11. The algorithm is relatively straightforward despite the fact that we are con-

Fig. 11. A knot 31 with minimal length defined off-lattice (a) before and (b) after the smoothing
procedure.

sidering here very general discrete knots consisting of segments of different lengths
and defined both off- or on-lattice. The idea behind the algorithm is simple. It con-
sist in enclosing each part of the knot where a sharp corner has been substituted
with an imaginary sphere whose radius is choosen is such a way that there are no
overlaps between different spheres or between a sphere and the part of the knot
that is unaffected by smoothing. This is sufficient in order to avoid topology break-
ings and self-intersections. Of course in off-lattice calculations, where the segments
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are allowed to get arbitrarily close to each other, the radii di of the spheres Sxi
,

i = 1, . . . , N , and thus the portions of the corners that have been replaced, could
become smaller and smaller when the value of i increases. As explained in Point 4
on page 15, in the case in which the arcs replacing the sharp corners are confined
just in a tiny portion of the knot, a more extensive Monte Carlo sampling could be
necessary in order to evaluate with a good approximation the multiple curvilinear
integrals that characterize the expressions of numerical knot invariants. This is a
drawback, but it cannot be avoided by any prescription in the case of off-lattice
calculations.

6. Speeding up the smoothing algorithm and the Monte Carlo computation
of the Vassilieve knot invariant of degree 2

The smoothing algorithm and the prescriptions for preserving the topology of the
knot during smoothing have been worked out in Sections 4 and 5 in the most general
case. In more particular cases several simplifications are possible.

First of all, the parametric equations of the arcs of a smooth curve that replace
the sharp corners given in Eqs. (4.6–4.7) considerably simplify if we assume that
all segments composing the knot have the same length and the lengths di of the
subsegments l+i coincide with the lengths d′i of the subsegments l−i+1. This is true
both on- and off-lattice. On a lattice it is also possible to define a fixed minimal
distance d such that, if all the spheres Sxi

will have radii di ≤ d, the topology of
the knot will be automatically preserved without the need of the prescriptions of
Section 5. For instance, on a simple cubic lattice one may always choose di = d′i =

li
2 .

In this case Eqs. (4.6–4.7) reduce to the equation:

X±
i (S) =

(
1− sin

(
θ±0 (S)

))
l+i +

(
1− cos

(
θ±0 (S)

))
l−i+1 + xi (6.1)

where

θ+0 (S) =

(
S − [S]− 1

2

)
π

2
(6.2)

and

θ−0 (S) =

(
S − [S] +

1

2

)
π

2
(6.3)

Let’s now consider more in detail the computation of numerical knot invariants
(NKIs). The example of the Vassiliev invariant of degree 2 ϱ(C) will be used to
fix the ideas. Monte Carlo methods are much more convenient than traditional
numerical techniques in calculating the values of NKIs. For instance, in order to
evaluate ϱ(C) with sufficient precision in the case of knots of length L ≤ 120, a few
millions of sampling points are enough. This is a quite good performance if we take
into account that for N = 120, the total volume that has to be checked, defined
by Eq. (3.13) and discussed in the related comments, is of the order 1204

24 ∼ 9 · 106.
Monte Carlo algorithms offer also the advantage that the sampling procedure can
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be easily parallelized on a computer. Still, the numerical evaluation of a NKI could
become challenging if a very high precision is required to determine the value of that
NKI or the number of segments N composing the knot is large. In those cases, it
is highly advisable to adopt strategies that are able to reduce the calculation time.
NKIs have a very nice feature in this respect, namely their values are discrete.
This is very useful in concrete numerical simulations, where the main role of knot
invariants is to make assessments on the a priori unknown topological configuration
of a knot. To this purpose, it is not necessary to evaluate an NKI with an arbitrary
high precision. This point is well illustrated by the example of the second Vassiliev
knot invariant of degree 2. If two knots C and C ′ can be distinguished by ϱ(C),
i. e. ϱ(C) ̸= ϱ(C ′)d, then the condition

|ϱ(C)− ϱ(C ′)| ≥ 2 (6.4)

is always satisfied. As a consequence, in order to ascertain if two knots are topologi-
cally inequivalent according to ϱ(C), it is not necessary that the standard deviation
σ of the numerical calculation of ϱ(C) defined in Eq. (3.17) will be as low as pos-
sible. It is sufficient to require that the value of σ remains below a given threshold
σthreshold. For instance, if we choose:

σthreshold =
1

6.11
∼ 0.16 (6.5)

and σ ≤ σthreshold, the probability that the Monte Carlo evaluation of ϱ(C) gives
a result within an error of ±1 or greater is of the order 1 · 10−9, meaning that
this event is very unlikely to occur. As an example, in order to ascertain if the
topology of a knot 41 has been modified during the sampling process by a random
transformation of its path, we set σthreshold = 0.3. To see why this choice is safe,
we recall that for a 41 knot the exact value of ϱ(C) is approximately ϱ(41) ∼ −2.08.
Moreover, a close inspection of billions of random conformations obtained from the
performed simulations has shown that a knot may relatively easily decay into a
knot of simpler topology according to the Rolfsen table. The passage to a knot
of higher topological complexity after a random transformation is instead a rare
event, whose probability decreases with the increasing of the degree of complexity.
The only knots that are topologically simpler than 41 are the unknot 01 and the
trefoil 31. The second Vassiliev invariant of degree 2 of these knots is ϱ(01) ∼ −0.08

and ϱ(31) = 1.91 respectively. Both these values are far from that of the knot 41,
for which ϱ(4.1) ∼ −2.08. As a consequence, a threshold standard deviation of 0.3
is more than enough to prevent the change of the knot type from 41 to 31 or to

d We recall here that there exists no knot invariant that is able to distinguish unambiguously all
different types of knots. The second Vassiliev invariant of degree 2 is not an exception to this rule.
Indeed, there are many knots for which the second coefficient of the Conway polynomial a2(C) is
the same. This implies that ϱ(C), which is related to a2(C) by Eq. (2.10), can at most be used
to distinguish classes of knots having different values of a2(C). Still, ϱ(C) may be considered as
a relatively powerful knot invariant. For example, it is able to distinguish uniquely the knots 91
and 103 from all other knots up to ten crossings.
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01. Passages from a knot 41 to a knot with a higher topological complexity are
extremely rare, but cannot be excluded. Yet, even if this situation will occur, most
of the knots up to eight crossings have values of ϱ(C) that are not equal to ϱ(41). For
this reason, if σ = σthreshold = 0.3, it is not very likely that the topology of a knot
41 could be confused with that of one of those other knots during the Monte Carlo
sampling procedure of Eqs. (3.14) and (3.16). Of course, as already mentioned,
there is no topological invariant that is able to distinguish unambiguously a knot
from the other. For instance, the value of ϱ(C) of the knots 62, 77, 85, 811 and 817
coincides with that of the knot 41. If a change of topology from 41 to any of these
knots will take place, there will almost be no way e to detect it using ϱ(C) and
the introduction of additional knot invariants is needed. Despite these limitations,
the invariant ϱ(C) can be successfully applied to preserve the topology during
numerical simulation for several knots like 01, 31, 41, 51, 52, 71, 73, 83, 819, 91, 103. In
fact, the values of ϱ(C) of all these knots are not encountered in topologically
simpler knots and, as already mentioned, the accidental transformation to knots
with higher topological complexity in the aftermath of a random transformation is
an extremely rare event. For simulation purposes, the fact that there is no need to
push the precision below a threshold such as that in Eq. (6.5) is very helpful to
avoid a consistent increase of the calculation times. Indeed, the time τ necessary
for computing ϱ(C) scales linearly with the number of samples n, but an increasing
of n by a factor λ > 1 produces an improvement of σ only by a factor 1√

λ
, i. e.

σ −→ σ√
λ

. We have checked that this scaling law, that is predicted in the case of
gaussian distributions, is actually verified in our simulations.

Besides the level of precision, another important factor that determines the
computation time τ is the number N of segments (or equivalently the number of
arcs of G1−curves) composing the knot. We stress the fact that τ depends on the
total number of segments N of a knot and not on its total length L. In the opposite
case, τ could be reduced arbitrarily. To this purpose it would be sufficient to rescale
the lengths li of the N segments composing a given knot C by an arbitrarily small
factor η << 1:

li −→ l′i = ηli i = 1, . . . , N (6.6)

With this procedure the new knot C ′ with segments of lengths l′1, . . . , l
′
N becomes

just a smaller copy of the old knot C. Its topology remains however the same as
that of C. As a consequence, the results of the evaluation of any numerical knot
invariant for C and C ′ will coincide as expected. Unfortunately, this means also that
the passage from the knot C to C ′ will not be helpful to speed up the calculation
of an NKI. The reason is that the form of the curvilinear integrals appearing in the
expressions of numerical topological invariants does not change when passing from

eThe patterns in which different knots decay to simpler topologies during a simulation are different
for different knots. This fact provides a further way to check if, at some stage of the random
sampling, a knot C has been transformed into a knot C′ of higher or lower topological complexity,
though they cannot be distinguished using a given NKI.
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Fig. 12. Reduction to a single segment of an element of the discrete knot composed by three
consecutive segments such that its ends are at a distance equal to the unit size on a simple cubic
lattice. The topology of the knot is not affected by this reduction.

C to C ′. In particular, the dependence on the parameter η simply disappears due
to the fact that NKIs, like all topological invariants, are unaffected by rescalings.
A quantity that is able to distinguish two knots that just differ by their size cannot
be a topological invariant. For instance, it is easy to check that ϱ(C) is a scale
invariant quantity.

Following the above reasoning, a good strategy to increase the speed of the
calculation of an NKI consists in decreasing the number of segments composing the
knot. To this purpose, a few procedures that apply to discrete knots is proposed
below.

(1) For a general discrete knot, two or more contiguous segments of lengths
li, li+1, . . . , li+k with 2 ≤ k < N that have all the same direction can be put
together in a single segment of length li+ li+1+ . . . li+k. In this way the number
of segments is reduced from N to N − k + 1.

(2) On a simple cubic lattice, configurations of three segments whose starting and
ending points are at a distance of one lattice size can be easily substituted by
one segment as shown in Fig. 12. This reduces the length of the knot by two
segments every time such configurations are encountered.

(3) Always on a simple cubic lattice it is possible to group together two or three
contiguous segments in a single one, see Figs. 13 (a) and (b) and 14 (a), (c–e).
On triangular lattices further reductions are allowed, see for instance Fig. 14 (b).
We note that the first substitution in Fig. 14 can cause intersections between
two segments after the grouping and should be treated with some care.

Other algorithms to decrease the size of a knot can be found in Refs. [41] and [42].
In the rest of this Section a method will be presented for speeding up the Monte

Carlo procedure in the special case in which the numerical knot invariants are just
needed to check the possibility of a topology change in a knot after a random trans-
formation, but it is not necessary to ascertain the exact type of the knot. To fix the
ideas, we will consider the specific case of ϱ(C) and imagine that the random trans-
formation involves K contiguous segments, where 0 ≤ K ≤ N . Let’s suppose that
CR is the polymer conformation before the transformation. The goal is to ascertain
if CT , i. e. the new knot conformation obtained after the random transformation, is
still topologically equivalent to CR or not. Instead of computing the whole knot in-
variant ϱ(C), it is much better to evaluate the difference ∆ϱ(C) = ϱ(CT )− ϱ(CR).
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Fig. 13. This figure displays the possible configurations on a simple cubic lattice of two contiguous
segments and their substitution with a single segment. The topology of the knot is left unchanged
after the substitution.

Fig. 14. Panels (a) and (c-e) display the possible configurations on a cubic lattice of three contigu-
ous segments that can be substituted with a single segment. Panel (b) is an example of segment
reduction on a triangular lattice

Clearly, if ϱ(C) could distinguish unambiguously any two topologically different
knots, CR and CT would be equivalent if and only if ϱ(CT ) − ϱ(CR) = 0. Unfor-
tunately this is not the case, but, as discussed after Eq. (6.5), the second Vassiliev
invariant of degree 2 is powerful enough to be applied in order to detect with a
very high precision the changes of topology of many knots. Thus, for knots like the
already mentioned 01, 31, 41, 51, 52, 71, 73, 83, 819, 91, 103, we expect that the condi-
tion ∆ϱ(C) = ϱ(CT ) − ϱ(CR) ∼ 0 is sufficient to conclude if the topology of CT

coincides with that of CR or not. The advantage of considering ∆ϱ(C) instead of
computing the value of the knot invariant for CT is that in this way we subtract
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from the calculation the part of the knot that has remained unchanged after the
transformation.

To realize how this strategy is working, we consider the calculation of ϱ2(C),
which, as it possible to see from Eq. (2.3), is the contribution to ϱ(C) that requires
the greatest computational effort. From Eq. (3.13) it turns out that the volume
that the Monte Carlo sampling procedure has to explore to estimate the value of
ϱ2(C) is equal to N4/24. If the number of the changed segments is K, then the
part of the volume containing only segments that have not been affected by the
transformation is equal to (N −K)4/24. As a consequence, in first approximation,
the effective volume to be taken into account in the evaluation of the difference
ϱ(CT )− ϱ(CR) is

SK =
N4

24
− (N −K)4

24

=
NK3

6
− N2K2

4
+

N3K

6
− K4

24
(6.7)

Clearly, the minimum of SK with respect to K occurs when K = 4 (we do not
consider here transformations with less than 4 segments). Due to the fact that the
derivative of SK with respect to K in the range 0 ≤ K ≤ N is always positive,
because dSK

dK = (N−K)3

6 > 0, it turns out that SK grows with K until it reaches its
maximum when K = N (transformations of more than N segments do not make
sense). If K is small with respect to N , Eq. (6.7) shows that the volume to be
explored in the computation of ∆ρ2(C) is much less than that needed to obtain
ϱ2(C). For instance, when K = N/5, we obtain:

SK = 0.5904× N4

24
(6.8)

so that only 60% of the original volume N4

24 should be considered. In the best case,
K = 4, instead,

S4 ∼ 2N3

3
(6.9)

which implies an enormous gain in speed.

7. An application: cooling and compression of long polymer rings in knotted
configurations

The algorithms discussed in the previous Sections will be applied here to numerical
simulations of physical systems in which topology plays a relevant role. Examples
of such systems can be found everywhere in nature, for instance in the DNA [1,43,
44,45,47], in superfluids [48] and in the solar magnetosphere [49]. Knotted polymer
rings can also be synthesized [50,51]. In this Section an application in polymer
physics will be presented.

Before starting, we have still to provide a concrete sampling prescription for
evaluating the numerical knot invariants with the Monte Carlo recipe given in
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Section 3. We suppose that the discrete knot has already undergone the smoothing
precedure of Sections 4 and 5. After the sharp corners have been replaced by smooth
arcs that are confined inside the spheres Sxi

of radii di, d′i chosen in such a way to
prevent topology breakings, the points on the knot are sampled with the following
strategy:

Step 1 Pick up a real random number ξ1 in the interval [0, N ]. This random variable
identifies the portion of the knot that corresponds to the segment li before
smoothing with i = [ξ1] + 1. For example, using the notations of Eqs (3.5–3.6),
ξ1 = S and the end points of the segment li are given by xi = X([S] + 1)

and xi−1 = X([S]). These formulas may be used also in the special case i = 1,
see Eq. (3.6), provided the point x0 is identified with xN . Next, we have to
choose randomly also ξ2, . . . , ξm(z) within the ranges [0, ξ1], . . . , [0, ξ(m(z)−1)],
see Eq. (3.15). Considering the case of ϱ(C) to fix the ideas, we have that
z = 1, 2 and m(1) = 3, m(2) = 4. The three parameters necessary to compute
the integral ϱ1(C) of Eq. (2.2) are ξ1 = S, ξ2 = T and ξ3 = U . The second
integral ϱ2(C) of Eq. (2.3) requires to randomly choose four variables: ξ1 = S,
ξ2 = T , ξ3 = U and ξ4 = V .

Step 2 We assume that the knot is oriented in such a way that the i−th segment li
is coming before the segment li+1. In this step we check if one of the following
three conditions are satisfied:

0 ≤ S − [S] <
d′i−1

li
(7.1)

d′i−1

li
≤ S − [S] <

li − di
li

(7.2)

li − di
li

≤ S − [S] < 1 (7.3)

The first condition (7.1) identifies the subsegment l−i , the second condition (7.2)
the subsegment l0i and the third one (7.3) the subsegment l+i .

Step 3 When condition (7.1) is fulfilled, verify if the relation

l+i−1 · l
−
i

l+i−1l
−
i

= −1 (7.4)

is satisfiedf . If yes, the segments l+i−1 and l−i around the corner xi−1 are an-
tiparallel. This means that l+i−1 and l−i do not form a sharp corner in xi−n, so
that they have not been replaced during the smoothing procedure. As a con-
sequence, the parametrization of the knot given in Eqs. (3.5–3.6) is still valid.
If instead the segments l+i−1 and l−i are not antiparallel, then we have to use
for l−i the parametrization of the arc of smooth curve given in Eq. (4.7) after

fBy construction the contiguous subsegments l+i−1 and l−i are oriented in such a way that they
are antiparallel when they form an angle of 180◦, see Fig. 5.
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n ϱ(C)

106 1.9096± 0.0991

107 1.9179± 0.0326

108 1.9170± 0.0095

109 1.9168± 0.0032

Table 1. Computation of the knot invariant ϱ(C) for the knot 31 with 24 segments on a simple
cubic lattice. The results of the numerical calculation of ϱ(C) are displayed for different values
of the number of samples n used in the Monte Carlo integral procedure. As it can be seen, by
gradually increasing n, the numerical values of ϱ(C) asymptotically approach the exact value of
the Vassiliev knot invariant of degree 2 which, in the case of the knot 31, is approximately equal
to 1.9167.

replacing i with i−1. We remark in fact that we are dealing here with the sub-
segment l−i corresponding to the corner xi−1, while Eq. (4.7) refers to the next
corner xi. In practice, using Eq. (4.7), the point corresponding to the parameter
ξ1 = S is projected onto the point X−

i (S) lying on the arc of smooth curve that
has replaced the sharp corner. A similar procedure is adopted when condition
(7.3) is true. In that case the condition of being antiparallel is concerning the
segments l+i and l−i+1:

l+i · l−i+1

l+i l
−
i+1

= −1 (7.5)

If it turns out that l+i and l−i+1 are not antiparallel, then the point X(S)

should be mapped on the smoothed knot using Eq. (4.6). Finally, if condition
(7.2) is satisfied, we are on the subsegment l0i , thus in a part that has not been
affected by smoothing. As a consequence, for the values of ξ1 = S in the interval
[
d′
i−1

li
, li−di

li
], it is possible to apply the old parametrization of Eqs. (3.5–3.6).

Steps 2 and 3 should be repeated for ξ2 = T , ξ3 = U etc.

After having sampled the first set of points ξ(1)1 , . . . , ξ
(1)

m(z) , with z = 1, 2, . . . accord-
ing to the above prescriptions, we have to repeat the procedure for ν = 2, . . . , n.

We are now ready to compute numerical knot invariants with the smoothing
procedure of Sections 4, 5 and the Monte Carlo algorithm of Section 3. As a test,
we will calculate the value of the Vassiliev invariant of degree 2 ϱ(C) of different
knots and lengths. All knots are originally defined on a simple cubic lattice, but
after the reduction of the number of segments discussed in Section 6 this is no
longer true. Our Monte Carlo calculations show that the obtained values of ϱ(C)

approach the exact value of this invariant with a precision that increases with the
number of sampled points n. In Table 1 we report for instance the case of a knot
31 with 24 segments. Table 2 illustrates how the presence of the sharp corners
affects the calculations of ϱ(C). In the second column of Table 2, the exact value
ϱa(C) of the Vassiliev knot invariant of degree 2 is provided for several knots with
N = 90 segments. Within the given errors, the values ϱsp(C) obtained by Monte
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knot type ϱa(C) ϱsp(C) ϱns(C) nsc

01 − 1
12 −0.0839± 0.0332 +0.5526± 0.0569 77

31 + 23
12 +1.9170± 0.0553 +2.4781± 0.0465 68

41 − 25
12 −2.0847± 0.0533 −1.5214± 0.0845 68

51 + 71
12 +5.9174± 0.0653 +6.4523± 0.0845 65

61 − 49
12 −4.0856± 0.0723 −3.5717± 0.1007 62

71 + 143
12 +11.9173± 0.0652 +12.4258± 0.1217 62

81 − 73
12 −6.0822± 0.0529 −5.6380± 0.0774 54

91 + 239
12 +19.9158± 0.0855 +20.4041± 0.1579 59

Table 2. This table provides the values of the Vassiliev knot invariant of degree 2 for the knots 01,
31, 41, 51, 61, 71, 81 and 91. ϱa(C) denotes the exact value of the knot invariant. ϱsp(C) refers
to the results of the computation of the knot invariant obtained after performing the smoothing
procedure described in Section 4. ϱns(C) is instead the value of the knot invariant derived without
the smoothing procedure. The data of ϱsp(C) and ϱns(C) have been computed using the same
number of samples, which varies depending on the kind of knot. Finally, nsc is the number of
sharp corners contained in the knot before the smoothing procedure.

Carlo integration after the smoothing procedure (sp) are in agreement with the
exact values, see the third column of Table 2. We are also reporting the results
of the calculations performed without the smoothing procedure, see the values of
ϱns(C) in the fourth column of Table 2. The differences between ϱsp(C) and ϱns(C)

show that the presence of sharp corners in the case of discrete knots does not allow
the correct evaluation of the knot invariant ϱ(C).

Finally, we apply the previously developed algorithms to a concrete simulation
with the aim of exploring the energy landscape of a single knotted polymer ring. The
monomers of the polymer are subjected to very short-range interactions which are
attractive or repulsive, corresponding to poor or good solutions [52,53]. The knots
are defined on a simple cubic lattice and the sampling of the polymer conformations
is performed using a variant of the Wang-Landau Monte Carlo algorithm [54]. The
Vassiliev knot invariant of degree 2 ϱ(C) is used in order to detect changes in the
topology during the random generation of the conformations to be sampled. The
Wang-Landau algorithm performs the sampling in the microcanonical ensemble.
It delivers the so-called density of states Ω(E) as a function of the energy E. The
possible energy values are given by E = mϵ0, where ϵ0 is a constant and m = 1, 2, . . .

denotes the number of contacts [55,56]. A contact occurs when the distance between
two points of the knot that are not contiguous is equal to one lattice unit. Each
contact has a fixed energy cost that, depending if the interactions are attractive
or repulsive, can be negative (ϵ0 < 0) or positive ϵ0 > 0. From now on we assume
that the interactions are attractive, so that higher values of m correspond to lower
energies. In the following, it will be also convenient to consider the number of
contacts m instead of the energy E. All details about the Wang-Landau algorithm,
the interactions used and the whole setup can be found in Ref. [29].
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The model depicted above is simple, but sufficient to capture many features
of polymers in poor of good solutions. Once the density of states Ω(E) is known,
it is straightforward to compute the expectation values of the observables in the
canonical ensemble for any range of temperatures, see [29,56] for a concise review
on Wang-Landau based techniques applied to polymers. This is undoubtely an ad-
vantage with respect to traditional Monte Carlo techniques. The price to be paid
is that the derivation of Ω(E) is computationally demanding in the case of poly-
mers subjected to topological constraints. In order to consider the whole energy
spectrum, in fact, it is necessary to sample also knot conformations that are ex-
tremely rare. The latter are usually conformations near the minimum of the energy
spectrum and are physically relevant when studying the phase diagram of polymer
knots. Unfortunately, the computation of the density of states together with the
requirement that the topology should be preserved during the sampling process
becomes a challenging problem for long knots consisting of a number N > 1000 of
segments.

Here a simpler task than the computation of the density of states will be consid-
ered, namely we are interested to explore the energy landscape of knotted polymer
rings. This problem has been tackled first exploiting the alternative method of
[56] in order to preserve the topology of the knot. This method is very fast, but
is restricted by the fact that at each step of the sampling process at most only
four segments can be randomly changed. Despite the simplicity of the model dis-
cussed before, it turns out that the energy landscape of very long knots subjected
to attractive short-range interactions is non-trivial. The calculations made so far
suggest that its structure could be that of a funnel. For instance, Fig. 15 shows
the histogram counting how many conformations of a knot 31 with N = 4320 have
been visited during a run that started from a seed with m = 0 contacts and has
been stopped after a conformation with m = 4395 was reached. As it is possible
to see from that figure, the code spends a considerable amount of time to sample
the most probable energy domain in which 0 ≤ m ≤ 1500. Hundreds of billions of
conformations should be sampled before knots conformations with contact numbers
m > 1500 are detected. In the range 1500 ≤ m ≤ 4395 it is possible to recognize five
different regions, see the inset of Fig. 15. The sampling process seems to be trapped
successively in one of these regions until the next region with lower values of m is
found. All that is reminding the multi-funnel structure of the energy landscape of
proteins in which relative energy minima are confined in narrow funnels inside of
which even narrower funnels with lower minima are located. A possible explanation
of this structure is that conformations with large contact numbers are very compact,
while statistically the majority of conformations is swollen. For that reason, it is
necessary to sample many conformations before those with small gyration radii are
detected. Yet, the appearance of regions with different scales of the gyration radius
is somewhat surprising. In addition, there are also conformations whose shapes are
very stable and are persisting after billions of random transformations. This is the
case of semi-crystallized conformations like that shown in Fig. 16. The glance into
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Fig. 15. Histogram showing how many times nm a conformation of energy m has been sampled
while exploring the energy landscape of a knot 31 with N = 4320 segments in the range 0 ≤ m ≤
4395. Inset: details of the histogram in the range 1500 ≤ m ≤ 4500.
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Fig. 16. This figure shows two semi-crystallized conformations of the same knot 31 with N = 4320

randomly generated at different steps during the sampling. In conformation (a) the number of
contacts is m = 93, while in conformation (b) m = 3800. In both case the shape is characterized
by a main body with four rings from which six long arms are departing. This shape has been
preserved during the billions of random transformations needed to obtain (b) from (a).

the complexity of long polymer knots presented above has been obtained using the
approach of Ref. [56] in which the detection of possible breakings of the topology
of a knot during sampling is very fast. The main drawback of that approach, as
already mentioned, is that the changes between the next knot conformation to be
accepted or rejected and the previous one are limited to a tiny portion of the loop.
This drawback slows down the process of searching the conformations of minimum
energy of a knotted polymer ring, i. e. those with the maximum number of contacts
according to our settings. For instance, a set of about 9 ·1011 conformations had to



August 22, 2020 14:22 WSPC/INSTRUCTION FILE article

34 Franco Ferrari & Yani Zhao

be generated before arriving at the ultra-compact knot 91 with N = 3994 segments
displayed in Fig. 1. Despite the high speed of the algorithm [56] for preserving the
topology of the knot, almost one year of calculations on a modern workstation with
48 cores have been necessary for that.

The strategy followed here is to use an alternative method based on the Vas-
siliev knot invariant of degree 2 ϱ(C). This allows to change within a single random
transformation an arbitrary number of segments in the loop. In order to calculate
ϱ(C), the Monte Carlo algorithm of Section 3 has been applied together with the
smoothing procedures of Sections 4 and 5. The minimal number n of points to be
sampled to compute the integrals (2.2) and (2.3), see also Eq. (3.14) for the def-
inition of n, depends on the value of the threshold standard deviation σthreshold

defined in Eq. (6.5) and on how complicated is the conformation whose topology
should be detected. For instance, in the case of the knot 91 with N = 500 that
will be considered here, we have found that a convenient choice to ensure that the
topology is detected without errors is σthreshold ∼ 1.3. Concerning the complex-
ity of the conformation, as a general rule discrete knots with a lot of bendings
need a higher value of n than knots whose path is less bended. In a single sim-
ulation n may oscillate within a wide interval. For this reason, in order to save
computational time, our code has been designed in such a way that it is able to
determine automatically the optimal number of the points to be sampled. While
a given simulation is running, the value of ϱ(C) calculated with the Monte Carlo
integration of Section 3 is stored for each accepted conformation together with the
standard deviation σ obtained using Eq. (3.17). These data show that σ steadily
varies within the interval 0 < σ < σthreshold depending on the given conformation
and on n. The fact that σ randomly increases or decreases while the knot confor-
mations randomly change provides a good method to check if the topology of the
knot is preserved. It is sufficient to monitor the conformations for which σ is very
small. For example, the knot 91 has the highest value of ϱ(C) within all knots up
to ten crossings: ϱ(91) = 20 − 1

12 . Only 93 and 10139 have values of ϱ(C) that are
comparable: ϱ(93) = ϱ(10139) = 18− 1

12 . If at every stage of a simulation there are
accepted conformations for which the computed value of ϱ(C) is very near to the
true value ϱ(91) = 20 − 1

12 and the standard deviation of the calculation is very
low, this only means that it is very unlikely that the original topology of the knot
91 has changed. By checking also the values of ϱ(C) and σ of the conformations
that have been rejected, one may observe how a given knot decays into other knots
after a random transformation. Since different knots have different decay patterns,
it is possible to assess if a knot has decayed into a simpler knot with the same value
of ϱ(C) or not.

The Monte Carlo evaluation of ϱ(C) requires to sample a large number of points
n. For the aforementioned 91 knot with N = 500 and σthreshold ∼ 1.3, the values
of n depend on how a conformation is complicated and range within the interval
106 ≤ n ≤ 4.2 · 109. The resulting heavy computational workload has been tackled
by increasing the degree of parallelisation of the code and using GPUs. Moreover,
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in order to speed up the computations, several of the methods explained in Sec-
tion 6 have been exploited. Particularly efficient for this purpose turn out to be
the procedures that reduce the number of segments mentioned in point 3 on page
26. A further gain of speed has been obtained introducing compression during the
sampling of the knot conformations. This means that a new knot conformation is
accepted if it fulfills the Wang-Landau acceptance criterion and its gyration radius
is equal or smaller than that of the previous conformation g. Compression eases the
search of the ultra low energy conformations because they are ultracompact.

The conformation used as a seed in our simulations of an 91 knot with N =

500 segments, see Fig. 17, plot with thinner lines, has contact number m = 110

and gyration radius (measured in lattice units) RG ∼ 107.00. This is actually a
non trivial conformation that has been obtained acting with millions of random
transformations on a simpler conformation. As mentioned before, the complexity
of a conformation is measured here by taking into account the number of points n

to be sampled in order to evaluate ϱ(C) with a standard deviation σ ≤ σthreshold.
The seed requires n ≥ 1.4 · 107, which is quite a high value. Starting from the seed,
each new conformations is generated by random transformations affecting portions
of the loop whose lengths range within five and fifteen segments. The results of the
simulation are summarized by the histogram in Fig. 18-(a), in which the number nm

of visited conformations with contact number m is countedh. As it is possible to see,
after sampling about 1.4 · 106 knot conformations the energy range 45 ≤ m ≤ 676

has been explored. The compression criterion forbids to attain contact numbers
such that m < 45. The conformations that have been found at the lower bound
of the energy range (m = 676) have a gyration radius of RG ∼ 17, 57 in lattice
units. An additional number of 1.0 · 106 conformations has been sampled without
detecting any conformation with m > 676 before the simulation has been stoppedi.

The same simulation has been repeated using the algorithm of Ref. [56] in order
to preserve the topology of the knot. During a time comparable to that of the
previous simulation, the histogram of Fig. 18-(b) has been produced. Clearly, a
much larger number of conformations have been visited with respect to the method
based on the Vassiliev knot invariant of degree 2. However, the fact that only four
segments can be changed by a single random transformation is a disadvantage in
this case. Indeed, the knot remains trapped within a small set of conformations
with contact numbers in the interval 101 < m < 223. Of course, this does not

gApart from compression, it is also possible to apply cooling. In this case, during the sampling a
new knot conformation is accepted only if it fulfills the Wang-Landau acceptance criterion and its
energy is equal or lower than that of the previous conformation. Cooling much more likely than
compression produces frozen conformations like those of Fig. 16.
hLet us note that the histogram of Fig. 18-(a) confirms the possibility of a funnel structure of
the energy landscape of polymer knots. Like in Fig. 15, in fact, this histogram presents plateaux
corresponding to different regions in which the sampling process is confined until the next region
is discovered.
iA similar run with a knot 51 of length N = 500 has arrived to m = 706, suggesting that the
highest energy value of a knot of a given length is dependent on its topology as intuitively expected.
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Knots 91, N=500: m=110, RG=103.00 and m=676, RG=17.57

m=110
m=676

Fig. 17. The seed conformation (thin lines) is that of a knot 91 with N = 500, m = 110 and
gyration radius RG ∼ 107.00 lattice units. The second conformation (thick lines) has been obtained
by acting on the seed with random transformations. Its contact number and gyration radius (in
lattice units) are given respectively by: m = 676 and RG ∼ 17.57. Both conformations are defined
on a simple cubic lattice. In lattice units the seed knot roughly occupies a box of dimension
35× 30× 18 while the second knot fits in a volume of dimensions 14× 10× 11.

mean that the method of Ref. [56] is not consistent with the ergodicity of the
system. Indeed, the pivot moves used here as random transformations are ergodic
as shown in [31]. An entirely free knot would be able to avoid to get trapped within
a narrow set of peculiar conformations by swelling. Unfortunately, this is prevented
by the aforementioned compression condition. After relaxing this condition, still
there is the problem that an enormous number of conformations must be sampled
before the low energy spectrum characterized by compact conformations could be
investigated. In fact, the knot must first swell starting from the initial conformation
with m = 101 and then shrink again. The whole process needs a huge amount of time
to take place, especially the spontaneous shrinking process. All these difficulties are
absent when the topology is controlled with numerical knot invariants that allow
arbitrarily large random transformations.
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Fig. 18. Histograms plotting how many times nm a conformation with contact number m has
been visited while sampling the conformations of a knot 91 with N = 500 in order to explore
the energy spectrum of this system. The histogram on the left − case (a) − has been obtained
running a simulation in which the topology of the knot has been preserved using the Vassiliev knot
invariant of degree 2. The other histogram − case (b) − has been produced following the method
of Ref. [41]. In (a) a few millions of conformations span the wide energy range 45 ≤ m ≤ 676. In
(b) the system has been trapped in a limited set of conformations that have been visited billions
of times.

8. Conclusions

In this work a comprehensive approach has been provided to implement numerical
knot invariants (NKIs) in the study of knots formed by quasi one-dimensional phys-
ical objects like polymers rings or the lines of a magnetic field. The calculation of
the contour integrals appearing in the expressions of NKIs has been tackled using
the Monte Carlo algorithm summarised by Eqs. (3.14-3.17). In order to obtain the
value of the NKIs the points of the knot are sampled via the three-step procedure
whose details may be found on page 29. If knots are realized as a system of segments
joined together to form a discrete loop, we have checked that the numerical evalua-
tion of a NKI like the Vassiliev knot invariant of degree 2 is spoiled by the presence
of the sharp corners appearing at the joints between continuous segments. spoils
the numerical evaluation of NKIs. The departure from the exact result is roughly
proportional to the number of sharp corners contained in the knot. In order to
be able to apply NKIs in computer simulations, where knots are usually discrete
objects, this difficulty has been solved introducing a fast and efficient procedure for
smoothing knots. The idea followed in Section 4 is to substitute the parts of the
knot in which there are sharp corners with smooth arcs. A family of smooth curves
that are suitable for this goal has been given in parametric form in Eqs. (4.6–4.9).
The arcs of these smooth curves are attached to the rest of the knot in such a way
that the obtained new conformation is a closed G1−curve. As a rule of thumb, the
bigger are the portions of the knot around the sharp corners that are substituted,
the faster is the calculation of the NKIs, see the comments in Point 4 on page 15. On
the other side, if the smoothed region of the knot is too big, there is a high risk that
the knot type could change. The size of these regions is determined by the lengths
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d′i−1 and di, i = 1, . . . , N , defined in Eqs. (4.4–4.5). In the case of knots on a lattice,
it is possible to pick up a priori the values of d′i−1 and di in such a way that the
topology of the knot is not affected by the smoothing procedure. The example of a
simple cubic lattice has been worked out in Section 6, see Eqs. (6.1–6.3) and related
comments. If however the segments of a discrete knot are allowed to get arbitrarily
close to each other, as it happens when off-lattice computations are considered, a
prescription to select the values of d′i−1 and di is needed. Such a prescription has
been explained in details in Section 5. The basic strategy is to surround each joint
in which there is a sharp corner with a sphere that contains the part to be changed
and no other point of the knot. This and the additional condition that each sphere
cannot have intersections with the other spheres are sufficient to prevent undesired
topology changes. At the end, the values of d′i−1 and di are made to coincide with
the radii of these spheres. The recursive presented in Section 5 is able to derive
the radii of the spheres in such a way that both conditions mentioned above are
respected. This procedure is relatively simple despite the fact that it is entirely
general, being valid for knots both on- and off-lattice.

The algorithms developed in this work have been tested against concrete sim-
ulations whose aim is to determine the energy landscape of knotted polymer rings
subjected to short-range attractive interactions. The Wang-Landau algorithm has
been exploited as an engine for sweeping the set of all possible conformations and
finding those with the lowest energy states. When the discrete knot to be inves-
tigated is very long, in the sense that it consists of many segments, this task is
particularly demanding from the computational point of view independently of the
method used in order to preserve their topology. The main reason is that the set
of conformations of a discrete knot becomes soon huge when the number of seg-
ments N is increasing. To investigate a statistically relevant fraction of this set and
succeed in picking up the rare conformations corresponding to the lowest energy
states, a large number of conformations should be randomly generated. Our simu-
lations have shown that the number of random transformations needed to explore
the energy spectrum of knots including the most rare conformations is much lower
if large parts of the knots are allowed to be changed. For instance, in the case of
the knot 91 with N = 500 discussed in Section 7, a few millions of sampled con-
formations is sufficient to find the lowest energy state with m = 576. With the
method of Ref. [56], in which the random transformations may involve at most
four segments, hundreds of billions of conformations should instead be generated
before arriving to a state with m = 576. A similar behaviour has been observed in
the simulations of a knot 51 with N = 500 (the lowest energy state has contact
number m = 706) and of a knot 41 with N = 360 (contact number of the lowest
energy state: m = 474). The explanation of this fact is straightforward: In order to
connect two conformations whose shapes are very different, many random trans-
formations will be necessary if these transformations may affect only a tiny part
of the knot. For this reason, algorithms for sampling knot conformations based on
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NKIs to detect unwanted topology changes are very efficient in exploring the set
of all conformations because in this way it is possible to perform random transfor-
mations of arbitrarily large elements of the knot. This advantage compensates the
large number n of knot points that should be sampled according to Eq. (3.14) in
order to compute the contour integrals appearing in the expressions of the NKIs.
Moreover, thanks to the speeding up procedures explained in Section 6, together
with a high degree of parallelisation and the use of GPUs, simulations in which n is
in the average of the order of 108 become feasible. This high value of n is sufficient
to treat knots with thousands of segments.

In conclusion, in this paper a comprehensive set of algorithms and techniques
has been provided with the aim of implementing the application of NKIs in com-
puter simulations involving discrete knots. The examples worked out in the case of
the Vassiliev invariant of degree 2 have shown that NKIs allow to distinguish the
topological states of discrete knots in an efficient and fast manner. The topology
of knots like 31, 41, 51 and 91 of different lengths up to N = 500 turns out to be
preserved in all performed simulations after the generation of millions of random
conformations. Work is in progress in order to extend these results also to the case
of the triple invariant of Milnor that describes the links formed by three knots and
several other invariants that have applications in various disciplines ranging from
astrophysics to physics and chemistry [57,58,38].
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Appendix A. Algorithm to find the point on a discrete knot that it is
nearest to a given joint

Let xk+1,i be the nearest point to the joint xi among all points lying on the segment
lk+1 = xk+1 − xk with k + 1 ̸= i − 1, i . To detect the position of xk+1,i, we pick
up on lk+1 a general point Xk+1(σ) as follows:

Xk+1(σ) = xk + (xk+1 − xk)σ (A.1)
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with σ ∈ [0, 1]. The distance between this point and xi is
√
(Xk+1(σ)− xi)2. If

Xk+1(σ) is the position of the nearest point to xi, then Xk+1(σ) must satisfy the
condition

d
√
(Xk+1(σ)− xi)2

dσ
= 0 (A.2)

Inserting Eq. (A.1) in (A.2) and solving Eq. (A.2) with respect to σ, we obtain
that the point of lk+1 at the minimal distance from xi corresponds to the following
value of σ:

σmin = − (xk+1 − xk) · (xk − xi)

(xk+1 − xk)2
(A.3)

Three cases may occur:

1) If σmin ≥ 1, the nearest point to xi clearly lies outside the segment lk+1, because
the points of lk+1 are in the interval σ ∈ [0, 1]. The fact that σmin is positive
tells us that going along lk+1 in the direction pointing toward the end point
xk+1 we are increasingly getting closer to the point xi. Continuing in the same
direction, the nearest point to xi occurs to be at the distance σmin from the
point xk. Since σmin > 1, this point is outside the segment lk+1. In conclusion,
the nearest point to xi lying on the segment lk+1 is xk+1,i = xk+1 and its
distance from xi is dk+1,i = |xk+1 − xi|.

2) If σmin ≤ 0, the nearest point occurs as before outside the segment lk+1. More-
over, the fact that σmin is negative implies that the point xi is closer to the end
xk of lk+1 than to any other point of lk+1. As a consequence, on the segment
lk+1, the nearest point to xi is in this case the point xk. Its distance from xi

is dk+1,i = |xk − xi|.
3) If 0 < σmin < 1, then xk+1,i lies on the segment lk+1 and xk+1,i = xk+1 +

(xk+1 − xk)σmin. The distance of xk+1,i from xi is in this case:

dk+1,i =

√
(xk − xi)2 −

[(xk+1 − xk) · (xk − xi)]
2

(xk+1 − xk)2
(A.4)

By repeating this procedure for all segments lk+1 with k = 0, · · · , N − 1 and
k ̸= i− 1, i, we obtain the location of the point of the knot which is not belonging
to li and li+1, and it is nearest to xi.
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