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ABSTRACT: Similar to macroscopic ropes and cables, long
polymers create knots. We address the fundamental question
whether and under which conditions it is possible to describe these
intriguing objects with crude models that capture only mesoscale
polymer properties. We focus on melts of long polymers which we
describe by a model typical for mesoscopic simulations. A worm-
like chain model defines the polymer architecture. To describe
nonbonded interactions, we deliberately choose a generic “soft”
repulsive potential that leads to strongly overlapping monomers
and coarse local liquid structure. The soft model is parametrized to
accurately reproduce mesoscopic structure and conformations of reference polymer melts described by a microscopic model. The
microscopically resolved samples retain all generic features affecting polymer topology and provide, therefore, reliable reference data
on knots. We compare characteristic knotting properties in mesoscopic and microscopically resolved melts for different cases of
chain stiffness. We conclude that mesoscopic models can reliably describe knots in those melts, where the length scale characterizing
polymer stiffness is substantially larger than the size of monomer−monomer excluded volume. In this case, simplified local liquid
structure influences knotting properties only marginally. In contrast, mesoscopic models perform poorly in melts with flexible chains.
We qualitatively explain our findings through a free energy model of simple knots available in the literature.

1. INTRODUCTION

Mesoscopic models of polymers are constructed by substitut-
ing a large number of microscopic degrees of freedom by a
single effective interaction center. Such models are indis-
pensable for studying polymeric materials on scales between a
few and up to several hundreds of nanometers, benefiting from
efficient sampling of configurational space. This efficiency
stems from reduced amount of degrees of freedom and
effective potentials that are comparable in strength to the
thermal energy. This “softening” of interactions mitigates
computational bottlenecks caused by microscopic hard
excluded volume and is a consequence1−3 of the formal
statistical mechanics of coarse-graining.
The contribution of mesoscopic models to basic theoretical

understanding of polymeric materials has been significant, and
representative examples are available in various topical
reviews.3−11 Moreover, mesoscopic simulations are a key
element of algorithms developed for hierarchical modeling of
polymeric materials, where equilibrated samples described by
soft models are used to recover the microscopic description
through efficient fine-graining procedures.5,12−15

Though powerful, mesoscopic modeling faces a number of
challenges. For example, soft potentials usually lead to
simplified local liquid structure. This approximation does not
affect the mesoscopic description of those properties that show
scale separation. Such properties are governed on large scales
by universal laws,16 encapsulating effects of microscopic
detailsincluding local liquid packinginto numerical

prefactors of generic expressions. However, for many proper-
ties the concept of scale separation does not apply. Our work is
concerned with one of such cases: the behavior of polymer self-
entanglements or “knots”.
Already for single (isolated) chains, simulations have shown

that microscopic features largely affect knotting behavior.17−42

While short flexible ideal chains tend to form numerous17,22,24

highly localized knots,23 adding excluded volume interactions
increases the chain lengths at which knots start to appear by
about 2 orders of magnitude as, for example, expressed by
surpassing a certain knotting probability.18,19,22,27 These knots
are still (weakly) localized25−27 but considerably larger than in
the ideal case. Overall, the effects of microscopic features can
be very nontrivial. For example, recent studies43,44 have
demonstrated that the probability of finding a randomly
generated self-avoiding ring polymer in a knotted state changes
nonmonotonously when the persistence length is increased, at
fixed size of excluded volume and chain length. Intriguingly, for
very long chains the change of probability has bimodal shape.44

Globular polymers and polymers confined to spheres are, on
the other hand, heavily knotted,21,27 but their knots tend to be
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loose and delocalized25−27 and thus become a global property
of the chain.
For multichain systems, modeling studies of knotting

behavior are sparse.45−48 For the special case of polymer
melts one can naively try to apply basic polymer physics.
According to the Flory hypothesis,49 the effects from excluded
volume interactions in melts are screened on scales exceeding
the microscopic Edwards correlation length. Therefore, the
conformations of polymers follow the statistics of ideal chains
that have the same contour length and mean-squared end-to-
end distance as the chains in the melt. Recent studies50−52

have demonstrated that the Flory hypothesis is an approx-
imation, which, nevertheless, becomes highly accurate for long
chains. Therefore, one might expect that the properties of
knots in melts of long chains and their equivalent ideal chains
are similar.
Intriguingly, recent modeling studies48 have demonstrated

that this assumption is too simplistic. In polymer melts knots
appear significantly less frequently and are more loose when
compared to equivalent isolated ideal chains. Apparently, even
local excluded volume effects or, more generally, microscopic
liquid structure can significantly influence the behavior of
polymer knots. These observations lead to a basic question:
Can mesoscopic models describe knots in polymer melts, given
the absence of hard excluded volume and simplified local liquid
structure?
Here, we address this fundamental question using a model

that is typical for mesoscopic simulations of polymeric
materials. The molecular architecture of long polymers is
described through the worm-like chain (WLC) model. A
generic soft repulsive potential captures nonbonded inter-
actions between coarse-grained monomers. We define this
potential through a simple particle-to-mesh scheme53−57 to
deliberately obtain polymer liquids with very crude local
structure. The soft model is parametrized to accurately
reproduce mesoscopic structure and conformations of polymer
melts that have been equilibrated in a previous study48 using a
microscopic model. We directly compare the knotting
properties in mesoscopic melts with their counterparts in the
equivalent microscopically resolved samples.
We find that the ability of mesoscopic models to accurately

describe knotting properties is crucially affected by the
relationship between two length scales: the size of the excluded
volume and the length scale characterizing the stiffness of the
polymer chain. We qualitatively explain the trends of knotting
behavior in mesoscopic and microscopic simulations benefiting
from a free energy model of simple knots available in the
literature.36,58

2. KNOT DETECTION AND QUALITATIVE INSIGHTS
FROM A FREE ENERGY MODEL

Knots are only well-defined in closed loops and are categorized
according to the minimum number of crossings in a projection
onto a plane, for example, zero for the unknot or three for the
trefoil (31) knot. The concept can be extended to open chains
by introducing an appropriate closure. The closure connects
the termini of the chain in a well-defined manner20 before the
knot type is determined with one of the available methods, for
example, the calculation of Alexander polynomials59 which we
use in this work. Here, we extend to infinity two straight lines,
connecting the respective end points of a polymer chain and its
center of mass. In this way, the closure originates at the first
monomer, follows the first line outward, and connects to the

second line far away from the polymer before returning to the
last monomer along the second line.60 Knot sizes23,27 are
determined by cleaving monomers from both ends until the
knot type changes.27 Figure 1 presents a chain with a trefoil
knot and clarifies the definition of the closure.

To qualitatively understand the effect of local liquid
structure on knots, it is useful to focus on the trefoil knot
because it has the simplest possible topology. We consider the
free energy cost36with respect to the unknotted stateto
form a trefoil knot with contour length Nknot in a chain with
effective thickness w. This expression stems36 from a theory58

of knots in ideal chains (zero thickness). The thickness of the
chain is determined by the size of the excluded volume and
sets the characteristic length scale of local liquid structure. The
free energy reads

( )
F

k
N

k
N

2
1

2
1 pw

N

knot
1

knot
2

knot
1/3

2/3
3

knot

β = ̃ +
̃

− ̃
̃ (1)

We use normalized variables Ñknot = Nknot/lK and w̃ = w/lK,
where lK is the length of the Kuhn segment of the chain. The
prefactors 1/2 and 23 make eq 1 equivalent to the original
expression,36 casted in terms of Nknot/lp. Here lp is the
persistence length, and we assume lK ≃ 2lp. The first term in
βFknot penalizes

36,58 chain bending and favors swollen knots.
The second term expresses36,58 the entropic cost of
constraining the chain into a virtual knotted tube and tends
to shrink the knot. Figure 1 illustrates this virtual tube. The
metastable size of the trefoil knot is given by the minimum of
βFknot. k1 and k2 are positive phenomenological parameters.
The constant p is related to knot topology.36 Theoretically61 p
= 12.4, but it is preferable to treat p also as a phenomenological
parameter.36 Previous studies36,62 have tested βFknot against
simulations of knots in isolated chains and determined k1, k2,
and p. However, we can make some basic qualitative estimates
without specifying these parameters; it is sufficient to know
that they are positive quantities.
We notice that the convergence of βFknot to the free-energy

landscape of trefoil knots in ideal chains is controlled by the
magnitude of w̃. This parameter is small, even for large
excluded volumes, if the polymer is sufficiently stiff, that is, has

Figure 1. An open polymer chain with a trefoil knot. The knotted and
unknotted parts are colored pink and blue, respectively. Two lines
(red dashed lines) are determined based on the center of mass
(COM) and two ends of the chain. The open chain is closed (blue
solid lines) by connecting two points along these lines which are far
from the chain. The formed trefoil knot is confined in a virtual
maximum inflated tube (gray color).

Macromolecules pubs.acs.org/Macromolecules Article

https://dx.doi.org/10.1021/acs.macromol.0c02079
Macromolecules XXXX, XXX, XXX−XXX

B

https://pubs.acs.org/doi/10.1021/acs.macromol.0c02079?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02079?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02079?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.macromol.0c02079?fig=fig1&ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://dx.doi.org/10.1021/acs.macromol.0c02079?ref=pdf


large lK. Consequently, for melts of stiff chains the knotting
behavior should approach the universal limit of ideal chains,
irrespective of local liquid structure. Therefore, we expect that
the coarse description of liquid structure in mesoscopic models
does not affect their ability to describe knots in polymer melts
when chains are stiff.
Inspecting βFknot in eq 1, we conclude that excluded volume

always increases the entropic cost of confinement (second
term). Therefore, the free energy cost for forming a trefoil knot
with size Ñknot in a chain with excluded volume is always higher
than for an ideal chain, with the same lK. Assuming that this
trend holds also for more complex knots, βFknot suggests that
the probability Pk to find a chain with excluded volume in a
knotted state is smaller than in the case of an ideal chain.
Moreover, according to βFknot, for chains with excluded volume
the entropic cost for forming a knot cannot be continuously
diminished by decreasing the knot size. The large entropic cost
of small knots shifts the minimum of βFknot to higher values
compared to the ideal chain. In the Supporting Information we
provide a formal proof based on minimization of βFknot. In
other words, the most probable knot in a chain with excluded
volume is larger than in its ideal chain counterpart. The
difference between the two cases diminishes as the stiffness of
the chain is increased, that is, as w̃ → 0.

3. MICROSCOPICALLY RESOLVED REFERENCE MELTS

The evaluation of the accuracy of mesoscopic models in
capturing knotting properties of homopolymer melts requires
reference data from systems described with microscopic detail.
As a reference, we use the data on knotting properties of
microscopically resolved melts that have been published in ref
48. When necessary, we additionally analyze the configurations
of polymer melts equilibrated in that work to extract
topological data that have not been included in the original
publication. Below, we briefly discuss the main features of the
microscopic model and summarize the characteristics of the
reference samples.
The microscopically resolved melts occupy volume Vmic and

contain nmic linear bead−spring chains with Nmic monomers
each. The nonbonded interactions between the monomers are
captured through the purely repulsive Weeks−Chandler−
Andersen potential, where the length and the energy scales, σ
and ϵ, are set to unity. In all cases the average bead density is
set to ρ = 0.68σ−3. The bonds between the monomers are
described by harmonic springs, which are sufficiently stiff to
ensure that the length of the bond remains practically fixed to
bmic = 0.967σ. To generate homopolymers with different
stiffness, an angular potential V(θ) = B(1 − cos θ) is
introduced, where θ is the angle between two sequential bonds
and B is a stiffness parameter. The melts were equilibrated48

with molecular dynamics simulations, started from config-
urations prepared with a configuration-assembly method.63

Table 1 lists the polymerization degrees and stiffness
parameters of all reference melts.

4. MESOSCOPIC SIMULATIONS

4.1. Model. Our mesoscopic description of homopolymer
melts follows previous studies.57,64 Let the melt contain ncg
homopolymer chains in a volume Vcg. The homopolymers are
represented by discrete worm-like chains (WLCs). Each of
them has Ncg interaction centers, beads, connected by bonds

with fixed length bcg. The bonded potential of the WLC is
given by

H s su u( 1) ( )
s

N

b 0
1

2cg

∑β = −ϵ + ·
=

−

(2)

Here β = 1/kBT, u(s) is a unit vector along the sth bond, and ϵ0
is a positive parameter controlling the flexibility of the chain.
We define the nonbonded interactions through a particle-to-

mesh (PM) scheme.53−56 The volume occupied by the melt is
discretized through a cubic lattice (grid) with spacing ΔL. The
grid enables the calculation of an instantaneous density “field”
from the instantaneous coordinates of the Ntot = ncgNcg beads,
distributed in continuum space, using the relationship

Lc r c( ) ( , )m
i

N

i m
3

1

tot

∑ρ ̂ = Δ Π−

= (3)

ri is the position vector of the ith bead, and cm defines the
location of the mth node of the cell. The assignment function
Π(ri, cm) corresponds to a “zero-order” PM scheme3 and is
defined as Π = 1 when −ΔL/2 ≤ dγ < ΔL/2 and Π = 0
otherwise. dγ are projections of δri,m ≡ ri − cm on the three
Cartesian directions γ = x, y, z.
Based on the instantaneous densities, the nonbonded

interactions are defined through the effective Hamiltonian:

H
L

c
2

( )
m

N

mnb
1

3

0

2
cell

∑β κ
ρ

ρ= Δ ̂
= (4)

where ρ0 = Ntot/Vcg is the average density of the beads in the
system. Because κ is a positive coefficient, the effective
Hamiltonian in eq 4 defines repulsive interactions.
The definition of βHnb through eq 4 facilitates numerical

implementation (see subsection 4.3). However, to understand
better the model and interpret its knotting properties, it is
preferable to transform eq 4 by substituting for ρ̂(cm) the
expression from eq 3. Straightforward rearrangements lead55 to

H r r
2

( , )
i

N

j

N

i jnb
1 1

tot tot

∑ ∑β
ν

ω= κ

= = (5)

where

Table 1. Stiffness Parameter B, Polymerization Degree Nmic,
Number of Kuhn Segments per Chain NK, and Square Root
of Invariant Degree of Polymerization √N̅ (See Eq 10) for
the Different Reference Melts Considered in This Study

systems B Nmic NK √N̅

B0a 0 128 60.5 20.9
B0b 256 121.4 29.8
B0c 512 243.3 42.2
B0d 1024 487.1 59.8
B2a 2 128 35.3 47.0
B2b 256 70.8 66.8
B2c 512 141.9 94.8
B2d 1024 284.2 134.2
B4a 4 128 18.1 127.3
B4b 256 36.4 181.1
B4c 512 73.0 256.9
B4d 1024 146.1 363.9
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L
r r r c r c( , ) ( , ) ( , ),i j

m

N

i m j m
1 0

3

cell

∑ω ν κ
ρ

= Π Π =
Δκ

= (6)

Equations 5 and 6 convey an important message. They
demonstrate that our mesoscopic model is a conventional
particle-based model where non-bonded interactions between
monomers are expressed through a pairwise non-bonded
potential, U(ri,rj) = νκω(ri,rj). Two monomers interact only
when they are located in the same lattice cell, and the strength
of their repulsion is controlled by νκ. The pairwise potential in
eq 6 is analogous to the well-known model of penetrable
spheres65 but with an important difference: the PM-based
U(ri,rj) is translationally and rotationally noninvariant

3 because
it depends on the location of the interacting monomers with
respect to the grid. The range of U(ri,rj) varies between ΔL
and √3ΔL (depending on the position of the monomers in
the cell); that is, in all cases the characteristic length scale of
interactions is proportional to ΔL.
4.2. Parametrization. We now must determine the

parameters of the mesoscopic model, Ncg, bcg, ϵ0, ncg/Vcg
(chain density), ΔL, and κ, such that the coarse-grained
homopolymer melts represent the reference systems. To make
progress, we recall that within the (approximate51) Flory
hypothesis49 long flexible chains in polymer melts follow the
statistics of ideal random walks and can be “assigned” an
equivalent Kuhn chain. The latter is a freely jointed chain
composed of NK rigid segments, with length lK each. Because lK
is a characteristic length along the polymer-chain contour at
which the chain can be considered as “straight”, it sets the scale
at which the formation of knots becomes unlikely. Therefore,
one of the requirements for mesoscopically and microscopi-
cally resolved melts to have the same knotting properties is
that they map on the same Kuhn chains; that is, they have the
same lK and NK. We emphasize that this requirement is only a
necessary but not suf f icient48 condition. Clarifying additional
conditions for having the same behavior of knots is among the
objectives of our study.
The parameters of the equivalent Kuhn chain are expressed

through the contour length L and mean-square end-to-end
distance ⟨Re

2⟩ of an ideal polymer chain as66 lK = ⟨Re
2⟩/L and

NK = L2/⟨Re
2⟩. Hence, mesoscopically and microscopically

resolved melts map on identical Kuhn chains only when they
have the same L and ⟨Re

2⟩. The contour length of the WLC is
given by

L N b( 1)cg cg= − (7)

Assuming that the conformations of WLC chains in the melt
obey ideal random walk statistics, their mean-square end-to-
end distance is given by the well known expression67

R N b
G
G

G
N

G
G

( 1)
1 ( )
1 ( )

2 ( )
1

1 ( )
(1 ( ))
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e
2
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2 0

0

0
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0
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0
2

cg
Ä
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ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
⟨ ⟩ = −

+ ϵ
− ϵ

−
ϵ
−

− ϵ
− ϵ

−

(8)

where G(ϵ0) quantifies
68 the angular correlation between two

successive bonds. If θ0 is the instantaneous angle formed by
these bonds, then

G( ) cos
1 e (1 )

1 e0 0
0

1 2
0

1

2

0

0
θϵ ≡ ⟨ ⟩ =

− ϵ + + ϵ
−

− − ϵ −

− ϵ (9)

For the reference systems the contour length follows from the
geometry of the bead−spring chain as L = (Nmic − 1)bmic,

while ⟨Re
2⟩ is calculated as an average over all chains in all

equilibrated samples of the given melt. Substituting into the
left-hand side of eqs 7 and 8 the L and ⟨Re

2⟩ of the reference
systems, we obtain two constraints on three parameters Ncg,
bcg, and ϵ0. Because the system of eqs 7 and 8 is
underconstrained, there is an infinite number of different
WLC models57 that map on the same Kuhn chain (have the
same L and ⟨Re

2⟩). Therefore, we consider Ncg as a free
parameter but with some restrictions. Whereas the discretiza-
tion of the WLC should be finer than or (at least) comparable
to the Kuhn chain, i.e., Ncg ≥ NK, Ncg cannot be too large for
reasons of computational efficiency. As a compromise we set
Ncg = 2NK. For each reference melt, we summarize the NK in
the equivalent Kuhn chains in Table 1 (extracted from their L
and ⟨Re

2⟩). In practice, the conformations of WLC in the
coarse-grained homopolymer melts are not determined by ϵ0

69

only, but are also affected by nonbonded interactions.
Consequently, for given Ncg and bcg, we use eq 8 only to
extract an initial estimate for ϵ0. This estimate is refined with
iterative simulations of the entire mesoscopic homopolymer
melt to ensure that the target value ⟨Re

2⟩ is reproduced in the
ensemble of interacting WLC.
In addition to the length scales L and ⟨Re

2⟩, the mesoscopic
model should reproduce another key property of the reference
homopolymer meltsthe invariant degree of polymerization
N̅. It is defined as

N
N

R
n
V

R
mic

e
2 3/2 mic

mic
e

2 3/2ρ
̅ = ⟨ ⟩ = ⟨ ⟩

(10)

N̅ quantifies the number of molecules threading through the
characteristic volume of a test chain. Conserving N̅ is crucial
because it determines the mesoscale structure of the polymer
liquid16,70 in a universal way. Importantly, the magnitude of
deviations from the Flory hypothesis is controlled, to first

order,50−52 by N1/∼ ̅ . In other words, N1/ ̅ is the
parameter that determines how well polymer conformations
in melts can be approximated by ideal chains. For all reference

systems, we list the N̅ in Table 1.

Based on eq 10, to conserve N̅ , the mesoscopic model
must reproduce the chain density of the reference melts
(because ⟨Re

2⟩ is also a conserved quantity):

n

V
n
V

cg

cg

mic

mic
=

(11)

Having clarified how generic properties of polymer melts
determine some of our parameters, we turn to the model-
specific, local, liquid structure and consider the quantity

L
n N

V
L0

3 cg cg

cg

3η ρ= Δ = Δ
(12)

Because the lattice spacing ΔL sets the range of the repulsion,
η is a monomer packing fractiona well-known parameter in
mesoscopic models with standard (translationally and rota-
tionally invariant) pairwise potentials. We vary the local liquid
structure in the mesoscopic simulations, by modeling melts
with weak, η < 1, and strong, η > 1, overlap of monomers. To
realize the desired η, we modify ΔL under the constraint that
ΔL < lK. This condition ensures that the model-specific length
scale of interaction range is separated from the generic length
scale of chain rigidity.
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Varying the softness of the repulsive potential is an
alternative way for modifying local liquid structure. We change
κ such that the strength of monomer−monomer repulsion νκ
varies from a fraction of kBT to a few tens of kBT.
4.3. Monte Carlo Sampling. The configurational space is

sampled with PM Monte Carlo (MC) simulations, described
in several previous studies.53,55,57,64 In short, our simulations
are performed in the canonical ensemble and consider cubic
samples of melts with periodic boundary conditions (PBC).

The edge of the cube equals R2 e
2⟨ ⟩ ; this empirical choice is

widely accepted as the minimum requirement for avoiding
finite-system size effects in disordered melts.
We employ two standard MC moves: the slithering snake71

(reptation) and the crankshaft move72 (also known as “flip”
move73). In the reptation move, a homopolymer chain is
randomly selected. One segment is deleted from a randomly
chosen chain end and is attached to the other end. In the
crankshaft move, the rotation angle72,73 is randomly chosen
from the interval [0, 2π]. The acceptance criterion for
reptation and flip moves is formulated in a similar way.
From the coordinates of the displaced bead in its new and old
positions, r(new) and r(old), we calculate the difference in the
bonded energies Δ(βHb) caused by the MC move.
Furthermore, r(new) and r(old) are used to identify the cells
that are influenced by the move and calculate the new
densities, ρnew(cm), in these cells. For both MC moves used in
this work, the amount of affected cells is either zero, if the bead
lands in the same cell as before, or two. Taking into account
the bead densities in the affected cells before the move,
ρold(cm), it is straightforward to calculate the change in the
nonbonded energy Δ(βHnb), based on eq 4. The move is
accepted with probability pacc = min{1, exp[−Δ(βHb) −
Δ(βHnb)]}.

5. STRUCTURE AND CONFORMATIONS
In this section we investigate basic structural and conforma-
tional properties of our mesoscopic melts. These properties are
required for (i) quantifying the accuracy with which our soft
model reproduces the mesoscopic features of the reference
systems and (ii) interpretation of the behavior of knots.
We first demonstrate the simplified local liquid structure in

the mesoscopic model by presenting monomer−monomer
radial distribution functions g(r) in Figure 2a. The distance is
scaled by the bond length of the WLC so that the ”spike” of
the g(r), due to WLC connectivity, is always at r/bcg = 1. We
consider a representative family of melts whose parameters
have been adjusted to reproduce the mesoscopic properties
Kuhn chain and N̅ of the B2c reference melt. However, we
vary the local structure of these melts by changing the strength
of the monomer−monomer repulsion νκ at fixed η = 1. We
quantify the depth of the monomer−monomer correlation
hole in the inset of Figure 2a by presenting g(r ≃ 0) as a
function of νκ. As expected, g(r ≃ 0) decreases with the
increase of νκ but saturates to a small value, instead of
converging towards zero in the limit of hard repulsions (νκ →
+∞). We conclude that we cannot completely eliminate
overlaps between monomers by increasing their repulsion, in
contrast to models with traditional translationally invariant
potentials.
This peculiar behavior of monomer packing at strong

repulsions stems from the zero-order PM scheme. We
demonstrate this by rewriting the radial distribution function as

g r g r g r( ) ( ) ( )sc dc= + (13)

where

g r
A

r r r r( )
1

( ) ( , )
i

N

j j i

N

ij i jsc
,

tot tot

∑ ∑ δ ω= ⟨ − ⟩
≠ (14)

and

g r
A

r r r r( )
1

( )(1 ( , ))
i

N

j j i

N

ij i jdc
,

tot tot

∑ ∑ δ ω= ⟨ − − ⟩
≠ (15)

Figure 2. Radial distribution functions in mesoscopic melts
representing the B2c reference system. The melts have the same
monomer packing fraction η = 1 but different strength of repulsive
interactions νκ, as indicated in the legends. The main figure of (a)
shows the total g(r) of CG beads, and the inset demonstrates g(r ≃ 0)
as a function of νκ. (b) and (c) show the partial radial distribution
functions gsc(r) and gdc(r) calculated, respectively, for pairs of
monomers found in the same cell and two different neighboring cells.
The sketches in the insets of (b) and (c) illustrate these two different
types of monomer pairs. In all plots, the distance r is scaled by the
bond length bcg of the WLC.
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Here rij = |ri − rj| and A = 1/4πr2Ntotρ0. Equations 14 and 15
demonstrate that gsc(r) and gdc(r) quantify the contribution to
g(r) from pairs of particles that are found in the same and
different cells, respectively.
Figures 2b and 2c present the components gsc(r) and gdc(r)

of g(r) from Figure 2a, focusing on the region of small
distances. From the plots of gsc(r) we conclude that there are
less and less pairs of monomers found in the same cell (cf.
sketch in the inset of Figure 2b) as νκ increases. In contrast, the
saturation of the plots of gdc(r) demonstrates that the
contribution to g(r) from pairs of monomers found on
different sides of the boundary of neighboring lattice cells (cf.
sketch in the inset of Figure 2c) becomes constant at large νκ.
Such monomers can be arbitrarily close because they do not
interact with each other. In passing, we mention that the
amount of pairs of such close monomers, presumably, will be
reduced in higher order PM schemes3,56 where the density of a
monomer is smeared over several cells.
Figure 3 presents g(r) for mesoscopic melts that are again

equivalent to the B2c system. Now, however, we set νκ = 3 and

vary η by adjusting ΔL. Specifically, ΔL varies from 0.37bcg (η
= 0.1) until 1.98bcg (η = 15). The inset of Figure 3 presents g(r
≃ 0) as a function of η. For η ≤ 1 we observe a distinct
monomer−monomer correlation hole because at low η it is
possible to achieve energetically favorable nonoverlapping
monomer arrangements when cells are occupied by single
monomers. The width of the correlation hole is proportional to
the range of the repulsion ΔL, similarly to models with
translationally invariant potentials. However, the behavior of
the depth of the correlation hole is more complex: for η ≤ 1,
g(r ≃ 0) first decreases as η becomes smaller but rises again for
η ≤ 0.5. This nonmonotonicity has the same origin as the
nontrivial effects of νκ on monomer overlap. Decomposing the
g(r) from Figure 3 into gsc(r) and gdc(r) (see Supporting
Information) demonstrates that the contribution of monomer
pairs to g(r) found in the same cell decreases as η becomes
smaller. In contrast, the contribution from pairs of monomers
found on different sides of the boundary of adjacent lattice
cells increases. Eventually, at small η, gdc(r) outweighs gsc(r) so
that g(r ≃ 0) grows again.
In contrast to monomer−monomer packing, the liquid

structure on the scale of the entire WLC is almost independent
from the details of interactions, consistent with the ideas of

universality. On this scale, the mesoscopic model reproduces
the liquid structure of the reference, microscopically resolved,
melts. We provide a demonstration in Figures 4a and 4b by

presenting the radial distribution function gchain(r) of the
centers of mass of the chains in the mesoscopic melts that have
been considered in Figures 2 and 3. The distance r is scaled by

the root-mean-square end-to-end distance, R Re e
2= ⟨ ⟩ of

the polymer. The plots follow closely the gchain(r) in the
reference B2c melt (the deviations are at most 2%).
It is crucial to examine explicit quantifiers of polymer

conformations because they directly correlate with knotting
properties. The internal distance plot is considered63,74 as one
of the most sensitive quantifiers of polymer conformations. For
our melts, it is defined as Cα,m(s) ≡ ⟨Rα,m

2(s)/s⟩, where
⟨Rα,m

2(s)⟩ is the mean-square distance of two intramolecular
repeat units separated by s bonds along the contour of the
WLC or the bead−spring chain (s is also known as the
“chemical distance”). The subscript α indicates whether we are
considering a mesoscopic or a reference melt, α = cg and mic,
respectively. The subscript m denotes a specific system listed in
Table 1, e.g., m = B2c. Figure 5a presents the Ccg,B2c(s) for a
few representative mesoscopic analogues of the B2c melt and
compares them with Cmic,B2c(s) from the reference system.
Although the mesoscopic WLC and bead−spring chains have
different architecture and discretization (number of mono-
mers), we can compare their internal distance plots on a
common graph using a rescaled chemical distance s ̃ = sbα/lK.
We quantify the difference between Ccg,m(s)̃ and Cmic,m(s)̃

through their relative deviation:

Figure 3. Radial distribution functions in mesoscopic melts
representing the B2c reference system. The melts have the same
strength of repulsive interactions νκ = 3 but different monomer
packing fractions η, as indicated in the legends. In all plots, the
distance r is scaled by the bond length bcg of the WLC.

Figure 4. Radial distribution functions g(r/Re) of center of mass of
polymer chains calculated in mesoscopic melts representing the B2c
reference melt. The mesoscopic simulations correspond to (a)
different νκ but fixed η = 1 and (b) different η but fixed νκ = 3.
The solid red line presents the g(r/Re) calculated in the B2c reference
melt. The distance r is scaled by the root-mean-square end-to-end
distance Re of the polymer.
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The relative deviations δB2c, shown in the inset of Figure 5a,
demonstrate that for chemical distances that are equal to or
larger than three Kuhn segments, s ̃ ≥ 3, the differences
between the internal distance plots in the mesoscopic melts
and the reference B2c system are already reduced to 3% at
most. Such conformational deviations are considered small in
other areas of polymer modeling, e.g., hierarchical back-
mapping.14,75 The conformational deviations are somewhat
larger for mesoscopic melts representing the more flexible, B =
0, and stiffer, B = 4, reference systems. Figure 5b presents δm(s)̃
for the mesoscopic analogues of B0d and B4c reference melts.
The simulations were performed with νκ = 3 and η = 1. To
facilitate comparison, we add δB2c(s)̃ (extracted from
simulations also performed with νκ = 3 and η = 1). The
deviations at s ̃ = 3 correspond to about 3% for B0d and 5% for
B4c melts; the inset presents enlarged plots, where the vertical
dashed line marks s ̃ = 3.
Even for the smallest νκ and η considered in this study, the

mesoscopic chains reproduce55 subtle features of conforma-
tional statistics expected for melts with interacting polymer
chains. To clearly demonstrate this point, we calculate the
standard decay of bond−bond correlations P(s) = ⟨u(s0)u(s0 +
s)⟩. Here u(s0) and u(s0 + s) are vectors oriented along the s0

and the s0 + s bond. Recent studies50,51 have demonstrated that
in polymer melts P(s) does not decay exponentially at large s
(as predicted by the Flory hypothesis) but follows the scaling
P(s) ∼ s−3/2. Figure 6 presents the P(s)̃ calculated for all

equivalent mesoscopic representations of the B2c melt
together with the data from the reference system by using
the rescaled chemical distance s.̃ For the region 0 < s ̃ < 10,
where the statistics are fairly good, we observe that the decay
of bond−bond correlations reproduces the correct power law
and follows closely the reference data.

6. PROPERTIES OF KNOTS IN THE MESOSCOPIC
MODEL

We just saw that the local liquid structure in our mesoscopic
melts is very coarse. Moreover, this structure varies across
families of melts that are mesoscopically equivalent to the same
reference system. In contrast, mesoscopic liquid packing and
conformational properties of reference systems are well
reproduced. Therefore, our mesoscopic melts are indeed well
suited for verifying the qualitative predictions on knotting
behavior, obtained from the simple free energy model.
First we consider melts with intermediate chain stiffness: the

B2 systems. Using the predictions obtained in section 2 from
βFknot, we can easily estimate whether local monomer packing
is important for the knotting properties of these systems. We
consider the configurations of the representative B2c melt and
calculate the probability Pk that a randomly selected chain is
found in a knotted state. The knotting probability Pk is
presented in Figure 7a (horizontal red line) and is about 3
times smaller than the Pk (horizontal light blue line) in ideal
chains that map on the same Kuhn chain as the B2c melt. The
large difference between the two knotting probabilities
indicates that the polymers in B2 melts are still rather flexible.
We can expect that the knotting behavior in B2 melts is
dominated by excluded volume effects and cannot be
accurately reproduced by the mesoscopic model.
The analysis of mesoscopic simulations confirms this

expectation. Figure 7a presents Pk as a function of νκ calculated
in several mesoscopic melts representing the B2c system (in all
these cases η = 1). All calculated Pk are between the knotting
probabilities of the reference melt and its equivalent ideal

Figure 5. (a) Internal distance plot Ccg,B2c(s)̃ calculated as a function
of rescaled chemical distance s ̃ in mesoscopic polymer melts
describing the B2c reference melt, for representative sets of
parameters. The red solid line shows the internal distance plot
Cmic,B2c(s)̃ of the reference B2c melt. The inset presents the relative
deviation δB2c(s)̃ between the internal distance plots in the
mesoscopic melts and the reference B2c system. (b) Relative
deviations δm(s)̃ of internal distance plots in mesoscopic melts,
mapped from reference melts with different stiffness, from their
counterparts in these reference melts. The inset focuses on the region
of small s,̃ where the vertical dashed line marks the relative deviation
at the rescaled chemical distance corresponding to three Kuhn
segments, s ̃ = 3.

Figure 6. Decay of bond−bond correlations along the chain contour
in mesoscopic melts describing the B2c reference system. The results
obtained for various representative choices of monomer−monomer
repulsion strength νκ and monomer packing fraction η are compared
with the decay of bond−bond correlations in the reference B2c melt
(red solid line). The light blue solid line describes the exponential
decay of bond−bond correlations in the equivalent ideal Kuhn chain.
The purple solid line shows the power-law decay P(s) ∼ s−3/2,
expected in polymer melts.
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Kuhn chain. Pk decreases sharply as the repulsion becomes
stronger but finally converges to a plateau that is about 50%
larger than the Pk in the reference B2c melt. This behavior
stems from insufficiently hard excluded volume, even at strong
repulsions, because of the zero-order PM scheme (cf. Figure 2
and related discussion). Figure 8a shows a representative

snapshot of a small knot formed on a chain in the mesoscopic
B2c melt. Despite the presence of very small knots, the
appearance of this mesoscopic chain on large scales is similar
to a representative microscopic B2c chain (see Figure 8b).
To complement Figure 7a, we present Pk in Figure 7b as a

function of η for several mesoscopic melts representing the B2c
melt (in all these cases νκ = 3). The dependence of Pk on η is
nonmonotonous. Pk is large at η ≪ 1, decreases as η increases,

reaches a broad minimum at η ≃ 1, and grows again
(presumably towards the limit of the ideal chain). The
reduction of Pk, as η becomes larger in the region η ≤ 1, is
caused by the increase of the size of excluded volume (see
width of correlation hole in g(r) in Figure 3) and is consistent
with qualitative expectations from eq 1. For η≫ 1, Pk increases
again because for such strong overlaps a test monomer finds
itself in a uniform “background field” of other monomers.
There is no energetic penalty for monomer−monomer overlap,
and the excluded volume effectively tends to zero.
The effect of polymer stiffness on the accuracy of

mesoscopic models in describing knotting properties is best
illustrated by comparing trefoil knots in the mesoscopic and
reference melts. In Figures 9a, 9b, and 9c we present the
distribution of sizes of trefoil knots P(Ñknot) in the mesoscopic
melts describing B0d, B2c, and B4c reference systems,
respectively (the simulations were performed with νκ = 3
and η = 1). In the same panels, we also present the P(Ñknot) in
reference melts and in their equivalent ideal Kuhn chains. The
size of the trefoil knots Ñknot is defined according to section 2.

Figure 7. Effect of (a) repulsion strength νk and (b) average number
of overlapping particles η on the knotting probability Pk of the
mesoscopic melts. All mesoscopic melts are equivalent to the B2c
system. The knotting probability in the reference B2c melt and in
ideal Kuhn chains with same NK are shown with red and light blue
solid lines, respectively.

Figure 8. Representative chain conformations from polymer melts.
Part a shows a knotted WLC in a mesoscopic melt representing the
B2c reference melt. The chain forms a very small trefoil knot with
contour length Ñknot = 4.5. The trefoil knot is shown with pink color.
Part b presents an unknotted microscopically resolved chain in the
reference B2c melt.

Figure 9. Comparison of distributions P(Ñknot) of the size of trefoil
knots in mesoscopic (black) melts, corresponding reference (red)
melts, and equivalent ideal Kuhn chains (light blue). The plots
address cases corresponding to (a) B0d, (b) B2c, and (c) B4c
systems.
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All distributions are normalized such that the integral of
P(Ñknot) equals the probability P31 that a randomly selected
chain forms a single trefoil knot.
Let us first make some general comments. Figure 9

demonstrates that the “spectra” of trefoil knots in the
mesoscopic and reference melts come closer to each other as
the polymers become stiffer, in agreement with the free energy
model. Moreover, for the stiffest B4 melt the P(Ñknot) in the
mesoscopic melts is close to the knot-size distribution in ideal
chains. For a more detailed discussion of Figure 9 it is useful to
focus on two main features of P(Ñknot): the size of the most
probable knot (peak position) Ñknot,α* (where α = cg or mic
indicates the model) and the decay at large values of Ñknot.
These features reflect the behavior of relatively small and large
knots, respectively.
We quantify the difference in the size of the most probable

knot between mesoscopic and microscopic models via the
relative deviation δknot defined as

N N

N N

2( )
knot

knot,mic knot,cg

knot,mic knot,cg

δ =
̃* − ̃ *

̃ * + ̃ * (17)

The results read δknot = 162% (B0d), 52% (B2c), and 38%
(B4c). They illustrate our generic observation that the
agreement between trefoil knot distributions in mesoscopic
and reference melts improves significantly in the stiffest B4
melts. In the reference melts Ñknot,α* shifts to smaller values as
chains become stiffer, which is also consistent with the
qualitative predictions from βFknot.
We now compare the tails of the trefoil knot size

distributions. The free energy model cannot36,58 describe
large knots because they are no longer tight, and simulations
become crucial for understanding their behavior. Figure 9
demonstrates that within the statistical noise of the data the
tails of the distributions P(Ñknot) in mesoscopic and reference
melts match each other well, even for the most flexible B0d
system. However, the tail of P(Ñknot) for ideal chains
corresponding to the B0d system differs substantially from
the distributions in the mesoscopic and reference melts,
suggesting a different functional dependence on Ñknot.
Intriguingly, this is not the case for ideal chains that
correspond to the B2c and B4c meltsthe tail of their
P(Ñknot) follows closely the distributions in the melts.
Presumably, ideal chains cannot capture the behavior of

large trefoil knots in some of the melts considered in our study

because of their small N̅ . The small N̅ leads to strong
deviations from the Flory hypothesis (cf. section 4.2) so that
the ideal-chain approximation to polymer conformations,
including their knots, is inaccurate. Indeed, Table 1
demonstrates that even for the longest of the B0 melts, the

B0d system, we have only N 60̅ ≃ . In contrast, the N̅ of
the B2 and B4 melts, considered in Figure 9, are either
comparable or significantly larger than 102.
We monitor the values of probability P31 in melts of chains

having the same contour length L but different stiffness. Table
2 lists P31 for a representative set of such microscopic melts
B0c, B2c, and B4c as well as for their mesoscopic counterparts.
The data points are certainly too few to accurately trace the
dependence of P31 on stiffness, but they demonstrate that it is

nonmonotonous. Clearly, for the melts in Table 2 P31 has a
maximum at some stiffness Bmax, where Bmax < 4. The

nonmonotonous effect of chain stiffness on P31 in our
multichain melts is qualitatively consistent with the findings
of previous studies43,44 in single self-avoiding ring polymers.
However, whereas for single chains or rings this maximum is
typically located33,43 somewhere between stiffnesses B = 4 and
10, in melts it occurs somewhat earlier, presumably because of
the screening of excluded volume interactions beyond the
Edwards correlation length.
It is instructive to juxtapose the trends in knotting behavior

with the deviations observed in the internal distance plots
(Figure 5b). For the B0 and B2 melts, we notice that for
chemical distances comparable to the size of the most probable
knot in the microscopic model the deviations of internal
distance plots of the mesoscopic melts from the reference data
are well below 3%. Nevertheless, the knotting properties of the
two systems on these scales differ substantially. This
observation suggests that for melts of flexible chains knot
spectra provide additional quantifiers of the accuracy with
which a coarse-grained model reproduces the conformational
properties of a target system.
Figure 9 is consistent with our conclusion that the stiffer the

chains in microscopic melts, the better the agreement between
knotting properties in mesoscopic and microscopic models.
However, the plots in Figure 9 refer to trefoil knots only.
Therefore, it is important to obtain evidence that our
conclusion holds for more complex knots.
Therefore, we perform mesoscopic simulations of all

reference melts listed in Table 1, setting νκ = 3 and η = 1.
For all these melts we calculate the knotting probability Pka
quantity that encapsulates contributions from all possible knot
types. Figure 10a presents Pk as a function of NK in mesoscopic
simulations and reference B0, B2, and B4 systems. For all chain
lengths and stiffness parameters, the knotting probability in the
mesoscopic simulations is higher than in the reference systems.
However, in agreement with the qualitative predictions from
βFknot these deviations decrease as chains become stiffer.
Moreover, the Pk of the stiffest chains, the B4 systems, are close
to the knotting probabilities of the ideal chain.
In Figure 10b, we group the data from Figure 10a according

to the contour length of the chains and plot Pk as a function of
chain stiffness. Within the error bar of the data, we observe that
Pk has a nonmonotonous dependence on polymer stiffness for
all mesoscopic melts and all microscopic melts shorter than
Nmic = 1024. As is the case of P31 (cf. Table 2), this behavior is
qualitatively consistent with the trends found in single self-
avoiding ring polymers.43,44

Table 2. Probability P31 That a Randomly Selected Chain
Forms a Single Trefoil Knot in Three Melts of
Microscopically Resolved Chains (mic), B0c, B2c, and B4c,
Presented as a Function of Chain Stiffness Parameter B and
P31 Calculated in the Mesoscopic Representations (cg) of
These Meltsa

B0c B2c B4c

mic 0.0276 0.0751 0.0638
cg 0.0807 0.1279 0.0881

aAll chains have the same contour length L = 511bmic. For all data the
statistical error is below 0.6%.
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7. CONCLUSIONS
We focused on the fundamental question whether and under
which conditions coarse-grained models with soft interactions
can describe knots in polymer melts. We employed a
mesoscopic model where polymers are represented by worm-
like chains and nonbonded interactions are defined in a way
that deliberately creates melts with simplified local liquid
structure. The model was parametrized to accurately reproduce
mesoscopic structure and conformations of melts that have
been modeled earlier48 with a microscopic model. The latter
captures76 generic features of polymer conformations and
structure at all length scales and provides, therefore, reliable
reference data on knots.
We compared characteristic knotting properties in meso-

scopic and reference melts. The simulations realized different
scenarios for chain stiffness while keeping the size of
monomer−monomer excluded volume fixed. For the simplest
possible knot, the trefoil knot, we considered the distributions
of knot size (length of chain contour involved in the knot).
With regard to general knotting properties, we compared the
probability that a chain forms a knotted state.
In a recent study,48 the microscopic model was compared

with ideal chains. It was shown that the knotting probability
and knot spectrum are very differentthe difference being the
larger the more flexible the chains. Considering that it is
impossible for monomers to overlap in the microscopic model,
that study48 speculated that this difference in knotting behavior
might be related to corrections to chain ideality because of

incomplete excluded volume screening on short and
intermediate scales. Our work refines this picture.
Our central conclusion is that the behavior of knots is not

determined by the size of excluded volume alone but by how it
compares with the length scale of chain rigidity, e.g., Kuhn
segment. For systems where these two length scales separate
and the Kuhn segment is significantly larger than the size of
excluded volume, the influence of local liquid structure on
knotting behavior is marginal. Therefore, in such systems,
mesoscopic models and ideal chains can accurately describe
knots even though the liquid structure on small scales is
simplified or non-existent (ideal chains). Our conclusion is
consistent with a free energy model of trefoil knots available in
the literature.36,58

Interestingly, for flexible chains we observed deviations of
knotting properties between mesoscopic and microscopic
models even though their other conformational descriptors
matched very well. Specifically, the deviations of internal
distance plots at chemical distances larger than a few Kuhn
segments were less than 2%. This observation is important
methodologically because it suggests that knots provide an
additional sensitive quantifier of chain conformations.
In summary, our study conveys an encouraging message.

Mesoscopic models with soft interactions can be indeed used
to study polymer knots in melts where the characteristic length
scale of chain stiffness is substantially larger than the size of the
monomer−monomer excluded volume. In this way, it is
possible to benefit from the computational efficiency of
mesoscopic models and study open questions related to
fundamental physics of knots in polymers.
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