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Emergence of active topological glass through directed chain dynamics
and nonequilibrium phase segregation
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Active matter states defy many notions that have been established for systems in thermodynamic equilibrium.
Nevertheless, the lack of detailed balance might be utilized to design nonequilibrium materials with unique
properties. Recently we have shown, employing a model of ring polymers containing segments with a larger
mobility than given by equilibrium thermal fluctuations, that making polymers with intrinsic topology active can
result in states that relax extremely slowly, the so-called active topological glass. In this paper, we focus on the
role of nonequilibrium phase separation in the vitrification process. In particular, we detail the polymer dynamics
and show that such activity-driven glassy states arise from heterogeneity of segmental dynamics that emerges
on all scales. Provided that the activity quench is strong enough, the rings feature an oriented reptationlike
motion, with the active segment serving as an effective chain’s end, resulting into a dramatic increase of inter-ring
treading that vitrifies the system. The scaling properties of the ensuing steady-state ring conformations, which are
significantly elongated and usually possess a doubly folded structure, are discussed and compared to equilibrium
counterparts. We further examine the connection between the glass formation and the nonequilibrium phase
separation and we find that both appear to be initiated by the contrasting dynamics of ring segments. Finally, we
consider the effect of nonequilibrium phase separation in other active copolymer architectures.
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I. INTRODUCTION

Properties of ring polymer systems, albeit having been
the subject of longstanding theoretical and experimental re-
search, have not yet been understood in their entirety. The
topology of each ring is fixed at the synthesis and the non-
crossability of the chains gives rise to unique scaling and
material properties that range from individual chains [1] to
solutions and melts [2–8]. Furthermore, in contrast to other
polymer architectures, the mathematical difficulties to capture
topological constraints, even in the simplest problem of two
interacting unknotted loops [9], make it a suitable problem
for exploration and effective description with the aid of com-
puter simulations [10–14]. The semidilute and melt conditions
that are relevant in biological applications [15,16] present an
even greater modeling challenge because many topological
constraints of overlapping chains are not pairwise additive
[17] and have to be satisfied simultaneously. Due to involved
mathematical complexity despite the simple intuitive rule of
fixed topology, extensive studies focused on the prototypical
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example of the melt of unknotted and nonconcatenated rings.
Yet, many fundamental questions remain open.

One such question pertaining from the beginnings of the
field is the existence of topological glass [18]. The rings
cannot cross but can thread each other by piercing through
one another’s openings. The threading restricts relative ring
motion and prolongs their relaxation [19–21]. In melt con-
ditions where many rings overlap, a hierarchical network of
threadings would generate a glassy state when relaxation of
a ring is conditioned on the sequence of relaxation of other
rings. This conjectured type of glass arises without the change
in volume fraction or temperature, the control parameter be-
ing the ring length, which impacts the propensity of mutual
ring threading. The concept of topological glass has been
recently put to test by so-called pinning perturbations of the
melt [22,23]. When a fraction of all rings is artificially im-
mobilized, the whole system exhibits glassy characteristics.
The longer the rings, the smaller the fraction of pinned rings
sufficient to observe the topological glass. The extrapolated
ring length for the zero pinned rings fraction is beyond the
current reach of both experiment and simulation. In these
works, the unpinned rings are in equilibrium and, as such,
exhibit threading of their neighbors that is limited by (i) the
entropically accessible conformations and (ii) the number of
the neighbors, which saturates in the long ring limit due to
the compact conformation of the rings [3]. Therefore, other
ideas to enhance the threading of shorter rings and create a
topological glass have been looked for.

Recently, we have shown [24] that a state of topological
glass can be attained by rings of moderate length, provided
that their segments are subject to heterogeneous activity. The
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FIG. 1. Typical conformations of partially active rings in the glassy state. The shown configurations were randomly chosen from the
ensemble of rings in the system with N = 400. The orange monomers are active and the gray ones passive. Loopy openings on a ring highly
likely correspond to other rings that thread it at a given place. In many cases, the conformations feature a doubly folded structure with the hot
segment located at one of its ends. The rightmost configuration depicts two rings entangled by a tight threading similar to square knot structure
schematically depicted in the inset.

activity in the latter case was induced by coupling a con-
secutive number of monomers on a ring to stronger thermal
fluctuations than the rest, that is, by making them effectively
hotter. The nonequilibrium dynamics of such partially active
rings, stemming from a strongly broken detailed balance,
accesses conformations unfavorable in equilibrium, dramat-
ically increases inter-ring threading, and ensues substantial
structural rearrangements of the system, ultimately result-
ing in a complete stall of the relative motion of the rings
(typical ring conformations in the glassy state are shown in
Fig. 1).

The relevance of such a complex nonequilibrium poly-
mer system arises from its connection to the DNA fiber
in living cells. On the DNA level, their life is supported
by energy-dependent, active processes, such as DNA repair
or transcription, that manifest themselves as stronger-than-
thermal velocity fluctuations [25,26]. Although chromosomes
of higher eukaryotes are typically linear, there exists a cor-
respondence between their large-scale conformations and
the typical conformations of ring polymers in a melt [15].
Additionally, circular DNA exists in bacteria, archaea, mi-
tochondria, and chloroplast, but also eukaryotes possess
so-called extra-chromosomal DNA that is circular and can
be even highly transcriptionally active in some cancers [27].
While the biological aspect is certainly intriguing, here we are
interested in the physical properties and mechanisms behind
the formation of this state of matter.

Many properties of such nonequilibrium, activity-driven
glassy states in ring polymer melts remain elusive, such as
the relation between the glass transition and the active-passive
phase separation. While pressure, temperature, and chemical
potential are necessarily uniform across the system with dif-
ferent particle species in thermodynamic equilibrium, this is
no longer the case for steady states of nonequilibrium active
matter systems [28–31]. The active-passive phase separation
is observed for various models of activity [32,33] but coexis-
tence conditions can depend on activity details [29].

In a two-temperature mixture, the degree of phase separa-
tion between two species strongly depends on the temperature
difference between the hot and cold thermostats, the friction
coefficient γ , which serves as a coupling constant between
particles and thermostats, as well as on the polymerization
degree of particles, provided they are polymers [30,31,33–
36]. In colloidal particle mixtures containing an equal num-
ber of fractions of both species, the phase segregation arises
if the critical temperature ratio is quite high, Th/Tc ≈ 30
[33–35]. Such activity ratio roughly compares with the ratio
of Péclet numbers necessary to observe phase separation of
self-propelling active particles [32]. Nevertheless, as has been
shown for the two-temperature case [30,31,35], the critical
activity ratio decreases with the particles’ polymerization de-
gree N with the incompatibility parameter scaling as ∼N−1/2

[30,35], in contrast to ∼N−1 dependence for equilibrium
phase separation [37]. While the theoretical result [35] is
built on a virial-like approximation and hence applicable to
moderate densities, the scaling ∼N−1/2 had been conjectured
based on simulation of concentrated active-passive solutions
[30].

In active topological glass, the sufficiently long active
blocks would tend to segregate, but their diffusivity that
plays a role in the enhancement of threading decreases with
N . Natural questions arise: How is the vitrification related
to the observed active-passive phase separation for poly-
mer mixtures? What is the role of the ring length for a
fixed activity ratio? How are the conformations, dynamics,
and phase-separated morphologies of such nonequilibrium,
activity-driven rings related to those of equilibrium and what
are their scaling properties? We tackle these questions by
considering melts of ring polymers of varying length subject
to comparable activity quench.

In this paper, we detail how such a nonequilibrium system
of rings arrives at a dynamically arrested state. The onset
of activity implies a discrepancy between the dynamics of
hot and cold segments that, as we show, if strong enough,
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generates a slithering-snakelike motion of the active segment,
pulling the rest of the chain that has a propensity to form
tight threadings—topological constraints that are difficult to
resolve. Some of these have the local form of square knots
(see inset of Fig. 1) and are found also to be responsible
for a strong increase in viscosity for ring melts under exten-
sional flow [38,39]. Once a sufficiently high number of such
constraints is formed, the cold part of a ring is essentially
fixed in space, whereas the hot one intermittently continues
diffusing through the system, causing a significant and rapid
expansion of the rings. As a result, it leads to even stronger
inter-ring tangling. In the final, deeply threaded state, the
hot segments tend to phase segregate more, which reduces
energy dissipation and increases their effective temperature,
leading to further tightening of the constraints. At this steady
state, the constraints cause the dynamics of each ring to lose
the drift element. As we show, the aforementioned process
of segregation between hot and cold segments comes to a
halt due to the vitrification caused by the circular topology
of the ring polymers. To investigate the possible morpholo-
gies of activity-induced phase separation, we also examine
steady states of other polymer architectures that can arise from
cutting the rings, by which we remove the long-lasting topo-
logical constraints. In particular, linear mixtures of unequal
lengths and linear triblock copolymer systems exhibit mi-
crophase separation, however, to the extent and morphology
different from both their equilibrium phase-separated coun-
terparts and the active topological glass.

II. MODEL

Our systems consist of M = 1600 monodisperse, semi-
flexible ring polymers of length N (N = 100, 200, 400). We
employ a standard model for polymer melts [40], in which
excluded-volume interactions between monomers are given
by the purely repulsive Lennard-Jones potential,

ULJ(r) =
(

4ε
[(σ

r

)12
−

(σ

r

)6]
+ ε

)
θ (21/6σ − r), (1)

where θ (x) denotes the Heaviside step function, σ is the
diameter of each monomer having mass m, and ε sets the
energy scale. The bonding potential between two neighboring
monomers along the chain’s contour is set by the finitely
extensible nonlinear elastic potential,

UFENE(r) = −1

2
r2

maxK ln
[
1 −

( r

rmax

)2]
, (2)

with K = 30ε/σ 2 and rmax = 1.5σ . Finally, the bending
potential is

Uangle = kθ [1 − cos(θ − π )] (3)

with kθ = 1.5ε. This choice of parameter prevents interchain
crossings that would violate the initial nonconcatenation con-
straint. Moreover, it achieves small entanglement length Ne =
28, below which the chains are still approximately Gaussian.

In each system, successive Nh = N/8 monomers on every
ring are made active (Nh = 13, 25, 50 for N = 100, 200, 400,

respectively). This is achieved by subjecting them to stronger
thermal-like fluctuations, as compared to the remaining Nc =
N − Nh particles. Here and in what follows, active monomers

are interchangeably called hot, whereas passive ones are cold.
In practice, we couple both species to two distinct Langevin
thermostats with Th = 3ε (kB = 1) for active monomers, and
Tc = 1ε for passive ones, such that the equations of motions
read as

mv̇i = −mγ vi + F i + (2mγ Ti )
1/2ηi, (4)

where γ is the coupling constant with the heat bath, F i is the
total conservative force on the monomer, the components of
ηi satisfy 〈ηi,α (t )η j,β (t ′)〉 = δi jδαβδ(t − t ′), and Ti is either Th

or Tc. The same γ = (2/3)τ−1, where τ = σ (m/ε)1/2, is used
for both thermostats. These choices of γ and Th are sufficient
to drive nonequilibrium phase separation in active-passive
mixtures of short (N � 20) polymers [30,31] but by far not
strong enough to observe demixing of colloids [33,34]. All
the Langevin dynamics simulations were performed at con-
stant volume and density ρ = 0.85σ−3 using the large-scale
atomic/molecular massively parallel simulator (LAMMPS)
engine [41]. The integration time step was set to �t = 0.005τ .
Finally, as noted in the original work [24], relatively large
system sizes with M = 1600 polymers were needed to ensure
that unphysical self-threadings of extremely elongated rings
due to periodic boundary conditions do not occur.

III. ONSET OF GLASSY DYNAMICS

At time t0 = 0τ , the activity on all rings in a properly
equilibrated sample of M chains is switched on. As shown
below, the ensued dynamics differs across the three cases
considered: Whereas for the larger rings with N = 200 and
400, it progressively slows down and eventually results in
a halt of the relative motion of the rings, the dynamics of
the system with N = 100 is equilibriumlike. In what follows,
we investigate the relaxation of the systems toward a steady
state, as indicated by the ring dynamics, their conformation
and threading properties, and the phase separation between
the active and passive monomers, as well as the final system
properties in such steady states.

To characterize in detail the rings’ motion on all scales,
we consider the mean-square displacements of active and pas-
sive monomers, �α1 (t, t0) (α = either hot or cold), their mean-
square displacements with respect to the ring’s center of mass,
�α2 (t, t0), and the mean-square displacements of the center of
mass of the whole ring, �3(t, t0):

�α1 (t, t0) = [rα (t0 + t ) − rα (t0)]2
, (5)

�α2 (t, t0) = [�rα (t0 + t ) − �rα (t0)]2
, (6)

�3(t, t0) = [R(t0 + t ) − R(t0)]2, (7)

where rα (t ) is the position of an active or passive monomer
at time t , R is the center of mass position of the ring, and
�rα (t ) = rα (t ) − R(t ) is the position of a monomer with
respect to its ring’s center of mass. In all cases, the positions
are relative to the total center of mass of the system at the
given time to subtract the induced global drift. Additionally,
we consider the mean-square displacements of the center of
mass of active and passive segments, �α3 (t, t0):

�α3 (t, t0) = [Rα (t0 + t ) − Rα (t0)]2
, (8)
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FIG. 2. Dynamics of monomers. Mean-square displacements of active, �h
1(t, t0 ), and passive, �c

1(t, t0), monomers in the early (t0 = 0τ , solid
lines) and late ( t0 = 2 × 106τ , dashed lines) stages for systems with N = 100 (a), N = 200 (b), and N = 400 (c). The partially active rings
with N = 100 feature equilibriumlike dynamics that does not depend on t0, thus only the data for t0 = 0τ is shown in (a). The dashed lines
indicate intermediate scaling regimes. The transparent gray lines correspond to �1 in equilibrium for the respective case. The arrows indicate
the squared equilibrium (black arrows) and nonequilibrium (gray arrows) diameter of gyration.

where Rα (t ) = N−1
α

∑Nα

i=1 rα
i (t ) is the center-of-mass position

of the active or passive segment on a ring. In general, we
consider only the mean-square displacements averaged over
rings, 〈gα

i (t, t0)〉, without additional averaging over multiple
time origins because of the explicit dependence of the dy-
namics on t0 at early times. The steady-state properties for
the systems with N = 200 and 400 correspond to the time
when most conformational properties come to a standstill and
to when the dynamic correlation functions do not feature a
significant dependence on t0. For the former two systems,
this time corresponds to about t0 � 2 × 106τ . Thus, in what
follows we will focus on two cases: early rearrangements
immediately after the activity onset (t0 = 0τ ) as well as the
steady-state dynamics (t0 = 2 × 106τ ). Finally, to give a per-
spective on the dynamics, we also simulated fully equilibrium
systems with Th = Tc = 1 and all other parameters the same
as in the active cases.

As mentioned in the Introduction, the friction coefficient γ

is an important parameter that governs redistribution of heat
between the cold and hot subsystems. In Langevin dynamics
simulations, lower values of γ enhance the heat transfer be-
tween distinct particle species and therefore result in apparent
effective temperatures T eff

h and T eff
c of hot and cold particles

that differ from the ones set by the thermostats [30,31,36]:

Tc < T eff
c < T eff

h < Th. (9)

Conversely, the increase of γ keeps the particles’ temperatures
closer to the thermostat ones, thereby amplifying the effective
temperature difference and thus promoting phase segregation
of hot and cold particles. Finally, due to the heat flow to the
cold subsystem, even the diffusivity of passive monomers is
increased because their effective temperature is higher than
the one imposed by the thermostat, T eff

c > Tc. In any case,
we use thermostat coupling constant much lower than the
effective bead-bead friction (� 20τ−1) [42].

As shown in Fig. 2, the early dynamics (t0 = 0τ ) of both
active and passive monomers is consistent with that of equi-
librium melts [3,4,43], and is characterized by �h(c)

1 scaling
as �h(c)

1 ∼ t1/2, indicating standard Rouse behavior. For all N ,
in full accordance with Eq. (9), at early times �h

1 > �c
1 > �1,

where �1 corresponds to a completely passive, equilibrium
system with Th = Tc = 1. In sharp contrast to N = 200 and
N = 400, the �h(c)

1 for the system with N = 100 crosses over
to free diffusion �h(c)

1 ∼ t with no indications of glassy behav-
ior [Fig. 2(a)]. Moreover, the dynamics of the system with
N = 100 is equilibriumlike and does not depend on t0. In
contrast, the Rouse regime of �h(c)

1 for the two larger systems
with N = 200 and 400 is followed by a gradual slowdown,
see Fig. 3 for time traces at early and late stages of the evolu-
tion. The steady-state dynamics of �h(c)

1 for active and passive
monomers in these systems (t0 = 2 × 106τ ) is indicated by
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FIG. 3. Evolution of a single ring with N = 400. Left panel: Early rearrangements of the conformation of the whole ring (a), its hot
(b) and cold (c) segment over t = 5 × 105τ starting from the activity onset at t0 = 0τ . Right panel: Late rearrangements of the conformation
of the whole ring (d), its hot (e) and cold (f) segment over the subsequent t = 5 × 106τ . In all plots, the black curve indicates the final ring
configuration, whereas in (a) and (d), the light gray curve in the foreground indicates its starting configuration. In all cases, the xy projection
of the ring’s coordinates is shown and the opacity increases linearly with time, that is, earlier configurations are lighter. The time trace of the
hot and cold segments are shown in red and blue, respectively. Finally, note that the length of the shown trajectory in (d)–(f) is ten times longer
than in (a)–(c).

dashed lines in Fig. 2: For short lag times, �h(c)
1 are generally

slower than in the equivalent equilibrium case (especially, for
passive monomers), �h

1 is typically 1.5–2 times higher than
gc

1, and both feature a more than two-decade-long regime with
�

h(c)
1 exhibiting scaling close to ∼t1/4. The exponent remi-

nisces of linear polymer reptation along its chain contour [4].
In the present case, in the steady state the centers of mass of
the rings are practically fixed due to numerous threadings, and
their displacements are only generated by occasional pulls of

the active segments, as we detail below in Fig. 4. This essen-
tially corresponds to a directed reptationlike motion where the
active segment serves as an effective “chain end” that directs
ring’s displacements.

For the two larger systems (N = 200, 400) that slow down,
in Fig. 4 we further compare the mean-square displacements
of the center of mass of active and passive segments, �h(c)

3 , as
well as of the whole ring, �3, in the early (t0 = 0τ ) and late
(t0 = 2 × 106τ ) stages. Similarly to �h(c)

1 , the early dynamics

×
×
×

×
×
×

FIG. 4. Dynamics of segments. Comparison between the center-of-mass mean-square displacements of active, �h
3(t, t0), and passive,

�c
3(t, t0), segments, and the whole rings, �3(t, t0 ), for N = 200 (a) and 400 (b) in the early (t0 = 0τ , solid lines) and late (t0 = 2 × 106τ ,

dashed lines) stages. The dotted lines indicate different intermediate scaling regimes. The arrows indicate the squared equilibrium (black
arrows) and nonequilibrium (gray arrows) diameter of gyration.
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FIG. 5. Dynamics of segments rescaled with effective diffusion coefficient. Comparison between the center-of-mass mean-square displace-
ments of active, �h

3(t, t0), and passive, �c
3(t, t0), segments, and the whole rings, �3(t, t0), for N = 100 (a), N = 200 (b), and 400 (c) in the early

(t0 = 0τ ) stage (Deff/D = 1.25) and the equivalent dependencies in equilibrium (Deff/D = 1). The mean-squared gyration radius in equilibrium
R2

g,eq [3] and in the steady-state R2
g are marked by arrows for comparison to the mean-squared displacements. (d) Average monomer density

around the center of mass of the hot segment early after the activity onset (t < 104τ ). For all N , the dip in the density has width of about one
diameter of gyration of the hot segment at that time. The gray dashed line corresponds to the mean monomer density ρσ 3 = 0.85.

of �h(c)
3 and �3 is consistent with the short-time dynamics of

an equilibrium ring melt with �3 ∼ t3/4 [4]. Naturally, due to a
significant difference in length, the hot segment at early times
diffuses faster than the cold one, as evidenced by about an
order of magnitude difference between �h

3 and �c
3. However, in

the present cases, the hot segment still diffuses faster than it
would be in a corresponding equilibriumlike model. As shown
in Appendix A, the center of mass of a free polymer chain,
parts of which are connected to two distinct thermostats, fol-
lows equilibriumlike dynamics with an effective temperature,
Teff , which is a weighted average of the two thermostat tem-
peratures Teff = (TcNc + ThNh )/N , directly translating into its
enhanced diffusion coefficient Deff ∼ Teff . Although the above
relations are given in terms of the thermostat temperatures
Th(c), the same Teff is obtained if Th(c) are replaced with T eff

h(c),
which is due to the balance of heat fluxes that is discussed
later on in Sec. V. For all systems considered here, Nh = N/8
and Th = 3Tc, therefore Deff = 1.25D with D being the equi-
librium diffusion coefficient (Th = Tc). The Rouse regime is
well applicable until the chain starts to explore topological
constraints imposed by other chains. For shorter rings, these
do not present a significant obstacle, as their (half) length
is only moderately higher than the equilibrium entanglement
length, which itself is effectively higher for hotter melt due to
enhanced chain flexibility [44].

In Fig. 5, we show �h(c)
3 as well as �3 rescaled by Deff/D

and compare them to the equivalent equilibrium cases for all
N . While we find a good correspondence between the rescaled
displacements for N = 100, for N = 200 and N = 400 certain
differences arise already at early times, immediately after the
activity onset. In particular, the dynamics of the cold segment
and the center of mass are generally consistent with the equi-
libriumlike system with enhanced Deff at early times, whereas
the hot segment still diffuses faster as compared to the lat-
ter case. This arises from a more dilute environment around
hot segments [see Fig. 5(d)] that indicates an early stage of
nonequilibrium phase segregation. The active segments not
only feature a higher diffusivity because of their coupling to
a hotter heat bath but also because of a lower density around
them. In equilibrium, such a moderate decrease in density has
a pronounced effect on the effective monomer friction and
the resulting diffusion coefficient [42]. As seen in Fig. 4, the
discrepancy between the segment dynamics in the two larger
systems only deepens in the steady state, which is consistent
with further demixing of hot and cold monomers, as detailed
later on in Sec. V. Similarly to the monomer dynamics, center-
of-mass mean-square displacements �h(c)

3 , the quantity �3 in
the steady state (t0 = 2 × 106τ ) features a very slow relax-
ation that scales as ∼t0.2 at shorter times and then appears to
cross over to ∼t0.3−0.4 at longer ones. Note that in the steady
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FIG. 6. Dynamics of monomers with respect to the center of mass.
�2(t, t0 ) is shown immediately after the onset of activity, that is, for
t0 = 0τ , for systems with different N and is averaged over both hot
and cold monomers in the system. There is practically no differ-
ence in �c/h

2 computed separately for cold and hot monomers. The
black dotted lines indicate intermediate scaling regimes. The colored
dotted lines indicate the value 2.5〈R2

g〉, where 〈R2
g〉 is the squared

equilibrium radius of gyration taken from [3] (different colors corre-
sponds to different N as in the legend). After around 2.5〈R2

g〉, �3 of
an equilibriumlike system would cross over to diffusion, whereas �2

would saturate (see more discussion in the main text).

state, the displacement of the total center of mass is very
small (�3σ for time � 107τ ), while the hot segment explores
distances about 10σ [Fig. 4(b)]. As the number of active
monomers is relatively small compared to the length of the
whole ring, the center-of-mass mean-square displacements,
�3, generally resemble those of the passive segment. This
further confirms the picture that the active segments explores
the neighboring environment, while the whole ring remains
essentially fixed due to pronounced topological constraints.

In equilibrium ring melts, the center of mass of rings
of these still relatively short lengths starts to diffuse after
traveling about 2〈R2

g〉 (〈R2
g〉 is the mean-square ring’s ra-

dius of gyration), which corresponds to the point where �3

and �2 cross [4]. In the present nonequilibrium case with
N = 100, we find that this happens at around 2〈R2

g〉Deff/D =
2.5〈R2

g〉, with 〈R2
g〉 being the equilibrium value. Figure 6

shows 〈�2(t, t0)〉 immediately after the activity onset (t0 =
0τ ) and averaged over both active and passive monomers
(�2 computed separately for the two species are practically
indistinguishable). While for N = 100, �2 indeed saturates
after about 2.5〈R2

g〉, this is not the case for the two longer
polymers. In the latter cases, �2 grows beyond 2.5〈R2

g〉, which
is an indication of the rings expansion past the equilibrium
size. In all cases, at short times, �2 features scaling close to the
Rouse-like regime of �1, �2 ∼ t1/2. For N = 400, such regime
governs �2 up to the point where it begins to saturate. For
N = 200, �2 ∼ t1/2 scaling crosses over to �2 ∼ t0.2 before
saturation. As will be seen in Sec. IV, this corresponds to
slower expansion of ring’s size for N = 200, as compared to
N = 400.

In Fig. 7, we further compare the mean-square displace-
ments of the center of mass of the rings for systems with
different N . We find that the time of the onset of the slow-
down of the dynamics for N = 200 and N = 400 roughly

FIG. 7. Dynamics of the center of mass. Mean-square displace-
ments of the ring’s center of mass in the early (t0 = 0τ , solid lines)
and late (t0 = 2 × 106τ , dashed lines) stages for systems with differ-
ent N . Partially active rings with N = 100 feature equilibriumlike
dynamics that does not depend on t0. The dotted lines indicate
intermediate scaling regimes. The gray line indicates the time t =
6 × 104τ . (see also Fig. 8).

corresponds to the onset of free diffusion in equivalent equi-
librium ring melts [4]. Conversely, N = 100 crosses over from
the �3 exponent of about 0.8 to standard diffusion with the
corresponding diffusion coefficient being about 25% higher
than in equilibrium, in full agreement with considerations in
Appendix A and Eq. (A3), giving Deff = 1.25D. While both
N = 200 and N = 400 arrive at an arrested state, the exact
mechanism of how they do that differs in these two cases.
In particular, the Rouse regime for �h(c)

1 in the system with
N = 200 extends beyond the crossover to diffusion in the
equivalent equilibrium system [Fig. 2(b)], whereas �h(c)

1 in the
system with N = 400 is crossing over toward diffusion earlier
than in equilibrium, however, saturates later on [Fig. 2(c)].
For N = 400, the crossover to diffusion of �h(c)

1 coalesces
with super-diffusive motion of the center of mass (Fig. 7),
during which the rings expand significantly (see also a de-
tailed discussion on the present superdiffusion mechanism in
Ref. [24]). For N = 200, such a superdiffusive regime is not
observed and it is likely caused by the shorter ring length that
limits the amount by which the rings can expand while being
driven by the hot segment.

IV. CONFORMATIONAL PROPERTIES

In Fig. 8, we quantify conformational rearrangements of
the rings by tracking the time evolution of the mean radius of
gyration,

Rg ≡ 〈
R2

g

〉1/2 =
〈

1

N

N∑
i=1

(ri − R)2

〉1/2

, (10)

and the mean “end-to-end” distance,

Re ≡ 〈
R2

e

〉1/2 =
〈

1

N

N∑
i=1

(ri+N/2 − ri )
2

〉1/2

, (11)

where, ri denotes the position of the ith monomer and R is
the position of the center of mass of the ring. Additionally,
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FIG. 8. Size properties. Time evolution of (a), the mean radius of
gyration, Rg, and (b) the mean “end-to-end” distance, Re, of the rings.
The time series of Rg(t ) and Re(t ) are scaled with their values at
t = 0τ that correspond to equilibrium conformations. The gray lines
in (a) and (b) indicate the time t = 6 × 104τ , at which significant
slowdown of rings’ dynamics in the two larger systems becomes
apparent (see Fig. 7). Scaling of different size descriptors with N
in the steady state (t > 2 × 106τ ) is shown in (c).

to quantify shape properties, we computed eigenvalues λi

(i = 1, 2, 3, λ1 � λ2 � λ3) of the ring’s gyration tensor Gi j =
N−1 ∑N

k=1 �r (k)
i �r (k)

j , where �r (k)
i is the ith component of

the kth monomer’s position vector in its ring’s center of
mass frame. The angles 〈· · · 〉 stand for the ensemble average,
which is generally time dependent due to the nonequilibrium
character, of the systems over the the different rings at a
given time. Whereas the system with N = 100 that does not
vitrify features almost the same Rg and Re as in equilibrium,
the systems with N = 200 and 400 are characterized by a
considerable growth of these quantities (steady-state size and
shape parameters are given in Table I). The growth of the
rings’ size is associated to two effects. First, the change in
the dynamics to oriented reptationlike impacts the ring shape
that has to adapt to the topological constraints and establish
a doubly folded configuration. Second, the formation of un-
resolvable threadings, which essentially fix parts of the rings,
and the following pulling of the active segment extends the

TABLE I. Size and shape properties of the partially active rings at
the steady state. 〈R2

g〉 is the mean-square radius of gyration, 〈R2
e〉 is the

mean-square distance between two monomers separated by the con-
tour length N/2, and λi, i = 1, 2, 3 are the eigenvalues of the gyration
tensor ordered such that λ1 � λ2 � λ3. The value in the parentheses
indicates the standard error. For comparison with equilibrium values,
please see Table II in Appendix B.

N Nh 〈R2
g〉/σ 2 〈R2

e〉/σ 2 〈λ1〉/〈λ3〉 〈λ2〉/〈λ3〉
100 13 18.1(0.1) 54.9(0.1) 7.3(0.1) 2.34(0.01)
200 25 65.2(0.3) 203.5(3.8) 12.4(0.1) 2.81(0.01)
400 50 182.1(0.7) 566.1(2.1) 14.2(0.2) 3.03(0.02)

chain. Whether the unresolvable threadings are present from
the initial stages or they appear only after the chain moves sig-
nificantly is an open question. Currently, we favor the former
scenario, as the rings move only about their own size. Based
on observations of systems with fewer active chains where
the vitrification appears later and passive chains are stretched,
we think both scenarios are possible. Finally, the relaxation
of Rg in the nonergodic steady state is markedly different as
compared to equilibrium ring polymer melts (see Fig. S2 in
Ref. [45]).

Such dramatic increase in the rings’ size is associated with
a similar increase in the number of rings’ neighbors, K1(a),
as shown in Fig. 9 (two rings are considered to be neighbors
if their centers of mass lie at a distance smaller than a).
Interestingly, a significant slowdown of the dynamics occurs
after the rings on average grow by 10% (see Figs. 7 and 8, and
note the associated time scale highlighted by the gray lines).
This further confirms that the heterogeneous dynamics of the
rings’ segments first promotes the formation of topological
constraints, which eventually cause the vitrification of the
system. Just before the dynamics significantly slows down, the

FIG. 9. The mean number of neighbors. Time evolution of the
mean number of neighbors K1(t ; a) for(a) a = Rg and (b) a = Re.
The gray line indicates the timescale at which significant slowdown
of rings’ dynamics in the two larger systems becomes apparent.
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FIG. 10. Single chain static structure factor. S(q) for different
N is multiplied by q1/ν with ν = 1/2 characterizing linear polymer
chains. Inset: S(q)q1/ν but with ν = 0.588.

systems with N = 200 and N = 400 feature a limited regime
of their size growth. This translates into an equivalent simulta-
neous growth of the average number of neighbors (Fig. 9). For
compact objects, K1(a) is independent of N while, for equilib-
rium, melt of linear chains it is proportional to N1/2. Here, in
the steady state, K1(Rg) grows superlinearly, indicating that
the stretching of the rings is stronger the longer the ring is.
Additionally, as shown in Fig. 8, we quantified the scaling
of different size parameters (Rg, Re, λi) with N , resulting in
an apparent scaling ∼Nν with ν taking a value 0.64–0.75,
distinctly above 1/2, characterizing linear polymers in melt
and 2/5 and 1/3 that describe rings of similar length [3].
Although this scaling is extracted from very few points only
and can be attributed to a crossover between two distinct
scaling regimes, the effective exponent higher than 1/2 could
be related to results on transversal fluctuations of directed
polymers [46]. Similarly to directed polymers, present rings
are being driven by the hot segment, although in random
directions, and move trough a “gel matrix” formed by other
rings. However, at these chain lengths N , we are not in the
asymptotic limit and, therefore, not only the ring conforma-
tions differ slightly for different N , as shown below, but also
the gel matrix is different. Therefore, a proper connection be-
tween the directed polymers and the present system is yet to be
explored. Finally, the rings in the two bigger systems arrive at
significantly stretched and elongated conformations with their
radius of gyration and eigenvalue ratios being comparable to
linear polymer chains of the same length [3], but their Re

comparable to the linear chains of half the length (compare
Table I to Table II in Appendix B). This highlights that the
rings are mostly doubly folded and significantly stretched in
the vitrified state in comparison to equilibrium.

To gain a better understanding of conformations of such
nonequilibrium rings, we evaluated the single chain structure
factor S(q), which is shown in Fig. 10. For a fractal object with
dimension 1/ν, S(q) shall feature a scaling regime S(q) ∼
q−1/ν . The results in Fig. 10 do not indicate the presence
of a regime with ν ≈ 0.7 for N = 200 and 400. Instead, for
N = 200, at length scales comparable with Rg we observe
ideal linear polymer scaling with ν = 1/2, as shown in Fig. 10
by plotting S(q)q2. Interestingly, for N = 400, we observe

FIG. 11. Contact probability. (a) P(s) of rings is shown for all N
at early (solid lines) and late (dotted lines) times. (b) P(s) separately
for hot (solid lines) and cold (dotted lines) segments. Here, the
P(s) is averaged over the segment’s position only within the given
segment type. For clarity, dotted curves in (a) and (b) have been
shifted vertically. The solid black lines indicated intermediate scaling
regimes P(s) ∼ s−γ . Two monomers are considered in contact if they
are at a distance smaller than 21/6σ .

scaling ν = 0.588 (see inset of Fig. 10). The self-avoiding
walk regime is observed in a relatively narrow range of q and
care should be taken as finite-size effects could play a role.
However, the superdiffusive dynamics reported in Ref. [24]
is consistent with this exponent as well as preliminary results
of systems with longer chains (not shown) indicate that this
exponent is indeed correct. At lower q that crosses over to ν =
1/2 at higher q. The behavior of S(q) for N = 100 is identical
to the equilibrium one [3]. Similar results on size scaling
with ν = 1/2 can be inferred from the mean-square internal
distances shown at intermediate contour segment lengths (see
Fig. S1 in Ref. [45]).

The ideality of the rings’ conformations at smaller length
scales can be further inferred from the contact probability
P(s), which gives the probability of finding two monomers
separated by contour distance s being at a distance smaller
than some cutoff value, shown in Fig. 11(a). While for N =
100, we observe the same behavior as in equilibrium, N =
200 and N = 400, due to very extended conformations, fea-
ture an ideal chain regime with P(s) ∼ s−γ with γ = 3/2
at small s, which then crosses over to the equilibriumlike
crumpled globule regime with γ close to 1 at larger s [3].
The contact probability measured separately for hot and cold
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FIG. 12. Time evolution of threading properties. (a), Mean number of threaded neighbors 〈ntn〉 per ring for systems with different N as a
function of time after the activity onset. (b), Mean threading length ratio Q as a function of t for different N . (c), Mean number of surface
penetrations 〈np〉 as a function of t for different N . The system with N = 100 exhibits equilibrium-like threading at all times.

segments reveals a finer structure (Fig. 11(b)). The exponent
γ = 4/3 found for hot segment is characteristic for smooth
fractal globules, such as collapsed unknotted polymer with
smooth outer surface [15,47], which suggests its segrega-
tion from the surrounding. This view is confirmed by the
finding that ν = 1/3 for the hot segment (see Fig. S1(a) in
Ref. [45]), because as shown in Ref. [15] γ = 2 − (d − 1)ν
for space-filling fractals in d dimensions. The cold tail shows
nonmonotonic behavior with very steep decay at small scales,
consistent with very stretched configurations, and shallower
decay at longer lengths, that characterize treelike, doubly
folded conformations [48]. It also features a peak at s ≈ 10,
which likely stems from the “hairpins” of the double folded
segments (see Fig. 1). The latter observation additionally
explains why there is a steeper decrease of the contact proba-
bility below this length scale and shallower above.

Such dramatic changes in the rings’ size and, as a con-
sequence, the number of neighbors, result in a significantly
enhanced propensity for inter-ring threading, which we
describe now. Inter-ring threadings are quantified using the
minimal surface approach. Therein, the ring’s contour is
considered fixed and is spanned by a surface, whose mean-
curvature is then minimized, as explained in Refs. [49,50].
Consequently, a threading between a pair of rings is de-
fined by an intersection between one ring’s contour and
another ring’s minimal surface. This approach provides a
straightforward geometric picture of the inter-ring threading,
is model-independent above the entanglement length [49], and
has been employed to quantify the influence of threadings in
bulk and confined equilibrium ring polymer melts [20,43,49]
or for tadpole-shaped polymers [51]. The depth of threadings
is quantified by means of the separation length Lsep,

Lsep = min

( ∑
i=even

Lti ,
∑

i=odd

Lti

)
, (12)

where Lti is the (threading) contour length between the ith
and the (i+1)th penetrations of the minimal surface. Lsep

quantifies the portion of the threading ring on one side of
the threaded ring. Therefore, the ratio Q = Lsep/(N − Lsep)
approximates [51] the relative portion of the threading ring’s
contour on one side compared to the other side of the threaded
ring’s surface.

The time evolution of mean threading properties after the
activity onset in shown in Fig. 12 for systems with different N .
Except for N = 100, the mean number of threaded neighbors

〈ntn〉 per ring, defined as the total number of threadings in the
system ntn divided by M, is increasing with time, saturating at
a constant value after about 106τ . As expected, 〈ntn〉 correlates
strongly with the mean number of ring neighbors within its
radius of gyration, K1(Rg) [compare Fig. 12(a) and Fig. 9(a)].
Although the numbers K1(Rg) and 〈ntn〉 in the steady state are
almost the same, as we checked, the rings contributing to K1

are not all threaded and, similarly, some threaded neighbors
of a ring are further than Rg from the ring’s center of mass.
Simultaneously, the threadings are becoming progressively
deeper, as evidenced by a rise 〈Q〉 in Fig. 12(b). Interestingly,
even for N = 100 we observe a slightly increase in 〈Q〉, al-
beit no other influence of activity on rings’ conformational
properties in this system is apparent. While in equilibrium the
amount of shallow threading increases with N , as quantified
by the mean number of penetrations of a ring’s minimal sur-
face 〈np〉, in Fig. 12(c) we show that 〈np〉 goes down with
time for N = 200 and N = 400. If only surface penetrations
longer than Ne were considered, which provides a model-
independent view on threading statistics [49], 〈np〉 would
actually slightly increase over time [24]. This indicates that
many shallow surface piercings disappear, while a few deeper
ones appear, which further confirms the increase of threading
depth consistent with the evolution of 〈Q〉. Finally, as we
showed in the previous work [24], the mutual ring threadings
are responsible for the glassy behavior that emerges from the
development of a system-spanning threading cluster.

V. PHASE SEPARATION

The gradual change of conformational properties of the
rings as well as the slowed dynamics, ensuing from dramat-
ically enhanced threading, coalesce with demixing of cold
and hot segments. The hot segments are bonded with the cold
ones and, therefore, macrophase separation that would feature
a higher resulting temperature contrast [31] is not possible.
In fact, we observe the formation of microphase separated
regions, with numerous interfaces that mediate the heat flux
and decrease the temperature contrast. In the ring systems
at hand, block lengths of hot monomers are 13, 25, 50 for
N = 100, 200, 400, respectively. For the given γ = 2/3τ−1

and Th = 3ε, the hot block length in the two longer systems
would be sufficient to drive phase segregation in an active-
passive mixture of linear polymer chains, which irrespective
of their type would have length Nh. In contrast, such a mixture
of chains of length only Nh = 13 (representing an active block
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FIG. 13. The phase segregation order parameter. To render com-
parison across systems with different N , the initial value of the order
parameter |�̄(0)|, corresponding to equilibrium, has been subtracted
from |�̄(t )|. The gray line indicates the timescale at which significant
slowdown of rings’ dynamics in the two larger systems becomes
apparent. The dashed, colored lines represent the steady-state value
of � of a given system.

in the shortest system) would not phase segregate [30,31].
Nevertheless, it is an open question whether demixing occurs
in systems with polymers of unequal length Nh and Nc at
a similar temperature contrast. To quantify phase separation
in our systems, we compute the order parameter �(t ) =
x(t )/x(0) − 1, where x(t ) is the particle-averaged number
fraction of interchainlike particles in a rc = 21/6σ neighbor-
hood of a given particle at a given time t , and x(0) is the same
quantity at t = 0τ corresponding to equilibrium (at t = 0τ

distinct types were assigned to particles of an equilibrium melt
state, but equations of motions were not integrated yet; thus,
such state must be reasonably mixed). Such choice of �(t ) al-
lows us to explicitly compare systems with different fractions
of hot monomers along the chain, which are characterized by
different values of x(0).

As reported in Fig. 13, while the system with N = 100,
which is equilibriumlike and does not vitrify, does not show
strong propensity for segregation of cold and hot monomers,
the two larger systems do. For N = 200 and N = 400, imme-
diately after the activity onset, the cold and hot segments in
these systems become somewhat segregated (t < 105τ ). This
agrees well with reduced density around the hot segments
and their enhanced diffusion, as reported in Fig. 4. As the
rings become gradually more and more constrained by numer-
ously increased threadings, further separation continues up to
around few millions τ . The system with N = 400 arrives at a
more segregated state than the one with N = 200.

The effective temperatures responsible for the phase segre-
gation are obtained as an average over particles of the same
species. To a good approximation, the velocity distribution
of hot (cold) particles can be described using the Maxwell-
Boltzmann distribution with temperature T eff

h(c) [31]. In a
phase-segregated state, the deviations from the corresponding
Maxwell-Boltzmann distribution arise from particles that sit at
the interfaces and, on average, have an intermediate effective
temperature, T eff

c < T eff < T eff
h . In the steady state, the total

average power supplied to the system from the thermostats

through random collisions Ė rand = −3γ (nhTh + ncTc) should
balance the total dissipated energy per unit time through fric-
tion Ė fric = 3γ (nhT eff

h + ncT eff
c ) [30]. Therefore,

nhT eff
h + ncT eff

c = nhTh + ncTc. (13)

The relation Eq. (13) is satisfied for all N at any point in time t ,
although the two larger systems feature substantial conforma-
tional rearrangements at early times. The reason for this is the
fact that Eq. (13) works as long as no external work is being
produced, which is the case in the systems considered. Note
that dividing Eq. (13) by N provides the equality between
the mean effective temperature, governing the center of mass
dynamics of the ring, and the mean thermostat temperature.
This makes it possible to apply the single chain results like in
section A to the melt case where the effect of the other chains,
besides the topological constraints, is just in adjusted value of
the effective temperatures.

As shown in Fig. 14(a), phase separation in the systems
with N = 200 and N = 400 leads to a gradually increased
discrepancy between the two effective temperatures in the
system. Nevertheless, the ratio T eff

h /T eff
c ≈ 1.6–1.8 in these

systems is still much smaller than the one imposed by the
thermostat Th/Tc = 3. The propensity of hot blocks to phase
segregate in these systems locally reduces density around
them and therefore disproportionately increases their diffu-
sivity, as compared to the cold segments. This results in an
oriented reptationlike motion, where partially active rings are
essentially driven by hot segment displacements, which pro-
motes the formation of interring threading constraints and
makes unthreading events less likely. As the rings get more
constrained by their threading neighbors (Fig. 12), they con-
tinue to locally phase segregate stronger (Fig. 13), which
again increases the difference between segment diffusivities
and therefore makes the unthreading processes even more
unlikely. Thus, a formed glassy state is maintained by the
nonequilibrium microphase separation. In contrast, the small-
est system with N = 100 that is not segregating stronger
features more contacts between hot and cold monomers and,
therefore, heats up the cold subsystem at the expense of the hot
one, resulting in T eff

h /T eff
c ≈ 1.4. The rings as a whole in this

system follow an equilibriumlike dynamics with diffusivities
of hot and cold segments being proportional to an overall
enhanced temperature, as detailed in Sec. III. Lastly, for all
N , the fact that cold and hot segments are bonded creates
intermediate regions with temperature smaller than T eff

h but
larger than T eff

c . This effect is quantified in Fig. 14(c), where
we show the distribution of effective temperatures along the
ring’s contour T eff (s).

The discrepancy between the incoming and outgoing heat
fluxes in the cold and hot subsystems results in a nonvanishing
entropy production Ṡ per particle,

Ṡ = 3γ

N

N∑
s=0

〈
T eff(s)

T (s)
− 1

〉
, (14)

where 〈. . . 〉 is the ensemble average over different polymer
chains in the system. In Eq. (14), we explicitly take into
account deviations from T eff

h(c) for boundary monomers. The
time evolution of Ṡ for different N is shown in the inset of
Fig. 14(c). For N = 100, Ṡ is the highest, indicating the least
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FIG. 14. Effective temperatures. Time evolution of the system-averaged effective temperature of hot, T eff
h , (a) and cold,

T eff
c , (b) monomers. (c) Distribution of the effective temperature along the ring’s contour in the steady state for different N . (s is centered

at the middle of the active segment). Inset: Time evolution of the mean entropy production Ṡ per monomer Eq. (14) (error bars are not shown
for clarity; generally, the standard deviation of Ṡ/3γ is around 0.15 is all cases). In (a)–(c), error bars indicate the standard deviation of the
corresponding quantity.

degree of phase separation. For N = 200 and N = 400, Ṡ
decreases with time, highlighting further phase separation of
hot and cold monomers in these systems. The fact that Ṡ is the
smallest for N = 400 further confirms that it is the most phase
separated. In addition, by neglecting the contour distribution
of temperature, Eq. (14) can be recast as

Ṡ/3γ � nh

(
T eff

h

Th
− 1

)
+ nc

(
T eff

c

Tc
− 1

)
, (15)

where nc and nh are the fractions of cold and hot monomers,
respectively. Now, using the heat balance Eq. (13), Eq. (15)
transforms into

Ṡ/3γ � nc

(Th

Tc
− 1

)(
T eff

c

Tc
− 1

)
. (16)

Stronger tendency toward phase segregation reduces the num-
ber of contacts between cold and hot monomers, thereby
making the effective temperature of cold particles [Fig. 14(b)]
and, correspondingly, Ṡ lower, as already observed at very
short simulation times. Equation (16) further confirms that
Ṡ(N = 100) > Ṡ(N = 200) > Ṡ(N = 400), as observed di-
rectly in Fig. 14(c). Finally, the microphase separated systems
are composed of a less dense active phase and more dense
passive phase. This is illustrated in Fig. 15, showing anticor-
relation between temperature and density distributions within
the simulation box for N = 100 and N = 400.

A similar system of linear chains becomes less phase
separated than the one of rings. We show this by taking
a steady-state ring configuration (t = 2 × 106τ ), cutting all
chains in the middle of the cold segment, which results in
ABA triblocks, and evolving such a system further on, as
shown in Fig. 16. We also observe an increase in the entropy
production with a lesser difference between the observed ef-
fective cold and hot temperatures, in line with reduced degree
of phase separation. Interestingly, the chain ends have more
frequent contacts with hot regions that results in their higher
effective temperature, as seen in Fig. 16(b). Finally, in the
two larger systems of cut rings that have a propensity for
demixing, the oriented reptationlike motion driven by the

hot segment persists. An interesting question that remains is
whether such ABA (cold-hot-cold) triblocks can form ordered
structures that correspond to the strongly phase-segregated
limit in equilibrium block copolymers [52]. For active copoly-
mer rings, which we have now extensively discussed, such
behavior is obviously suppressed due to the topological glass
formation, which disables the rings to potentially segregate
more due to the formed topological constraints. From the
evolution of the phase-separation order parameter for ABA
triblocks [see Fig. 16(a)] and from the final system states
[see inset of Fig. 16(b)], we do not observe the formation
of ordered structures. The phase-separated regions of active
monomers rather reminisce of the weakly segregated regime
for equilibrium copolymers. It is instructive to compare the
present nonequilibrium ABA systems with the equilibrium
ones [53]. In particular, for the three ABA systems considered,
we find the nonequilibrium incompatibility parameter χ =
T eff

h /T eff
c − 1 to be 0.42, 0.51, and 0.68 for N = 100, 200, and

400, respectively. Equilibrium diblocks with a similar fraction
of A monomers ( fA = 7/8) would form a spherical (micellar)
phase at comparable values of (equilibrium) χ -parameters
for the two bigger N [53]. In our case, however, we do not
observe a tendency for such behavior. Note, however, that this
comparison is for illustration only, as it is not guaranteed that
the phase diagrams are similar and it is not clear now if active
copolymers can form ordered structures at all.

A mixture of M cold chains of length Nc and M hot chains
of length Nh shows a stronger propensity toward phase seg-
regation, as seen in Fig. 17(a). As recently derived by Ilker
and Joanny [35], the critical ratio χ∗ needed for segregation
(χ = T eff

h /T eff
c − 1) scales as

χ∗ = α
(
N−1/2

h + N−1/2
c

)
, (17)

with chain lengths (note that the right-hand side is not squared,
as it would be for equilibrium phase separation). This agrees
well with earlier simulation results on phase separation in
symmetric active-passive mixtures [30] [Fig. 17(b)]. Further-
more, we compared the χ parameter in the three present cases
with the critical line Eq. (17), with α extracted from Ref. [30].
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FIG. 15. Spatial distribution of temperature and density. T eff and ρ are shown for N = 100 [(a), (b)] and N = 400 [(c), (d)]. To compute the
distributions, the systems were divided into n3

b small sub-boxes of comparable size σb ≈ 5.7σ . One layer corresponding to a fixed z elevation
is shown. The heat maps for N = 100 are normalized with the same scale as for N = 400.

We find that the system with Nh = 13 and Nc = 87, unlike the
other two, lies below the critical line [Fig. 17(b)]. This further
supports that the two systems of active-passive mixtures of
linear chains of lengths equivalent to block lengths in our ring
systems do phase separate while the shortest one does not,
highlighting the role of the nonequilibrium phase separation
in the process of formation of the active topological glass.

VI. SUMMARY AND CONCLUDING REMARKS

In summary, we have considered in detail melts of un-
knotted and nonconcatenated block copolymer rings driven
out of equilibrium by different thermostats applied to the two
different blocks. We focused on systems with different ring
length N , while keeping the same length ratio of active blocks
Nh = N/8 coupled to a heat bath at the temperature Th = 3Tc.

We have shown that at early times the segmental and center of
mass dynamics is equilibriumlike with an effectively higher
temperature. In particular, in the shortest system with N =
100, the presence of activity effectively increases the ring’s
diffusivity, as given by Eq. (A3), however, its conformational
and threading properties remain essentially unchanged. On the
contrary, in the case of N = 200 and N = 400, already shortly
after the activity onset, the hot segments diffuse faster as
compared to the relation Eq. (A3). This arises due to a some-
what lower density around them that hallmarks an early stage
of nonequilibrium phase separation. The discrepancy in seg-
ment dynamics in this case results in an oriented reptationlike
regime, where rings are essentially pulled by the hot-segment
displacements, which promotes the formation of topologi-
cal constraints until the motion of rings stops, forming a
very slowly relaxing glassy state that is built on topological
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FIG. 16. Nonequilibrium phase segregation of cut rings (ABA triblocks). (a) Time evolution of the phase-segregation order parameter for
rings (transparent curves) before t < 2 × 106τ and linear polymer chains (opaque curves) obtained after cutting the rings in the middle of the
cold segment at t = 2 × 106τ (dotted gray line) for different N . (b) Distribution of the effective temperature along the contour of cut rings in
the steady state (after equilibrating for 1.5 × 106τ ) for different N (s is centered at the middle of the active segment). Inset: Time evolution
of the mean entropy production Ṡ for rings before (transparent) and after (opaque) cutting. The snapshot on the left illustrates the partially
segregated state of hot monomers (cold monomers are not shown for clarity) in the system with N = 400 at the end of the simulation. In (b),
error bars indicate the standard deviation of T eff (s).

constraints and activity. The critical diffusivity contrast for the
glass formation seems to coincide with the phase separation
contrast, but a more detailed study is necessary to determine
the relation exactly.

The present nonequilibrium rings, in a sense, represent
a hybrid between ring and linear polymers. On the one
hand, they are strongly influenced by threading constraints,
lack ends, and, therefore cannot reptate as linear chains.
However, for strong enough temperature discrepancies, the
active segments effectively serve as a chain’s end, exploring
neighboring sites and dragging the rest of the polymer with
itself. Such dynamics gives rise to elongated, doubly folded
conformations that locally feature statistics of linear poly-
mers.

Many intriguing questions remain to be answered for the
active topological glass. Some of these pertain to other activity
models. For instance, in a dilute mixture of self-propelling
particles [29] with different propulsion speeds v, densities ρ

adjust to equalize the momentum density ρv, not the pressure
p ∼ ρv2, across the system. Before the separation, this results
in a less dense phase of particles with higher mobility and,
therefore, higher pressure, and a more dense phase of lower
mobility particles with lower pressure. Similarly, in a segre-
gated two-temperature mixture [30,31,34,35], the phase with
particles in contact with a hotter thermostat, locally exerting
higher pressure, is more dilute as compared to the phase
with colder particles. As the microscopic and phase separa-
tion dynamics is different for the thermostat-driven particle

FIG. 17. Nonequilibrium phase segregation of linear polymer chains of different length. (a) Time evolution of the phase-segregation order
parameter for linear polymers mixtures with M = 1600 hot chains of length Nh = N/8 and M = 1600 cold chains of length Nc = N − Nh

for N = 100, 200, and 400. The inset snapshot shows only the hot part of the system with N = 400 at late times. (b) The nonequilibrium
incompatibility parameter χ = T eff

h /T eff
c − 1 as a function of N−1/2

c + N−1/2
h for the three systems considered (circles). The gray dashed line

is the critical line, χ∗ = α(N−1/2
c + N−1/2

h ), with α = 1.746 ± 0.081, extracted from symmetric linear polymer mixtures in Ref. [30]. The five
black squares are the measured values of χ∗ from Ref. [30] for symmetric (Nh = Nc = 10, 20, 40, 70 and 100) mixtures of equal number of
hot and cold linear chains. The theory [35] supports the numerical results.
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systems in comparison to systems with self-propelled par-
ticles, it would be interesting to examine the existence of
the active topological glass for the latter model. To our
knowledge, the nonequilibrium phase separation of polymers
composed out of self-propelling particles has not been inves-
tigated systematically and certainly it would be interesting to
test whether the N−1/2 scaling of the incompatibility parame-
ter holds in such systems as well.

Other properties of the active topological glass are yet
to be elucidated. In particular, the exact kinetics of the
formation of the active topological glass, its response to
external shear stress, as well as the strength of the activ-
ity quench on the rings’ segments necessary to observe the
arrested states are unknown. A proper description of this
phenomenon requires an understanding of the nonequilibrium
microphase separation. It is very interesting, for example,
whether nonequilibrium active diblock polymers can form
ordered structures, such as lamellae, cylinders, or micelles, as
is typical for segregating diblock copolymers in equilibrium
[52,54]. The equilibrium melt of a diblock or, in the case of
the cut rings a simple triblock, copolymers of these lengths
would form micelles. In our partly active systems, we do
not observe these structures, however, this might not only
be because the glassy state arrests the phase separation, but
also the incompatibility parameter and the chain dynamics are
different from equilibrium and, therefore, the phase diagram
is yet to be explored. A more complete understanding of these
phenomena might further trigger development of active mate-
rials with novel properties and shed light on self-organization
and dynamics of different biological polymers, in particular
chromatin, that are subject to heterogeneous activity along
their contours and can feature a loopy structure at differ-
ent length scales. In this context, the main question pertains
on the physical mechanism that governs the separation of
transcriptionally active (euchromatin) and the passive (hete-
rochromatin) fibers. Since both species also exhibit chemical
differences, it is difficult to establish if the equilibrium mi-
crophase separation or the nonequilibrium analog plays the
pivotal role. Moreover, the potential topoisomerase-induced
crossability and the topology of the chromatin fiber affects
the accessible morphologies. In this paper, we pinpointed
the differences in the steady-state morphologies (suppressed
formation of strongly separated structures) and the segment
dynamics (oriented reptation) that can guide the experiments
to discern these mechanisms.
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APPENDIX A: CENTER OF MASS DIFFUSION OF A
SINGLE CHAIN COUPLED TO TWO THERMOSTATS

Consider a single polymer chain of N monomers out of
which Nh are connected to a Langevin thermostat at Th and Nc

monomers are connected to a Langevin thermostat at Tc. The
Langevin equation for the ith monomer is

mv̇i = −mγ vi − ∇iU + (2mγ Ti )
1/2ηi, (A1)

where γ is the thermostat coupling parameter, m is the
monomer’s mass, U is the interparticle interaction potential,
each component of ηi is a Gaussian random variable satisfying
〈ηi,α (t )η j,β (t ′)〉 = δi jδαβδ(t − t ′). The temperature Ti is Tc or
Th depending on the bead (kB = 1). By summing Eq. (A1)
over all monomers, we get the equation for the center of mass
velocity, v:

Mv̇ = −Mγ v + (2Mγ Teff )1/2η, (A2)

where M = mN and Teff = (TcNc + ThNh)/N . Note that the
friction coefficient Mγ ≡ mγ N in Eq. (A2) corresponds to the
Rouse model of polymer dynamics [37]. The result Eq. (A2)
follows from the fact that v = N−1 ∑N

i vi,
∑N

i ∇iU = 0, and
that the sum of independent Gaussian random variables with
unit variance and zero mean is again a Gaussian random vari-
able with zero mean but a larger variance, namely,

∑k
i ηi =

k1/2η. This means that the center of mass of the chain moves
as a Langevin particle with the effective temperature Teff and
effective diffusion coefficient

Deff = Teff

Mγ
= TcNc + ThNh

mγ N2
= DcNc + DhNh

N2
, (A3)

where Dc and Dh are diffusion coefficients of hot and cold
monomers, respectively. Note that the result is independent of
the ordering of the monomers.

TABLE II. Size and shape properties of equilibrium rings and
linear chains. 〈R2

g〉 is the mean-square radius of gyration, 〈R2
e〉 in the

case of rings is the mean-square distance between two monomers
separated by the contour length N/2, while in the case of linear
polymers it is the mean-square end-to-end distance and λi, i = 1, 2, 3
are the eigenvalues of the gyration tensor ordered such that λ1 �
λ2 � λ3. The value in the parentheses indicates the standard error.
The data is adapted from Ref. [3].

Topology N 〈R2
g〉/σ 2 〈R2

e〉/σ 2 〈λ1〉/〈λ3〉 〈λ2〉/〈λ3〉
Ring 100 17.2 (0.4) 50.8 (1.5) 6.4 2.3

200 30.8 (0.7) 88.8 (2.7) 5.9 2.2
400 52.9 (1.2) 149.4 (4.8) 5.5 2.1

Linear 100 43.4 (1.2) 263.8 (1.6) 12.9 2.8
200 88.9 (1.2) 538.9 (1.6) 12.6 2.8
400 180.8 (1.3) 1095.3 (1.6) 12.3 2.8
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APPENDIX B: SHAPE PROPERTIES OF EQUILIBRIUM RINGS AND LINEAR CHAINS

In this Appendix, we summarize in Table II the size and shape parameters of equilibrium ring and linear polymer chains in
the melt that are mentioned in Sec. IV of the main paper.
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