Flexo-Elastic Control Factors of Domain Morphology in Core-Shell

Ferroelectric Nanoparticles: Soft and Rigid Shells

Eugene A. Eliseev!, AnnaN. Morozovska?', Riccardo Hertel3', Hanna V. Shevliakova®, Y evhen M.
Fomichov®, Victor Y u. Reshetnyak®, and Dean R. Evans’

! Institute for Problems of Materials Science, National Academy of Sciences of Ukraine,
Krjijanovskogo 3, 03142 Kyiv, Ukraine
2 Institute of Physics, National Academy of Sciences of Ukraine,
46, pr. Nauky, 03028 Kyiv, Ukraine
3 Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504,

67000 Strasbourg, France

* Department of Microelectronics, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic
Institute”, Kyiv, Ukraine

5 Charles University in Prague, Faculty of Mathematics and Physics,
V Holesovickach 2, Prague 8, 180 00, Czech Republic
6 Taras Shevchenko National University of Kyiv, Volodymyrska Street 64, Kyiv, 01601, Ukraine
" Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base,
Ohio, 45433, USA

Corresponding author 1: anna.n.morozovska@gmail.com

Corresponding author 2: riccardo.hertel @ipcms.unistra.fr

Corresponding author 3: victor.reshetnyak@gmail.com

Corresponding author 4: dean.evans@afresearchlab.com
1




Abstract
Within the framework of the Landau-Ginzburg-Devonshire approach we explore theimpact of € astic anisotropy,
electrostriction, flexoelectric couplings, and mismatch strain on the domain structure morphology in ferroelectric
core-shell nanoparticles of spherica shape. We perform finite element modelling (FEM) for multiaxial
ferroelectric nanoparticle cores covered with an elastically-isotropic soft or elastically-anisotropic rigid
paraelectric shell, with and without mismatch strains. The latter are induced by the difference of the core and
shell lattice constants.

In the case of a core covered with a soft shell, the FEM results show that at room temperature a single
polarization vortex with a dipolar kernel can be stable if the electrostriction coupling is relatively weak. With
increasing anisotropic electrostriction coupling, the vortex disappears and is replaced by complex flux-closure
structures, which are formed in the equatorial plane and transform into an elongated vortex with a central 180°
domain wall near the core poles. This complex domain morphology develops in the core due to the anisotropic
electrostriction, and the flexoelectric coupling leads to an additional curvature and twist of the polarization
isosurfaces.

In contrast to this, FEM performed for a core covered with arigid shell showsthat, at room temperature,
the anisotropic elastic properties of the shell can stabilize vortex-like structures with three flux-closure domains,
which gradually “cross” in the equatorial plane of the core and transform into 120°-type domains near the core
poles. The flexoelectric coupling leads to a noticeable curling of the flux-closure domain walls. A mismatch
strain compensates the curling of the flux-closure domainsin the core confined by the el astically-anisotropic rigid
shell. Our analysis of the configuration of the polarization reveals different types of topological defects, namely
Bloch point structures (BPS) and Ising lines, forming in aferroelectric core covered with a soft or rigid shell.

Furthermore, we study the influence of the core radius on the temperature behavior of domain structure
morphology, polarization value, and phase transition temperatures, and derive approximate anal ytical expressions
to analyze the influence of the elastic properties of the shell as well as mismatch strain on the phase diagrams.
The phase diagram for a core covered with an elastically-isotropic soft shell shows a reatively small but
noticeable increase of the paraelectric-ferroelectric phase transition temperature induced by the flexoelectric
coupling, whereas the phase diagram for a core covered with an elastically-anisotropic rigid shell reveals a
relatively strong influence of mismatch strain.

The analytical results obtained from this study can be used for the optimization of core-shell ferroelectric
nanoparticle sizes for advanced applications in nanoelectronics and nano-coolers. Specifically, the obtained
analytical results allow for the selection of optimal parameters to reach high negative values of an electrocaloric
response from an ensemble of non-interacting core-shell nanoparticles, which isimportant for energy convertors
and cooling systems. Core-shell ferroel ectric nanoparticles, whose pol arization arranges in avortex-like structure
with different types of BPS and/or dipolar kernels, can be considered as promising candidates for nanosized field

effect transistors and logic units.



[.INTRODUCTION

Ferroelectrics are among the most interesting objects for fundamental and applied studies of spontaneous
polarization dynamics, which is often characterized by a versatile morphology of multi-domain states with
complex topology of electric dipoles [1, 2, 3, 4]. Special efforts are intended to answer the question on how
complex topological states[5, 6, 7, 8, 9], such asflux-closure domains, polarization vortices, or skyrmions, which
sometimes exist in nanosized ferroelectrics, can be controlled by elastic forces and/or electric fields (see e.g.
Refs. [10, 11, 12, 13, 14] and citations therein).

Many recent works are devoted to the phase-field modeling of polarization vortices in nanosized
ferroelectrics, such as nanodots and nanoparticles; their reaction to externa stimuli, such astemperature changes
[15, 16] eectric fields [17]; elastic strains induced by the substrate, dislocations and local clamping forces [14].
Thisistypically donein the framework of a continuum phenomenological Landau-Ginzburg-Devonshire (L GD)
approach combined with el ectrostatic equations and phase-field modeling (see Ref. [ 18] and refs. therein). Special
attention is paid to the role of size and shape effects [17], for instance, Mangeri et a. [19] considered
noninteracting spherical ferroelectric nanoparticles embedded in a dielectric matrix and showed that the vortex-
like polarization morphology is strongly affected by the particle diameter. Mangeri et al. [20] then proposed
different ways for the electromechanica control of polarization vortices in interacting ferroelectric-dielectric
dimers. Pitike et al. [21] revealed that the critical sizes of ferroel ectric nanoparticles with vortex-like polarization
textures are strongly dependent on the particle shape. Chen and Fang [22] studied the electrocaloric effect (ECE)
in barium titanate nanoparticles with vortex polarization using a core-shell model.

Recently, we predicted that it is possible to control the domain structure of core-shell ferroelectric
nanoparticles by using tunable shells [23]. We then explored the possibility of eectric field control of three-
dimensional vortex states in core-shell ferroelectric nanoparticles [24]. The field-induced changes of the vortex
structure are manifested in the appearance of an axia kernel in the form of a prolate nanodomain, the growth of
the kernel, an increasing orientation of the polarization along the field, and the onset of a single-domain state.
The in-field evolution of the polarization includes the formation of Bloch point structures (BPS) located at two
diametrically opposite positions near the core surface. An interesting aspect is that the classical behavior of the
vortex axis can simulate a “qubit” at room temperature, since some basic properties of qubits necessary for a
guantum computation [25, 26] can be simulated by the vortex+kernel states “+1” revealed in Ref. [24]. However,
one should bear in mind that the electrostatic interaction between the core-shell ferroelectric nanoparticles is
different from the “true” entanglement of e.g. photons, because photons can be entangled at macroscopic
distances, whereas coupling between nanoparticles decays at increasing distances due to the attenuation of the
electrostatic field.

To the best of our knowledge, existing theoretical papers (cited above and many others) did not consider
the influence of elastic properties of a shell on the core ferroelectric polarization and the morphology of its

domain structure in the presence (or absence) of a flexoelectric coupling, which relates the electric polarization
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with an elastic strain gradient (or the strain with a polarization gradient). Motivated to fill this gap in knowledge,
we simulate numericaly the formation of complex three-dimensional domain structures in spherical
nanoparticles consisting of a ferroelectric core covered with a paraglectric shell, and analyze how the domain
structure and phase diagrams of the nanoparticles are influenced by the shell and core anisotropic elastic
properties, electrostriction, flexoelectric coupling, and mismatch strains (arising from different lattice constants
and thermal expansion coefficients of the core and shell materials).

The remainder of the paper has the following structure. The formulation of the problem is presented in
Section |1, which contains the method description and calculation details with emphasis on the mechanical state
of the core covered by shells with different elastic properties. Results of numerical modeling and their analytical
description are presented in Sections I11-1V. The influence of e ectrostriction and flexoelectric coupling on the
domain structure in a ferroelectric core covered with elastically soft shell is considered in Section I11. The
ferroelectric properties of a core covered with an elasticaly rigid shell is analyzed in Section 1V, where special
attention is paid to the influence of a mismatch strain between the core and the shell on the domain structure
morphology in the core. Size-dependent phase diagrams of core-shell nanoparticles are discussed in Section V,
and possible applications are discussed in Section V1. The obtained results are summarized in Section V1.

II.PROBLEM STATEMENT, METHODS, AND PARAMETERS

A. Methods, approximations, and limitations. We use the LGD approach combined with electrostatic
equations, because this method has proven to be successful in establishing the physical origin of anomaliesin
phase diagrams, determining polar and diel ectric properties of ferroelectric nanoparticles[27, 28], and calculating
the changes of their domain structure morphology with size reduction [29, 30]. The LGD approach allowsfor the
consideration of various size and surface effects, such as correlation effects and depolarization fields arising in
the case of incompl ete polarization screening [31], surface bond contraction [32, 33], and intrinsic surface stresses
and strains [ 34, 35, 36].

We perform finite element modeling (FEM) of the polarization, the internal electric field, and the elastic
stress in a spherical BaTiOz core covered with a “tunable” paraelectric shell. The relative dielectric permittivity
es of the shell is ultra-high and temperature-dependent. The core-shell nanoparticle is placed in a polymer or
liquid medium with a relative dielectric permittivity ge. An external electric field is absent. The dielectric and
elastic properties of the SrTiOs shell and the BaTiOz core are givenin Table Al in Appendix A.

The main role of the shell isto provide an effective tunable screening of the core polarization [23]. Note
that a 10-lattice constant thick (AR = 4 nm) or thicker shell with g =200 can maintain a remanent polarization
of aBaTiOs core with radius R > 2 nm, because of the effective dielectric screening in the shell. However, for
shells significantly thinner than 10 lattice constants, different low-dimensional effects can change the dielectric

and electronic properties. Two types of the shells are compared in this work: an elastically “soft” shell and a



“rigid” shell, whose dielectric properties are the same as bulk SrTiO3, but with very different elastic modulus
values.

The definition of a soft shell. A tunable shell with high dielectric permittivity is considered to be
elastically soft if its elastic stiffness is rather small. Soft matter, including liquid crystals, can play the role of a
soft shell. Note that different concentrations of oxygen vacancies can be present in perovskiteslike SrTiOs. These
vacancies, being elastic dipoles[37], are effective sinksfor elastic stresses[38]. In accordance with our estimates,
the oxygen vacancies located in the shell can strongly reduceits effective el astic compliances, such that a SrTiOz
shell with more than (1 — 3) vol. % of vacancies can be considered elastically soft (see Fig. Al in Appendix A).

The definition of a rigid shell. A “vacancy-free”, i.e. stoichiometric, SrTiOz shell can be considered
rigid, since the elastic stiffness and electrostriction tensor components of bulk crystalline SITiOs are relatively
high (see Table Al in Appendix A). Unlike the case of the soft shell, the rigid shell can include a mismatch
strain, which originates from different | attice constants and thermal expansion coefficients between the core and
shell materials. In this work, we vary the mismatch strain du between zero (“coherent” or “matched” case) and
u,, =2.2% (maximal tensile strain at room temperature for the BaTiOs/SrTiOz interface).

Elastic properties of the core. Similar to the case of the SrTiOs shell, different synthesis paths can lead
to a stoichiometric or oxygen-deficient BaTiOs core [39, 40]. It follows from Table Al in Appendix A that the
elastic stiffness and el ectrostriction tensor components of stoichiometric bulk crystalline BaTiOsz are of the same
order as stoichiometric bulk crystalline SrTiOgs; therefore, the stoichiometric BaTiO3z core can be regarded
elastically rigid. We estimate that oxygen vacancies with a concentration of more than several volume percent
can greatly reduce the effective elastic stresses in the oxygen-deficient BaTiOz core, making it elastically “soft”
(seeFig. Alin Appendix A). Also, we note that vacancies located in the core can effectively screen elastic fields
arising at domain walls and at the core-shell interface, and thus the oxygen-deficient core can be almost el astically
isotropic. Below we consider an elastically isotropic core covered with a soft shell in comparison with an
elastically rigid anisotropic core-shell pair.

FEM simulations are performed in COMSOL @MultiPhysics software, using e ectrostatics, solid
mechanics, and general math (PDE toolbox) modules. The size of the computational region is not less than
40x40x40 nm?, and is commensurate with the cubic unit cell constant (about 0.4 nm) of BaTiOs at room
temperature. The minimal size of atetrahedral element in amesh with fine discretization is equal to the unit cell
size, 0.4 nm, and the maximal sizeis (0.8 — 1.2) nm in the core, 1.6 nm in the shell, and 4 nm in the dielectric
medium. The dependence on the mesh size is verified by increasing the minimal sizeto 0.8 nm. We verified that
this only resultsin minor changes in the electric polarization, electric field, and elastic stress and strain, such that
the spatial distribution of each of these quantities becomes less smooth (i.e. they contain numerical errorsin the
form of asmall random noise). However, when using these larger cell sizes, al significant detailsremain visible,
and more importantly, the system energy remains essentially the same with an accuracy of about 0.1%.

The mathematical formulation of the problem, comprising electrostatic equations and time-dependent
Euler-Lagrange equations with boundary conditions, is given in detail in Ref. [23] and is repeated in Appendix
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A with the addition of anisotropic elastic properties of the shell, electrostriction, flexoelectricity, and mismatch
strains. The simulated system is shown in Fig. 1a. Examples of tetrahedral meshes of a core-shell nanoparticle
areshown in Fig. 1b-1c.
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Figure 1. (a) A spherical ferroelectric nanoparticle (core) of radius R with background relative dielectric permittivity e,, covered with
aparaelectric shell of thickness ARwith relative dielectric permittivity es, placed in anisotropic dielectric effective medium with relative
dielectric permittivity e.. Examples of self-adaptive fine (b) and hyper-fine (c) meshes with different element sizes, a color scale shows

the element size in nanometers and angstroms, respectively.

To check the stability and convergence of the numerical algorithm, we use an entirely random distribution
of polarization and strain as an initial configuration in the core. In order to obtain a rapid convergence, we use a
180° domain structure with straight domain walls oriented along different crystallographic directions (e.g. [100],
[110], or [111]) as the initial distribution of the polarization, which corresponds to the equilibrium domain
structurein aBaTiOz single crystal at room temperature. To facilitate the energy minimization starting from this
artificial configuration, small-amplitude random fluctuations of polarization and strain are added to the 180°
domain structure in the first time step. These fluctuations are very small in comparison with the values of the
spontaneous polarization and strain for abulk ferroel ectric BaTiOs crystal. Initial values of polarization and strain
in the parael ectric shell are zero values, but they are different from zero in the ferroelectric core. The calculation

is stopped once the system relaxes to an equilibrium state in which the energy remains constant during subsequent
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iteration steps. In the vast majority of cases, the relaxation of an entirely random distribution of polarization and
the relaxation of the 180° domain structure of a certain orientation leads to the same equilibrium domain structure
in the core. When this is not the case, we chose the domain structure corresponding to the lowest energy for
further analysis. It turns out that in contrast to the stoichiometric BaTiOs single crystal in the tetragona phase,
the axis of the vortex-like structure in the nanoparticles is different from the crystallographic axes [100], [010],
and [001] (but often closeto[110], [101], or [011]). Thishappens because the small-size (20 nm) core compressed
by anisotropic elastic stresses has a significantly lower transition temperature between the tetragonal and
orthorhombic phase in comparison with bulk BaTiOsz, such that the core becomes close to the orthorhombic (or
even rhombohedral) phase at room temperature. An exception to thisis the oxygen-deficient BaTiOs core, where

the elastic anisotropy is almost absent.

1. A FERROELECTRIC CORE COVERED WITH A SOFT TUNABLE SHELL

In this section, we analyze equilibrium distributions of the polarization and the electric and elastic fields in a

ferroelectric core covered with a soft tunable shell. Typica equilibrium distributions of the polarization

magnitude P. = /PZ + PZ + PZ, its component P, the electric potential ¢, and the radial stress o are shown in
Figs. 2-4.

For Fig. 2, the flexoelectric coupling is zero in both the core and the shell, and the electrostriction
anisotropy is small or absent in the core. One can see a thermodynamically stable polarization vortex with a
kernel, and the axis of vortex rotation coincides with one of the core pseudo-cubic axis [001]. Similar structures
can be stable in the nanoparticles when there is alarge number of elastic defects (e.g. mobile oxygen vacancies),
whose redistribution is accompanied by asignificant decreasein local stresses dueto the Vegard effect (see Refs.
[37, 38] and Appendix A for details). This leads to the fact that a stable three-dimensiona (3D) vortex has a
polar anisotropy corresponding to the 4mm symmetry group with an equilibrium state in the form of a quasi-two-
dimensional vortex with a prolate dipolar quasi-kernel, which is quasi-uniformly polarized. We studied the
formation of a similar structure in our recent work [24]. Figures 2a and2b show that the polarization of the
“vortex” part of the core is almost constant in amplitude and rotates in the same plane, while Figs. 2c-2d show a
clear tetragona anisotropy of the system: four symmetrical lobes of B. develop in the equatorial plane and a
rounded square-shaped section of the polarized kernel can be seen in the Pz component. In this case, the
electrostatic potential reaches asignificant value only near the “poles” of the kernel, defined as the points where
the polarized kernel touches the surface (see Fig. 2e). The remainder of the core polarization is the vortex-like
azimuthal distribution of the polarization. There are virtually no elastic stresses in the particle (see Fig. 2f), since
the migration of elastic dipolesin the stress gradient compensates for the total stress and increases the “effective”
elastic compliances of the material (see Fig.A1lin Appendix A). Note, that BPS are absent at zero externa field

E... = 0 wheress, a E,,; # 0 two diametrically opposite Bloch points appear (i.e., point singularities of the



polarization field at P = 0), which are located at the vicinity of the core surface where they intersect the kernel

[24].
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Figure 2. Ferroelectric BaTiOs core covered with a soft tunable shell. Flexoelectric coupling is absent in the core and the shell.
Electrostriction anisotropy is small or absent in the core. (a, b) Distribution of the polarization magnitude B. at the core surface
(r = R). (¢, d) Distribution of the polarization magnitude P. and the P; component in the cross-section {001} perpendicular to the
vortex axis pointed along [001]. Black arrows indicate the projection of the polarization vector onto the corresponding surface (a, b, c,
and d). (e) Electrostatic potential ¢ distribution at the core surface r = R. Black arrowsindicate the electric field vector at the surface.
(f) Radial stressin the cross-section {001} of the core. Coreradius R = 10 nm, shell thicknessAR = 4 nm, and temperatureT = 298
K. The tunable shell with high dielectric permittivity g = 300 isregarded as being elastically soft, i.e. its elastic stiffnessis negligibly
small in comparison with the core values. For other parameters see Table Al in Appendix A.

The influence of anisotropic internal elastic stresses is demonstrated in Fig. 3. The figure uses a new coordinate

%, s = %, and z. The coordinate “t” is chosen to be parallel to the central axis

[110] of the vortex-like polarization structure. Here, the flexoelectric coupling is absent in the core and the shell,

system with coordinates t =

but there is a strong and highly anisotropic electrostriction in the core. One can see aregular thermodynamically
stable vortex-like polarization structure, which, in contrast to the previous case, develops without akernel. The
actual structure of the polarization distribution is more complicated than a simple vortex or skyrmion (see
Figs. 3a-d). Thereisavortex-like structure near the center of the core, where the polarization rotates in one plane
around afixed axis (see Figs. 3c-d). Near the “poles”, defined as the intersection points of the vortex axis with
the surface, the polarization rotation degenerates into an elongated vortex connecting a pair of 180° domains of
the tetragonal phase (see Figs. 3a-b). However, the orientation of the domains near the two poles is “crossed”,
namely the domains are rotated at 90° with respect to one another (see two blue segments in Figs. 3a). The
surface-closures of these domains contain two diametrically opposite and perpendicular straight ssgmentswith a
small polarization magnitude near the core surface (see Figs. 3a). The guide vectors of the segments are [001]
and [-110], which are connected by a central line where |P| ~ 0 (see Figs. 3b). Stepkovaet al. coined the term
“Ising line” to describe line defects of this type [41]. Taking into account the importance of different BPS and
line singularities for fundamental science and advanced memory applications, we will study the morphology of
revealed BPS in more detail in Section V1.

“Pseudo-domains”, in which several polarization components coexist, appear near the core equatorial

plane; their fingerprints are visible on the surface map of the electric potential (see Figs. 3€), where the electric

field, E = —V@, is shown by black arrows. These domains can be considered as phases with symmetries less
than tetragonal. This conclusion is corroborated by the fact that strong elastic stresses arise in the considered
vortex structure (see Figs. 3f). They are localized both in the near-surface core layer due to the influence of
electrostriction anisotropy, and at the walls of pseudo-domains due to a sharp change in the polarization
magnitude and direction. The sharp distribution of stressesin different layers of the nanoparticle core determines
the different phase composition of the pseudo-domains, because the anisotropic compression or tension can

induce the appearance of low-symmetric phasesin ferroelectrics.
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{110} perpendicular to the vortex axis pointed along [110]. Black arrows indicate the projection of the polarization vector onto the
corresponding surface (a, b, ¢, and d). (€) Electrostatic potential ¢ distribution at the core surface » = R. Black arrows indicate the
electric field vector at the surface. (f) Radial stressin the cross-section {110} of the core. Coreradius R = 10 nm, shell thicknessAR =
4 nm, and temperature T = 298 K. The tunable shell with high dielectric permittivity e; = 300 isregarded as being elastically soft, i.e.

its elastic stiffnessis negligibly small in comparison with the core values. For other parameters see Table Al in Appendix A.

In Fig. 4, flexoelectric coupling and electrostriction are anisotropic and high, in both the core and the
shell. The figure uses the same coordinate system asin Fig. 3, wheret = % s = % and z. The coordinate t
is chosen to be amost parallel to the axis of the vortex-like polarization structure, whose very small deviation
from the [110] direction is caused by the flexoel ectric coupling. One can see athermodynamically stable vortex-
like polarization structure, which resembles a double vortex structure in the equatorial plane and has a complex
cross-type “curled” morphology, which is very different from the “straight” crossed domain walls shown in
Fig. 3. Similar to the dtuation shown in Fig. 3, the surface-closures of the crossed domains form two
diametrically opposite curved segments of different lengths with a small polarization magnitude near the core
surface. In contrast to Fig. 3, the central line, where |P| issmall, is absent. These segments may contain Bloch
points (see Section VI for more details).
For zero flexoelectric coupling, the internal electric field (the depolarization field), is very small due to the
efficient minimization of charges by the polarization rotation inside the vortex (for details see Fig. Ada-b in

Appendix A). Thisnearly solenoidal structure developsin the core covered by asoft shell, and the bound charges,

pPp = —V - P, arevi rtually zero (see Fig. A5a-b in Appendix A). The condition divE~O follows from the zero
divergence of the eectric displacement D and polarization P. Small deviations from this condition are due to
numerical errors.

To summarize, the room-temperature FEM of particles with the core covered by a soft shell showsthat a
single polarization vortex with a dipolar kernel can be stable in the core in the case of a relatively weak
electrostriction coupling. The increase of anisotropic electrostriction coupling causes the disappearance of the
vortex, and leads to the formation of 180° flux-closure domains, where the complex cross-type morphology is

defined by the flexoelectric coupling in the core.

11



_ Polarization Py
up pole view C/m? WO Cross-sections c/mz?

v

* %

LN 2
b e MR
( ) r k\\\\\\ \
0.3 ; x 0.3
0.25 0.25
0.2 0.2
0.15 0.15
0.1 0.1
0.05 0.05
down pole ° 0
Polarization P, 2
. ‘ ‘ C/m
—~ 03
- -
5 0.25 5
(O] (O]
s ER
= =
@ 0.15 '9
o 8 )
8 . 0.1 C,J
0 - 0.05 n
0 : : =
-10 -5 0 5 10 210 =0 0 5 10
x-coordinate (nm) x-coordinate (nm)
Potential ¢ Radial stress or | gpa

—-
o

~

E s

[ 0.6
N—’ 6

(] 0.5
o

©
= 04
©

5 03
(@)

LIJ 0.2
wn

(f)

-5 0 5 10
x-coordinate (nm)

Figure4. Ferroelectric BaTiOs cor e cover ed with a soft tunable shell. Flexoelectric and electr ostriction couplingsar e anisotr opic
and high in the core. Distribution of the polarization magnitude B. at (a) the core surface (r = R), and (b) on two perpendicular cross-

sections. (c, d) Distribution of the polarization magnitude B. and its components P; in the cross-section {110}, which is almost
12



perpendicular to the vortex axis. Black arrows indicate the projection of the polarization vector onto the corresponding surface (a, b, c,
and d). (e) Electrostatic potential ¢ distribution at the core surface r = R. Black arrowsindicate the electric field vector at the surface.
(f) Radial stressin the cross-section { 110} of the core. Coreradius R = 10 nm, shell thicknessAR = 4 nm, and T = 298 K. The tunable
shell with high dielectric permittivity e, = 300 is regarded as being elastically soft, i.e., its elastic stiffness is negligibly small in

comparison with the core values. For other parameters see Table Al in Appendix A.

IV.A FERROELECTRIC CORE COVERED WITH A RIGID SHELL

Our results show that the thermodynamically stable vortex-like flux-closure polarization structure
corresponding to acombination of several vortices can be stabilized in the BaTiOsz core, when taking into account
the redlistic elastic and electrostriction properties of the SrTiOs shell (see Table Al in Appendix A). Typical

distributions of the polarization magnitude B, = \/m , itsrotated component P,,, the electric potential
¢, and theradial stress o,. inside the BaTiOz core covered with arigid SrTiOs shell are shown in Figs. 5-7.

Here we use the rotated coordinate frame with the following coordinates: & = (x — y)/v2, ¥ =
(x +y—22)/V6,and w = (x + y + z)/+/3. As can be seen from Figs. 5-7, the polarization distribution has a

vortex-like structure, where the vortex axis coincides with the w axis; we refer to this as the polar axis of the
vortex. The component P,, is the polarization component along the domain structure axis, which should be equal
to zero in a “pure” vortex state without a kernel. Two different projections are used to visualize the polarization
structure, namely the top view along [111]-direction at the pole of the vortex-like structure (a) and the side view
along the [001]-direction (b). These projections show the formation of three-pointed star-like vortex structures
near the poles, where the superposition of these structures forms a six-pointed star. We note that the polarization
distribution is not limited to a purely azimuthal rotation of the P vector in the plane perpendicular to the polar
axis w. As follows from Figs. 5-7, the polar component P,, changes its sign aong the equator, resulting in a
simpletoroidal vortex splitsinto eight domains. The cross-shaped distribution of the polarization in the equatorial
planeis due to the strong tetragonal anisotropy of the bulk ferroelectric.

Theresultsin Fig. 5 show the case where the flexoel ectric coupling and misfit strain are zero in the core
and shell, while the electrostriction anisotropy is high. Without taking into account the flexoelectric effect, the
domain structure of the ferroel ectric core covered by arigid shell consists of six blurred domains. The boundaries
between the domains only become relatively sharp in the region near the particle poles, defined as the points at
the core surface where the polarization vector modulus drops to zero, i.e. the Bloch points (see Fig. 5). Three
120° domains separated by flat walls are observed near the poles. In spite of the similarity of these domains, their
orientation and the domain walls are different at the poles; in fact, one group of domains is rotated by 60° with
respect to the other. Moving away from each of the poles, the domain walls broaden and blur, resulting in regions
that eventually transform into domains with adifferent orientation. Near the equatorial plane, all six domainsare
equivalent, such that the configuration of the polarization vector becomes vortex-like. In this case the symmetry

of the walls is more complicated than that of 120° domains, because of the pronounced polarization component
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along the polar axis of the core. One can see aregul ar, thermodynamically stable vortex-like polarization structure
with the shape of a six-ray star.

A case in which both, flexoelectric coupling and electrostriction anisotropy are high in the core and the
shell, but without mismatch strain (u,,, = 0) at the core-shell interface is shown in Fig. 6. It can be seen that the
flexoelectric coupling increases the vorticity (compare Fig. 6d and 5d). A contrasting example, where the
flexoelectric coupling and electrostriction anisotropy are anisotropic and high in the core and the shell, and a
tensile mismatch strain u,,, = 2.2% exists at the core-shell interface, is shown in Fig. 7. In this latter case, it is
seen that the mismatch strain compensates the curling of the flux-closure domains in the core confined by the
elastically-anisotropic rigid shell. The flexoelectric coupling and mismatch strain result in a relatively strong
electric field well-localized at the core surface, and consequently, the bound charges can be considered as surface
charges (see Fig. A4d and A5d in Appendix A).
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Figure 5. Ferroelectric BaTiOs core covered with a rigid SrTiOs shell. Flexoelectric coupling is absent. Electrostriction is
anisotropic and high in the core and the shell. A misfit strain between the shell and core is absent. (a, b) Distribution of the
polarization magnitude B. at the core surface (r = R). (c, d) Distribution of the polarization amplitude P. and the component P,, on the
cross-section {111} perpendicular to the vortex axis pointed along [111]. Black arrowsindicate the projection of the polarization vector
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onto the corresponding surface (a, b, ¢, and d). (e) Electrostatic potential ¢ distribution at the core surface r = R. Black arrows indicate
the electric field vector at the surface. (f) Radial stress in the cross-section {111} of the core. Core radius R = 10 nm, shell thickness
AR = 4 nm, T = 298 K. For other parameters see Table Al in Appendix A.
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Figure6. Ferroelectric BaTiOs corecovered with arigid SrTiOs shell. Flexoelectric and electrostriction coupling ar e anisotropic
and high in the core and the shell. A misfit strain between the shell and core is absent. (a, b) Distribution of the polarization
magnitude B. at the core surface (r = R). (c, d) Distribution of the polarization amplitude B. and of the component P,, on the cross-
section {111} perpendicular to the vortex axis pointed along [111]. Black arrows indicate the projection of the polarization vector onto
the corresponding surface (a, b, ¢, and d). () Electrostatic potential ¢ distribution at the core surface r = R. Black arrowsindicate the
electric field vector at the surface. (f) Radial stressin the cross-section {111} of the core. Coreradius R = 10 nm, shell thicknessAR =
4 nm, T =298 K. For other parameters see Table Al in Appendix A.
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vector onto the corresponding surface (a, b, ¢, and d). (€) Electrostatic potentia ¢ distribution at the core surface r = R. Black arrows
indicate the electric field vector at the surface. (f) Radial stress in the cross-section {111} of the core. Core radius R = 10 nm, shell
thickness AR = 4 nm, and T = 298 K. For other parameters see Table Al in Appendix A.

V. PHASE DIAGRAMSAND THEIR DISCUSSION

For first-order ferroelectric phase transitions in BaTiOs crystals, one should distinguish the difference
between the cubic paraglectric (PE), tetragona (FErt), orthorhombic (FEo), and rhombohedra (FER)
ferroelectric (FE) phases. The transition temperature between the PE and FE phases of the BaTiOs coreis defined
by the condition of free energies being equal in the phases, Gpr = Grz. The boundaries between the PE and FE
phases can depend on the core radius R, temperature T, flexoelectric tensor components F;;, and mismatch strain
U,,. Note that Gpr = 0 for the case u,, = 0, and Gpg~u2, > 0 for u,, # 0. Below we discuss the results for
particles with a fixed shell thickness, AR = 4 nm, and a range of core sizes, 1 nm < R < 25 nm, since the
manifestation of size effectsfor bigger particlesisrather weak asthey tend to become single-domain in the central
part of the core.

Our FEM calculations show that the BaTiOs core with R > 1 nm covered by a soft SrTiOs shell is mostly
in the FET phase in the vicinity of the PE phase. The FEr, FEo, and FEr phases coexist for 1.5 nm < R < 2 nm,
and the fraction of the core in the FEr phase increases as R decreases. The core is almost completely in the FEr
phasefor R < 1.5 nm. Thesetrends arein agood agreement with synchrotron XRD experiments reported by Zhu
et a. [42], who observed the sequence of FEr, FEo, and FEr phases, aswell astheir coexistence and reappearance
in BaTiO3 nanospheres with sizes below 20 nm (see e.g. Table | in [42]). The appearance of the FEr phase with
decreasing R agrees with a previous study [43] in which a polarization gradient was not considered.

Counterintuitively, the core covered by arigid shell is generally in the FEr phasein theimmediate vicinity
of the PE phase. Although the core domain structure can reveal features of the FEo phase in a minority of cases,
it is never observed to be in the FEr phase. This result neither depends on the core radius, the flexoelectric
coupling strength, nor, most surprisingly, on the type (compressive, zero, or tensile) of mismatch strain. A
possible explanation of the effect could be related to the fact that the rigid SrTiOs shell is elastically anisotropic,
and that anisotropy enforces the direction of the axis of vortex-type structures to be closeto [111] or [110], but
never along [001].

Typical phase diagrams of core-shell nanoparticles as a function of temperature T and core radius R,
calculated for the BaTiOs core covered with soft or rigid SrTiOs tunable shells, are presented in Figs. 8-9. The
boundaries between the FE and PE phases are shown by fitting curvesto the symbols presenting FEM data points.
The R-dependence of the PE-FE transition temperatures T,.(R), calculated by FEM, can be fitted with the
analytical expression [28-31, 44].

2
Tpe(R) =Ty (1 — -4 — Zeltinks) (1)

R? R(R+Rg)
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where T, = 384 K isthe bulk Curie temperature; and the fitting parameters R;, with the subscript i = g, e, m,
and s, aregivenin Tablel. Thefit isaccurate enough, and is in good agreement with FEM results. Thefitting is

particularly accurate for arigid shell without misfit strain. The critical core radius, R, determined from the
condition T, (R,) = 0,iSR,, = %(Re + /RZ + 4RZ) at u,,, = 0,whenR,,, = 0. Thisexpression, which isexact

only at u,, = 0, isagood approximation for |u,,| < 0.1%, sincethelast term in Eq.(1) can be neglected for R <
R, where Rg > R,.

Tablel. Fitting parameters for T,,.(R) defined from Eq.(1)

System description Condition for T,.(R) Re (hm) Ry (nm) Rn (nm) | Rs(nm)
determination
Soft shell, Figure 8a
F;j = 0,u, = 0" (black curve) Grg = Gpp =07 0.109 0.66 N/A 0
Fij # 0, u,, = 0 (blue curve) Grg =Gpp =0 0.084 (R)* | 0.66 (R) N/A 0
0.105(T)* | 0.58(T)
F;; = 0, u,, = 0 (red curve) Grg = Gpg + kgT = kgT | 0.067 0.65 N/A 0
Fij # 0, u,, = 0 (green curve) Grg = Gpg + kgT = kgT | 0.044 (R) 0.64 (R) N/A 0
0.098 (T) 0.50 (T)
Rigid shell, zer o misfit, Figure 8b
Fi; = 0, u,, = 0 (black curve) Gpg = Gpp =0 0.126 0.66 N/A 0
Fi; # 0, u,, = 0 (blue curve) Grg = Gpg =0 0.127 0.67 N/A 0
F;; = 0, u,, = 0 (red curve) Grg = Gpg + kgT = kgT | 0.077 0.65 N/A 0
Fi; # 0, u,, = 0 (green curve) Grg = Gpg + kT = kgT | 0.069 0.66 N/A 0
Rigid shell, misfit strain, Figure9
|Fij| < 6, U, = —0.5% (red curve) Grg = Gpg~u2, 4.40 0.711 -0.0075 | 21.6
|Fi;] < 6, up = 0 (black curve) Grg = Gpg = 0 0.127 0.67 N/A 0
|F;;| < 6, uy = 0.5% (blue curve) Grg = Gpp~Uu2, -1.70 0.402 0.63 6.63

" Fy; isaflexoelectric tensor in Voigt notations.
" Notethat Gy = 0 for the case u,,, = 0, and Gpg~u?2, > 0 for u,, # 0.

*“T” and “R” are the abbreviations for tetragonal (FET) and rhombohedral (FEr) ferroelectric phases, respectively.

It isworth noting that the L GD approach in the form we used here, without inclusion of thermal fluctuations,
is not applicable for sizes smaller than five lattice constants. The value of R, becomes smaller than 1 nm (i.e.
below the validity limit of the LGD approach) at T < 200 K (see insets to Figs. 89, from which one can
determine R,,- using the dependence of T,,.(R) on 1/R). Since Eq. (1) was derived for single-domain ferroelectric
nanoparticles without any shell, its relevance for the core-shell nanoparticle with a vortex-type domain structure
indicates that the domain formation only influences the values of R;, but does not alter the “universal” functional
form (1).

Unlike the case of a single-domain or homogeneously polarized core, mainly considered in Refs. [28-31],
we were unable to derive approximate analytical expressions showing how the fitting parameters R; depend on

the polarization gradient, el ectrostriction, flexoelectric tensor components, mismatch strain, and shell thickness.
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However, we could establish the physical meaning of the different termsin Eq. (1). Thefirst term I;—é isrelated

) 2)
to the correlation size effect caused by the polarization gradient energy and a very small depolarization energy

(negligible for the case of a pure vortex). The LGD approach gives an estimate for R§~ ag;*T“b, where g,, isthe
T

polarization gradient coefficient and a; is the inverse Curie-Weiss constant (see Table |, Appendix A). The

ReR+RmRs

second R-dependent term, RGRR)

, arisesfrom thejoint action of the elastic self-clamping of the core, “external”
core clamping (contraction or tension) by the shell viaelectrostriction, flexoel ectric coupling, and mismatch strain
at the core-shell surface. The value R, is proportional to %’ where Q is the combination of electrostriction
coupling constants (Q1 + 2Q12), and o, ¢ isthe effective value of spontaneous stresses including those induced
by the domain structure. The parameter R,,, ~ ﬁ f (u,,) is proportiona to the mismatch strain u,,,, but not in a

simple (e.g. linear) manner. The value R is proportional, but not equal, to the shell thickness AR. Note that the
terms proportional to % and % can also originate from surface tension [28-31, 34-24] and surface bond contraction
[32, 33], respectively.

A mismatch strain between the shell and core is absent (u,, = 0) for the diagrams in Fig. 8. Black and
blue curvesin Fig. 8 are the FE-PE transition temperatures T, (R) determined by using the condition of zero free
energy, G = 0; red and green curves are the transition temperatures T, (R) determined by using the condition
G = kgT,where k;T isthethermal energy (seeright top legend to Fig. 8 and Fig. B1in Appendix B for details).
The temperature difference between these pairs of curves (about 10 K) illustrates the possibility to observe a
thermal hysteresisin core-shell nanoparticles, as described in a scheme shown in the right bottom inset of Fig. 8.
Every T, (R) curve increases monotonicaly with increasing R and then saturates to the bulk value.

Flexoelectric coupling is zero for black and red curves (F;; = 0), and nonzero (F;; # 0) for blue and green
curves. Thereisasmall splitting for the green and blue curves shown in Fig. 8a, which is due to the coexistence
of the T, O, and R phases over the radius range (1.5 — 2) nm. The splitting is the most pronounced for the green
curves calculated for G = kT and F;; # 0 . Theinfluence of the flexoelectric coupling on the T, (R) of the core
covered by arigid shell is very small: black and blue curves for G = 0, and red and green curvesfor G = kgT,
where kT is the thermal energy, differing by less than 0.5% in Fig. 8b (see adso Fig. B1 in Appendix B for
details). In contrast, the flexoelectric coupling increases the PE-FE transition temperature (up to 5-7 K) for the
core covered by a soft shell. Thisis evident from a comparison of the black and blue curvesfor G = 0 with the
red and green curvesfor G = kgT in Fig. 8a. A simple explanation of the temperature increaseisthe “flexibility”
of the soft shell, where the flexoelectric coupling increases the de-localization of the stress gradients (compare
e.g. Fig. 3f with Fig. 4f). Also, the flexoelectric coupling strongly decreases the value of R, for the case of the

soft shell, and has aslight influence on R, values (seethe valuesin Tablel).
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Figure 8. Phase diagrams of core-shell nanoparticlesin coordinates of temperature T and coreradius R, calculated by FEM for aBaTiOs
core covered with a soft (a) or rigid (b) SrTiOs tunable shell of thickness AR = 4 nm. It is assumed that there is no mismatch strain
between the shell and core, u,, = 0. The boundaries between the ferroelectric (FE) and paraelectric (PE) phases are shown by solid
curves with symbols. The symbols are calculated by FEM and the curves are calculated using Eq.(1). Black and blue curves are the FE-

PE transition temperatures T,,. (R) defined from the condition of zero free energy G = 0; red and green curves are T, (R) defined from
the condition G = kT Flexoelectric coupling is zero for black and red curves (F;; = 0), and nonzero for blue and green curves (Fj; #
0). Insets show the dependence of T,,.(R) on 1/R. Material parameters of the BaTiOs core and the SrTiOs shell are listed in Table Al
in Appendix A. Nonzero F;; values, listed in Table Al, are the following F11 = 2 10" m%C, F1, = 1.8 10" m%C, and Fa =
610 m¥C.

Although the increase of T,.(R) caused by the flexoelectric effect is relatively small, it is important to

understand its nature and compare the effect in core-shell nanoparticles with other geometries. Note that the

flexoelectric coupling formally leads to the renormalization of the polarization gradient coefficient, g'i].kl in the
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gradient energy ggraa = %%% (see Appendix A2 for details). The renormalization has different signs for
J

the diagonal and non-diagonal components, but for the considered case of multiaxial ferroel ectric perovskitesthe
flexoelectric effect typically increases g,, and decreases g,,. For a cubic symmetry of the parael ectric phase (as
with BaTiOs), thetrend g, > g11 and g',, < ga4 isresponsible for an increase of the charged domain walls’
width, and a decrease of the uncharged domain structures’ width, such as with vortex-like configurations. The
formation of uncharged domain configurations, which are the most common and are significantly more preferable
from an energetic viewpoint [45, 46], is affected by the flexoel ectricity. In particular, the flexoel ectricity induces
the domain wall curvature and meandering in multiaxial ferroelectrics, and facilitates labyrinthine domain

configurations in uniaxial ferroelectrics at g’ijkl < gijn (seee.g. Refs. [47, 48, 49]). In addition to influencing

the wall shape, the flexoelectricity (due to the condition g’,, < g44) increases (but not very strongly) the
transition temperature from the ferroelectric to paraelectric phase (see e.g. [47, 50]). Another role of
flexoel ectricity comes from the inhomogeneous boundary conditionsin strained nanoparticles [see e.g. Eq. (A.5)
in Appendix A1l for details|]. The inhomogeneity, proportional to the flexoelectric coupling strength, can lead to
the appearance of built-in inhomogeneous fields, so-called “flexo-electric” fields, which can blur out the FE-PE
phase transition [47-50].

Phase diagrams of core-shell nanoparticles in coordinates of temperature T and core radius R, calculated
by FEM for compressive (u,, = — 0.5%, blue diamonds), zero (u,, = 0, black triangles), and tensile (u,, =
+ 0.5%, red circles, and u,, = + 2.2%, green dots) mismatch strains are shown in Fig. 9. Corresponding FE-
PE transition temperatures T, (R) are defined from the condition of the FE and PE free energies equality, Gpy =
Gpg (see the last two lines in Table I, and Figs. B2-3 in Appendix B for details). Solid curves, which are
interpolations using Eq. (1), correspond to first order FE-PE phase transition, except for the case of tensile
mismatch strain, where the phase transition order changesin the tricritical point.

The effect of mismatch strain between the core and shell of the nanoparticle is similar to isotropic tension
or compression. Furthermore, compressive strains (u,,, < 0) significantly decrease T,.(R) for R < 25 nm
(compare the black and blue curves in Fig. 9), while tensile strains (u,, > 0) significantly increase T,,.(R)
(compare the black curve with the red and green curves in Fig. 9). Note that this result principally differs from
the situation in thin strained BaTiOs films, where u,, < 0 supports an out-of-plane polarization direction
(corresponding to the so-called FEc phase) and increases the FEc-PE transition temperature, whereas u,,, > 0
supports an in-plane polarization direction (corresponding to the so-called FEaa phase) and increases the FEaa-
PE transition temperature [51, 52]. For a fixed shell thickness (AR = 4 nm) and core radius R > 50 nm, the
influence of the mismatch strain decreases gradually, and the curves calculated for different u,,, values converge
with an increasing core radius (see inset to Fig. 9). Note that the quantitative difference between tensile and
compressive strains of the same magnitude, u,, = +0.5% and u,, = —0.5%, corresponds to an increase of the
transition temperature by lessthan 70K at u,, = +0.5%, in comparison with a decrease by more than 100 K at

U, = —0.5%. The reason for this asymmetry is the strong anisotropy of the elastic and electrostriction tensors,
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which iswell-studied for thin ferroelectric films [51]. The influence of the flexoel ectric coupling (at least for the
flexoelectric coefficients |Fl-j| < 6) isnegligibly small.
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Figure 9. (a) Phase diagrams of core-shell nanoparticles in coordinates of temperature T and core radius R, calculated by FEM for a
BaTiOs core covered with arigid SrTiOz shell with different values of mismatch strain (u,,,) between the core and shell: w,,, = — 0.5%
(blue diamonds), O (black triangles), +0.5% (red circles), and +2.2% (dots). Corresponding FE-PE transition temperatures T,,.(R) are
determined from the condition of the equality of FE and PE free energies. The inset shows the dependence of T,,.(R) on 1/R. Solid
curves are interpolations given by Eq. (1). Shell thickness AR = 4 nm, material parameters of BaTiOs core and SrTiOs shell are listed
in Table Al in Appendix A. The dependence of the fitting parameter R, and R (b), R, and R, (c) on the mismatch strain.
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VI. POSSIBLE APPLICATIONSOF THEORETICAL RESULTS

Ensembles of core-shell ferroel ectric nanoparticles, whose polarization arrangesin avortex-like structure
either with a conductive dipolar kernel [24] or with other types of conductive domain boundaries [53, 54],
including those with BPS, can be considered as promising candidates for nanoelectronic devices, where the
conductive parts can be nanochannels in versatile field effect transistors and logic units. If the nanoparticles are
placed in a soft matter environment, the voltage applied between the gates can rotate or shift the particle (in order
to rotate/move the conductive channel). The stability of the vortex-like structure and its ability to exhibit rotations
are advantages for nano-device operation. The drawback of core-shell nanoparticlesis arelatively low operation
speed due to the sluggishness of spherical rotation and/or translational motion towards the gate(s).

Note that BPS play a crucia role in the switching of ferromagnetic vortex states, which are recognized
candidates for advanced non-volatile RAM unitswith high storage density, low-power, and high operation speed.
In such magnetic vortex states, BPS mediate an ultra-fast magnetic switching that has been calculated and realized
in practice [55, 56, 57, 58]. The ferroelectric vortex states with BPS also may become attractive, because
hypothetical possibilities of the ultra-fast ferroelectric switching have been predicted recently [59].

The domain morphology shown in Figs. 3a-c, 4a-c, 5a-c, 6a-c, and 7a-c, shows that the polarization
magnitude B. is very small in two diametrically opposite points (or segments) located just under the core surface,
and/or in the core center. This condition gives us a hope to confirm the existence of BPS in these regions by
performing a more careful FEM anaysis, and to better understand the influence of elastic anisotropy,
electrostriction and flexoel ectric coupling, and mismatch strain on the BPS morphology in core-shell ferroelectric
nanoparticles. FEM analysis is applied to search the intersection regions of the polarization components’
isosurfaces, P, = 0, P, = 0, and P; = 0 (see Figure A6 in Appendix A). The triple intersection corresponds to
the condition |P| = B. = 0, and thus indicates the position of a Bloch point. Different BPS morphologies in a
ferroelectric core covered with a soft or rigid shell in various eastic conditions are shown in Figs. 10. BPS are
absent in the case of the stress-free core covered with an elastically isotropic soft shell with zero external electric
field (compare Fig. 10a with Fig. 5 in Ref. [24], where two diametrically opposite Bloch points appeared at a
small distance from the core surface at a nonzero externa electric field).

Anisotropic electrostriction coupling strongly changes the morphology of the polarization isosurfaces in
the core (see Fig. A6b-f), and flexoel ectric coupling induces an additional curvature and twist of the isosurfaces
(seeFig. A6c and A6e-f). The chains of aligned Bloch pointsin Fig. 10b (in the case of a soft shell) and Fig. 10d
(in the case of arigid shell) display one-dimensional topological line defects with |P| = 0. In a recent article,
Stepkova et al. have coined the term “Ising line” to describe line defects of this type [41]. Both of these cases,
Fig. 10b and Fig. 10d, are cal culated without flexoel ectric coupling (F;; = 0) inthe core and includes anisotropic
electrostriction (Q1; # Q12)-

When a flexoelectric coupling is included (F;; # 0), the Ising line (shown in Fig. 10b) disappears, and
two Bloch points appear in its place (see Fig. 10c). They arelocated at the opposite sides of the domain wall very

close to the surface; but not at diametrically opposite positions, which are sensitive to the sign and magnitude of
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the F; ;. We suspect that the asymmetric morphology of the two Bloch pointsis caused by the flexoelectric effect,
this phenomenon will be the topic of our future study.

The shell rigidity very strongly flattens the twisted morphology of the polarization isosurfaces (compare
Fig. A6d with Fig. A6a-c), while the inclusion of flexoelectric coupling leads to the reappearance of a slight
twist (compare Fig. A6e-f with Fig. A6c in Appendix A). However, the twist and mutual shift of the isosurfaces
induced by the flexoelectric coupling in a core covered with arigid shell prevents the formation of an Ising line.
Theline defect transformsinto asingle Bloch point located in the core center (compare Fig. 10e-f with Fig. 10d).
To the best of our knowledge, an analogue of 1sing lines does not exist in ferromagnetism.

|(a) Q11 = Q12,F;; =0 (b) Q11 # Q12,F;j =0 (€) Q11 # Q12,F;j #0

No Bloch point structures Ising line

= T,

0 = “n ‘s|lays yos
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¢t # 0 'slIays pibry

(e) Fl] * O, Un = 0 (f) Fl] * O, Umnm = 0.5%

Figure 10. Bloch Point morphologies in a ferroelectric core covered with a soft (panels (a-c)) or a rigid (panels (d-f)) shell. The
electrostriction anisotropy issmall (Q;; ~ Q1) for panel (a) and high (Q;7 # Q1) for panels (b-f). The flexoelectric effect is absent
(F;; = 0) for panels (a, b, d) and present (F;; # 0) for panels (c, e, f). A mismatch strain is absent (F;; = 0) for panels (a, b, d) and
present (F;; # 0) for panels (c, e, f). The purple spheres show the position of Bloch points (|P| = 0), determined by the intersection
points of the three isosurfaces P, = 0, P, = 0, and P; = 0. The structure (a) does not contain Bloch points. Bloch pointsin panels (b)
and (d) display aone-dimensional topological linedefect with |P| = 0 known as “Ising line”. Two Bloch pointsin panels (c) arelocated
at opposite sides of the domain wall. Although they are very close to the surface; these Bloch points are not located at diametrically
opposite positions. The structuresin panels (e, f) contain a single Bloch point located in the core center. Core radius R = 10 nm, shell

thicknessAR = 4 nm, and T = 298 K. For other parameters see Table Al in Appendix A.
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Severa authors [60, 61, 62, 63, 64, 65] have studied numerically the electrocaloric effect (ECE) in
ferroelectric nanoparticles using a phase field method combined with the LGD approach. In particular, using the
“tetragonal core - cubic shell” model of the nanoparticle, Chen et a. [60] calculated the size dependence of the
ECE in spherica single-domain BaTiOs nanoparticles and showed that a decrease of the nanoparticle size leads
to adecrease of the adiabatic electrocaloric temperature ATec. Chen et a. [60] also showed that a decrease of the
nanoparticle size causes a blurring of ATec maximaand their mixing in thelow-temperature region. These effects
are associated with the increasing role of the nanoparticle shell with the particle size decrease. Li et a. [61]
described the ECE in BisTizO12 nanoparticles with a vortex-like domain structure and revealed a giant ATec (-
16.6 K at 600°C) associated with alarge change in the toroidal moment under the action of a curled electric field.
Zeng et al. [62] studied the ECE in ferroelectric PbTiO3z nanoparticles and related the giant positive or negative
ATec to the change in the configuration of the vortex-like domain structure from clockwise to counter-clockwise,
under the action of a curled electric field. Chen et a. [63] calculated the ECE during the transformation of the
domain structure of PbTiOz nanoparticles from single-domain to vortex-like states, and backward, under the
action of acurled electric field. Wang et a. [64] revealed the relationship between the changesin the vortex-like
domain structure, and the negative or positive ATec under the action of an inhomogeneous electric field for
ferroelectric PbTiOz nanoparticles. Ye et a. [65] showed the existence of a giant ECE in PbTiOs nanoparticles
with a double vortex-like domain structure. They also studied the mismatch strain effect on the ECE, and
demonstrated an increase of the ATec under compression and a decrease under tension of the nanoparticle.

This brief overview demonstrates the possibility to reveal a giant ECE in various ferroelectric
nanoparticles, where the conditions for observing the effect were almost always determined in an empirical way,
except for the case of single-domain nanoparticles [66]. Since results obtained in this work for core-shell
nanoparticles with a complex domain structure can be well fitted by an analytical expression (1), we can make

analytical estimates for ATec and the EC coefficient X, and establish the role of the size effect. Following Ref.
[66], the values ATec and X can be calculated as:

o (Eext T AP (7) 5\ dATgc(1)
ATgc(7) = fo p(F)cp(F)( T )E dE, (@) = dEext 2

where E,,.; isan externa field applied to the core-shell nanoparticle via an effective media, p isthe mass density,
and Cp isthe heat capacity of the nanoparticle core or shell, depending on the point 7. Following Ref. [66], the
spatially averaged values (ATg.) and (X) can be estimated as

(BTecEox) ~ o ([P (Eext) = PX(O)] + 5L [P (Bexe) = RHO] + Z[P* (Eert) — BO(D)]),  (39)

<~ 0 d(ATEc(Eext))
e, 1)) = L) (30)

When deriving expressions (3), we used the fact that the average core polarization is amost zero at E,,; — 0,
andso P = P3 = P5 - 0 inthis case. Expressions (3) are valid for a quasi-static electric field. They contain the
even powers of the polarization magnitude, B?, B*, and P®, and a size-dependent dielectric factor n. The

expression for the factor n is conditioned by the dielectric weakening or enhancement of the externa electric
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field inside the core [66]. The minimization of the “effective” Landau-type energy leads to an algebraic equation
for B. [66]:

ar(T = Ty )P + BPE + yYB® = NEoye. (4a)
Equation (4a) allows one to calculate the dependence of B. on E,,; if the coefficients a, B(T), y(T), and the
dielectric factor n areknown. The coefficients a;, B(T), and y (T) arelisted for BaTiOsin Table Cl in Appendix

C. In accordance with our estimates, listed in Appendix C, the factor 7 is given by the expression:

_ 9(R+A4R)3 e 85
T 2R3(ge—¢5)(85—£p)+(R+AR)3(2e+&5) (ep+265)

n (4b)

By using expression (1) for T,.(R) in combination with Egs.(2)-(4), we can make a prediction about the
polarization magnitude P.(E,,.) and on how (ATg.) changes depending on the external electric field, the shell,
thickness, and the coreradius. Resultsfor the BaTiOs core covered with arigid SrTiOz shell areshowninFig. 11.
For the demonstration of ECE we choose a rigid shell with and without mismatch strain, because the influence

of amismatch effect appears to be the strongest among all the effects considered in this work.
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Figure 11. Dependence of the polarization magnitude B. (a) and the EC temperature change AT (b) on a quasi-static external electric
field. The curves are calculated from Egs.(1)-(2) for aBaTiOz core with radius R =10 nm covered with arigid SrTiOs shell for different

values of mismatch strain between the core and shell: u,, = — 0.5% (green curves), 0 (blue curves), and +0.5% (red curves). The

coercive field E, (c) and minimal negative values of ATy (d) asafunction of the core radius R. Shell thicknessAR = 4 nm,and T =
293 K, BaTiOs density p = 6.02x10°% kg/m?®, and specific heat C, = 4.6x10? J/(kg-K) at room temperature. For other parameters see
Table Cl in Appendix C.

The field dependence of B. (shown in Fig. 11a for a 10 nm core radius) has the form of a butterfly-type
hysteresis loop and drops to zero at the coercive field E., whose value is about 0.08 V/nm for zero mismatch
strain. E,. decreasesto 0.06 V/nm under compressive strain u,,, = — 0.5%, and increasesto 0.1 V/nm in the case
of tensile strain u,, = + 0.5%. The field dependence of ATz, (shown in Fig. 11b) also has the form of a

butterfly-type hysteresis loop and reaches maximal negative values at E... These values, ranging from —8 K for

29



Uy =—0.5% to-12K for u,, =+ 0.5%, are relatively high in comparison with ATz, = —4 K for a stress-
free bulk BaTiOs. Figures 11c and 11d illustrate the size effect of E, and ATg with a pronounced maximum of
E. (about 0.12 V/nm) and a minimum ATy (about —18 K), which is reached for a tensile misfit strain u,,, =
+ 0.5% and the coreradius (2 — 4) nm. Corresponding values calculated for acompressive strain u,, = + 0.5%
aresignificantly smaller (compare red and green curvesin Fig. 11c and 11d). Note that a negative ECE providing
effective cooling (~ —20 K) could be very promising for advanced applications of ferroel ectric nanocomposites
in energy convertors and cooling systems.

Let us underline the significant asymmetry of the domain morphology and ferroelectric properties
(transition temperature, polarization magnitude, coercive field) and ECE with respect to the sign of the mismatch
strain. Thisresult isin aqualitative agreement with experimental results of Barnakov et al. [67], who studied the
ferroelectric properties of BaTiOs nanocubes coated with metal carboxylates in two forms — one which was
crystalline and provided a lattice mismatch, and the other that was non-crystalline without mismatch conditions.
The observed polar effects differed by many orders of magnitude for these two coatings.

VII. CONCLUSION

Within theframework of the LGD approach we have explored the impact of the el astic anisotropy, el ectrostriction
and flexoelectric couplings, and mismatch strain on the domain structure morphology in spherical core-shell
ferroelectric nanoparticles. We have performed FEM for a multiaxial ferroelectric core covered with an
elastically-isotropic soft or elastically-anisotropic rigid paraelectric shell, with or without mismatch strains
induced by the difference of the core and shell |attice constants.

Our FEM performed for the core covered by a soft shell shows that, at room temperature, a single
polarization vortex with adipolar kernel can be stable in the core with arelatively weak e ectrostriction coupling.
The vortex disappears as the anisotropic e ectrostriction coupling increases, and evolves into 180° flux-closure
domains, where complex cross-type morphology is controlled by the flexoelectric coupling in the core.

In the case of the core covered by arigid shell, FEM shows that at room temperature the anisotropic
elastic properties of the shell can stabilize vortex-like 120° flux-closure domains, which gradually “cross” in the
equatoria plane of the core. The flexoelectric coupling leads to a noticeable curling of the flux-closure domain
walls. The mismatch strain compensates the curling of the flux-closure domains in the core confined by the
elastically-anisotropic rigid shell.

Using FEM and derived anaytical expressions, we calculated the phase diagrams of core-shell
ferroelectric nanoparticles as a function of the core radius and temperature. Phase diagrams for a core covered
with an elastically-isotropic soft shell show a relatively small but noticeable increase of the PE-FE transition
temperature induced by the flexoeectric coupling. Phase diagrams for a core covered with an elastically-
anisotropic rigid shell demonstrate a relatively strong influence of mismatch strain and a negligible effect of
flexoelectric coupling.

30



Weidentified asignificant asymmetry of the domain morphology and ferroel ectric properties with respect
to the sign of the mismatch strain that originates at the core-shell interface (compare with experiment [67]).
Specifically, tensile strains enhance the properties, and compressive strains deteriorate them. Using size and
mismatch effects, we can select optimal parameters to reach high negative values of an electrocal oric response
from an ensemble of noninteracting core-shell nanoparticles, which is important for energy convertors and
cooling systems. Thisleadsto the conclusion that the obtained analytical results can be used for size-optimization

of core-shell nanoparticles for advanced applications in nanoel ectronics and nano-cool ers.

APPENDIX A contains a mathematical formulation of the problem in the framework of Landau-Ginzburg-
Devonshire theory, and parameters for both the BaTiOs (core) and the soft and rigid shell materials used in the
FEM. It also shows the potential impact of the flexoelectric effect and Vegard strains created by the oxygen

vacancies on the effective elastic compliances of the core.

APPENDI X B contains the details of the phase diagrams calculations.

APPENDI X C contains the details of the electrocaloric effect calculations.
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SUPPLEMENTARY MATERIALS

APPENDIX A. Mathematical formulation of the problem and computation details

A1l. Mathematical formulation of the problem
We consider aferroel ectric nanoparticle core of radius Rwith athree-component ferroel ectric polari zation
vector P. The coreisregarded asinsulating, without any free charges. It is covered with a semiconducting
tunable shell of thickness AR that is characterized by a strongly temperature-dependent “tunable” relative
dielectric permittivity tensor sf] The core-shell nanoparticle is placed in a dielectric medium (polymer,
gas, liquid, air, or vacuum) with an effective dielectric permittivity, ee. The word “effective” implies the
presence of other particles in the medium, which can be described in an effective medium approach. For
the sake of clarity, we consider the medium as being isotropic and temperature-independent, i.e. &; =
d;j€e, in contrast to anisotropic and/or tunable shells. The considered physical model corresponds to a
nanocomposite consisting of core-shell nanoparticlesin adielectric medium, with asmall volumefraction
of ferroel ectric nanoparticles (Iess than 10%) in the composite. The core-shell geometry isshowninFig. 1
of the main text.

Since the ferroelectric polarization contains background and soft mode contributions, the electric
displacement vector has the form D = ¢y, E + P inside the core. In this expression ¢, is a relative
background permittivity of the core [1], &, is the universal dielectric constant, and P is a ferroelectric
polarization containing the spontaneous and field-induced contributions, P = Ps + &, 7 E + & )2ffE3 +
so)szfE5+.., where P isthe spontaneous polarization at E = 0. Note that the expression D = gy, E + P
is different from the usual textbook definition, D = ¢yFE + P, where P is the total polarization. Usually
4 < g, < 10, and s0 ¢, can be significantly smaller than the linear susceptibility y r, whose temperature-
dependent values strongly increase in the vicinity of ferroel ectric-paraelectric phase transition. Asarule,
Xr > (30 — 100) even when far from the phase transition; thisis due to the dominant contribution from
soft mode-related optic phonons. In the case of a linear response to a small external eectric field the
electric displacement in the core isD ~ &,E + P, where & = §f + &,. The expression D; = &,&;iE;
isvalidintheshell and D; = ,¢,E; in the isotropic effective medium.

The eectric field components E; are derived from the electric potential ¢ in a conventiona way,

E; = —0¢/0dx;. The potential ¢ satisfies the Poisson equation in the ferroelectric core (subscript "f*):

2%z | 9% | 82 opP;
foe (57t 5 T o) 9 = OSTSR (A3
and a Debye-type equation in the shell (subscript "s"):
O (s 09s) _ _ s
» (eij ax,.) =—%,  R<r<R+4R (A.1b)
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whereR; = /e‘;kBT is the "net" screening length defined by the concentration of free carriers n in the

shell. The “dressed” screening length R; = /SOZSkB T can be introduced for the shell with an isotropic

relative permittivity, &;; = &;&5. A smal internal conductivity of the shell is required for the most

effective penetration of external electric field to the core. Using a proper wide-gap semiconductor or a
paraelectric as the shell, we can estimate that R; >>10 nm for room temperature with a typica
concentration of intrinsic carriersin the shell.
The electric potential ¢ in the external region outside the shell satisfies the Laplace equation
(subscript "€"):
Eo€e (aa; +— o + o ) Y. =0, r > R + AR, (A.1lc)

9x2 ' 9x?2
Equations (A.1) are supplemented with the continuity conditions for electric potential and normal

components of the electric displacements at the particle surface and core-shell interface:

(Pe — @s)|r=r+ar =0, N(D, — D) |=g4ar =0, (A.1d)
(os—o)l._, =0, n(Ds=Dy)| _, =0. (A.le)
Either charges are absent or the applied voltage is fixed at the boundaries of the computation region:
0 @e _ d Qe
som| =0 S| =0 el =0 gl = (A1)
-2 -2

Here V, isthe applied voltage difference and L is the size of computation region. For FEM we use a cube
withan edgesize L » 2(AR + R), and set V, = 0 for the purposes of this work.

The LGD free energy functional G additively includes a Landau expansion on powers of 2-4-6 of
thepolarization, G4nqq; @polarization gradient energy contribution, G,q; an electrostatic contribution,
Ge1; the élastic, electrostriction, flexoelectric contributions, G £iexo; @ €lectrochemical (Vegard strain)

energy, Gys; and asurface energy, Gs. It hastheform [2, 3, 4]:

G = GLandau + Ggrad + Gel + Ges+flexo + GVS + GS’ (A.2a)
Grandau = Joepep A°7 [a;P? + a;iP?P? + aijkPiZPjZPIg]y (A.2b)
- 3, Jijk1 0P 0Py
Ggrad - fO<T<R 2 axj axla (AZC)
Ger = = Jy oy e @°r (PLE; + 2L EE;) - 2 eSEE d3r — 2 e EEd3r, (A.2d)
el — 0<r<R R<r<R+AR “L"17] 2 Jr>R+4AR CUTLE) ' :

3 l]kl aPl
Ges+flexo = - d>r 2 O-ljo-kl + Ql}klo-ljpkpl + Fljklal] a
0<r<R

~Jecr<rsian @7 ( Uzkl 0ij0 + &5 (&5 — 1)2Qisjkl‘7ijEkEl>; (A.2¢)



Ny—N;f

d*r (ksT |NfIn (’I‘V’—i) + (N, — Nj)In (N—V)] = NiWYay; - (Z) N —n)o)
(A.2f)
1

Gs =2 _pd*ra PP, (A.29)

Gys _'J§<r<R+AR

The coefficient a; linearly depends on temperature T:

a;(T) = ar[T - Tc(R)], (A.39)
where ar is the inverse CurieeWeiss constant and T.(R) is the ferroelectric Curie temperature
renormalized by electrostriction and surface tension. Actualy, the surface tension induces additional

surface stresses o;; proportional to the surface tension coefficient 1 and equal to o1, = 03, = 033l,—p =

_Tf” for a spherical nanoparticle of radius R. The stresses affect the Curie temperature and ferroelectric
polarization behavior due to the electrostriction coupling. Thus, the renormalized Curie temperature,

T-(R), acquiresthe following form [2, 3]:

Te(R) = Te (1- —2-2) (A.3b)

atTc R

where T, isaCurietemperature of abulk ferroelectric. Q isthe sum of the el ectrostriction tensor diagonal
components, which is positive for most ferroelectric perovskites with cubic m3m symmetry in the
paraglectric phase, namely 0.004 < Q < 0.04m*C? [2-4]. Recent experiments tell usthat p is relatively
small, not more than (2 — 4) N/m for most perovskites.

Tensor components a;; are regarded as temperature-independent. The tensor a;; is positively
defined if the ferroelectric material undergoes a second order transition to the parael ectric phase and
negative otherwise. The higher nonlinear tensor a;;, and the gradient coefficients tensor gy, are
positively defined and regarded as temperature-independent. The following designations are used in
Ed.(A.2e): 0;; isthestresstensor, s; i, isthe €lastic compliancestensor, Q; i, isthe electrostriction tensor,
and F; j; isthe flexoelectric tensor.

The Vegard strain energy is given by Eq.(A.2f) [4], where Ny, is the concentration of oxygen
vacancies, which can be charged or neutral. The charged vacancies with concentration Ny are mobile,
and N < Ny,. The concentration Ny, issignificantly smaller than the maximal possible concentration N,.
The introduction of a maximal possible concentration N, takes into account steric effects [5] and limits
the vacancy accumulation in the vicinity of domain walls, surfaces, and interfaces. The entropy of charged
vacancies (the first term of Eq.(A.2f)) corresponds to the approximation of an infinitely thin quasi-level,
where T is the absolute temperature, kg is the Boltzmann constant, Wi‘]’- is the Vegard strain tensor (also
known as the eastic dipole) [6, 7, 8]. In Eq.(A.2f) we neglect the difference between the Vegard tensor
in the core and shell since both are cubic perovskites. The electrostatic energy, (ZSf 4 Ny — en)<p, exists

for charged vacancies with a concentration Ny and free electrons with a concentration n. Zﬁf Tis an
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effective vacancy charge. For oxygen vacancies 0 < Z§f I < 4+2e, where e in the absolute value of
electron charge.

Allowing for the Khalatnikov mechanism of polarization relaxation [9], minimization of the free
energy (A.2) with respect to polarization leads to three coupled time-dependent Euler-L agrange equations

. I 5G aP;
for polarization components inside the core, — 0= 15 -

l

, Wherei = 1, 2,3. The explicit form of the

equations for aferroelectric crystal with m3m parent symmetry is:

aP
F_l + 2Py (ay — Q12(022 + 033) — Q11011) — Q44(012P; + 013P3) + 4a11 PP + 2a,,P1(PF + P§) +

5 4 2p2 4 2p2 2p2 _ 9%pPy 0%pP; | 07P1\ _
6a,11 Py + 2a412P1(Py + 2P{ Py + Py + 2P{Py) + 2a,23P1P; P§ — g11=— ox2 — Yasa 2+ax§ =

—F T8 P (B2 4 522) -, (324 522) 15, (A49)

6X1 6X1 axZ dx

dP.
r_z + 2P, (a; — Qq2(011 + 033) — Q11022) — Qua(012P; + 023P3) + 4a11P; + 2a,,P,(PE + P$) +

d2p, a%p, 9P
6a111P5 + 2a11,P, (P} + 2PPY + P§ + 2P7P§) + 2a,,3P,PLP; — gnaxz 944(_2"‘ 2):

2 2
0x7t 0x3

do do do do do
~Fig, o (axl: + axgzg) Fag (a 112 + 23) T B, (A40)

P
F_3 + 2P3(a; — Q12(011 + 022) — Q11033) — Qu4(013P; + 023P;) + 46111P33 + 2CL12P3(P12 + Pzz) +
a%P. 0°P. a2p
6a111P5 + 2011, P3 (P} + 2PPY + Py + 2PFP§) + 2a,13PsPEP — g14 axS !]44( 23 + ax;) =

P TR Fy (B2 452 -y (B2 4 52) 4B (A4

dx3 = Oxs ox; = ox
The temperature-dependent Khalatnikov coefficient 77 [ 10] determines the relaxation time of the
polarization 7y, = I' /||, where a(T) = a;[T — T,]. Consequently, T, typicaly variesin the range (100
® _ 10®) seconds for temperatures far from Tc. As argued by Hlinka et al. [11], we assumed that g;, =
—g12 IN EQs.(A.4).

The boundary condition for polarization at the core-shell interface r = R accounts for the

flexoelectric effect:
S Py
ai(j)Pj + (gljkl py FkluUkl)nj| - =0 (A.5)
where n is the outer normal to the surface, i=1, 2, 3. In our FEM studies, we use the so-called “natural”

(s)

boundary conditions corresponding to a;;” = 0. Under the condition of the negligibly small term

Fri jaklnj| __ = 0, which corresponds to the absence of either normal stress and/or zero flexoelectric

coupling and specific properties of g;ji;, the condition 2 a_

= 0 becomes incompatible with the
r=R

condition P, |,—x = 0. Thismeansthat the regions with P=0 (if any exist for the condition) can be located

near the surface, but not directly at the surface.



Elastic stresses satisfy the equation of mechanical equilibrium in the computation region,
aGij

axj

Elastic equations of state follow from the variation of the energy (A.2€) with respect to elastic stress,

6G
5Uij

=0, —L/2 <{x,y,z} < L/2. (A.68)

= —u;j, hamely:

op
Siji0ij + Qijra PPy + Fijkla_xllc =u;; — PrATé;;, 0<r<R, (A.6b)

Sii0i + €6 (65 — D2QiExEr + W Ny = wy; —uf} — B7ATS;;, R<r<R+AR, (A60)
S{iki0ij = Wij, T >R+ AR, (A.6d)

where u;; is the strain tensor components related to displacement components U; in the following way:
u;; = (0U;/0x; + dU; /0x;) /2. ThetermsBﬁ’SATSij originate from the linear thermal strainsin the core
(superscript C) and shell (superscript S), where B;° are the coefficients of linear thermal expansion and
AT =T — T, is the difference between the surrounding temperature and the system growth/deposition
temperature. The strain u;} is proportional the core and shell lattice constants mismatch taken at the shell

Ac—as

deposition temperature, i.e. u;; = p 8ij-

The mechanical boundary conditions for the elastic sub-problem are listed below. The elastic
displacement components U; and normal stresses o;; are continuous functions at the core-shell interface
(r =R):
= Oy lr=r+o0s (A.6€)

aswell as at the interface between the shell and the external media (r = R + AR):
Uilr=r+ar-0 = Uilr=p+ar+o, Uijnj|r=R+AR_0 = OikMklr=r+ar+o- (A.6f)
All forces are absent at the surface of the computational region:

Uklnl|x=+£ =0, Uklnl|y=+£ =0, Uklnl|2=+£ =0 (A.69)
-2 -2 -2

Here we consider atunable shell of paragl ectric strontium titanate (SrTiOsz), which has an isotropic

and strongly temperature-dependent diel ectric permittivity, eisj = §;j¢;, with the following expression

L 7B r®\\ !
&g (T) = EOTT(;E) <C0th <qT> — coth <$>> , (A?)

where the Curie-Weiss parameter ot = 0.75x10° m/(F K) and characteristic temperatures TO(E ) = 30K and

T =54 K [12]. It should be noted that &,(T) ~ 3000 a T =50 K and &(T) ~ 300 a T = 298 K allow

the spontaneous polarization of the ferroelectric core to be effectively screened by the tunable shell at
room and lower temperatures. Other parameters are listed in Table Al.



Table Al. LGD coefficients and other material parameters of a BaTiOs core covered with a SrTiO3 shell

Coefficient Numerical value
€b,e ep= 7 (core background) &e= 10 (surrounding)
a (C*m)) a1 = 3.34(T—381)x10°, ot = 3.34x10° (a1= —2.94x107 at 298°K)
(C*m®J) a11 = 4.69(T—393)x10%-2.02x108, az2 = 3.230x 108,
(at 298°K an1 = —6.71x108, a1 = 3.23x10°)
6.0 a111 = —5.52(T-393)x107+2.76x10°, a112 = 4.47x10°, a1z = 4.91x10°
aijk (C*'m*J) o _ 8 _ 8 _ 8
(at 298°K a111 = 82.8x10° a112= 44.7x10°, a3 = 49.1x10°)
Qj (C*m? Q1:=0.11, Q12=-0.043, Q44=0.059

sji (x10% pa’)

$11=8.3, S12= 2.7, S14=9.24

gi (x101°C?m?3))

011=1.0, g1o= 0.3, gas= 0.2

Fij (x10°"'C*md)
fii (V)

Fi1=2, F12= 1.8, F41 = 6 (these values are used as estimates, exact values
areunknown) f11=6.6,f12=6.4,f41=6.5

0 (sinceits characteristic values are unknown for BaTiOsz and other

Vijkim perovskites)
a® 0 (that corresponds to the so-called natural boundary conditions)

B (10K Y 9.8 (thermal expansion coefficient)
a 4.035 A lattice constant at 1000 °C
R (nm) 10 (vary from 2 to 20 nm)

Electric parametersof the SrTiOs tunable shell
&s(T) (eoaTTq(E))_l (coth(Tq(E) / T) - coth(Tq(E) / TO(E)))_1

ar (1° m/(FK)) 075
75 (K) 7" =30K, T" =54K

Elastic parameters of the “soft” shell (bulk compound)

Qi (C*m?

) =0.051, 0% =-0.016, 0 = 0.020

(S) ( 1022 pg 1)

> 1078 pa’

(5)(10 GK 1)

10.8 (thermal expansion coefficient)

()

acubic

3.946 A lattice constant at 1000 °C

Elastic parameters of the “rigid” SrTiOsshell (bulk crystalline)

Ql(]S) (C—Z. 4)

) =0.051, 0% =-0.016, 0 = 0.020

(S) ( 1022 pg 1)

sﬁ) 352,s%) =-0.85, 5 =7.87

W (A3 WY, = 16.33, W), = —8.05, W3; = —8.05
AR (nm) 4 (vary from 4 to 10 nm)
R4 (nm) >100 nm (shell is a paraglectric material)

A2. Theimpact of oxygen vacancies

Thegan 6G of the electrochemical part of the free energy has the form:

=-Q

where the superscri

(m)

(A.8)

S; N Ny-Ng
SaPePoy =2 0yyo = NyWloyy + kesT [NtIn (32) + (Vy = NIn (R )] -
(zT N — en)o,
pt m = s represents the shell and m = ¢ represents the core.

The continuity equation for the vacancy concentration Ny is:

6



SNf +divJ =0, 0<r<R+4R. (A.93)

The current J is proportional to the gradients of the electrochemical potential levels & according to
J = —nNy grad($), (A.9b)
where n isthe mobility coefficient whichisaconstant. The electrochemical potential level ¢ isdefined as

G N
E—m—fo‘F kBTln(NV e

where &, isthe equilibrium value (e.g. the Fermi level defined at ¢ = 0).
Inthestatic caseJ = 0 and ¢ = &, and the substitution of the latter condition in Eq.(A.9c) yields:

) WY — 2" o, (A.90)

|4

+ eff

1
\%4
kBTln( N) WVal]+Zﬁff<p, NJ:NV<1+expl Ml) . (A.109)
%4

kgT

From Egs.(A.6b-c) and Eq.(A.10a) we obtain:

szffkl+Zfo<P

kgT

-1
Si(;Z?Ukz + W Ny (1 + exp[ ]) ~ 5ul.(]7.n), (A.10b)

where 6ulsj = U — u?} — ﬁ%ATSU — Eg(gs — 1) QijklEkEl and Suij = U — ,BTC-ATSU — QicjklPkPl'
Assuming the local electroneutrality condition we can regard ¢ ~ 0, and aso assuming

|Wai;| « ksT, we can expand the expression (A.108) for Njf as N =~ Ny (2 V:’ga;’). Being

interested only in the renormalization of elastic compliances caused by mobile charged vacancies, we can
rewrite the left-hand side of Eq.(A.10b) as

sl(]kgakl + WYNS = ( fﬁ;l) + WVWkl yrm )Ukz + stress — independent terms.  (A.10c)
It is seen from Eq.(A.10c) that the effect of vacancy migration is mainly the renormalization of elastic
compliances:

R N
S = Siga + WHWH 5 (A.113)

Note that Eq.(A.11a) can substantially overestimate or underestimate the vacancies’ role, because

the condition |Wa;;| « kT isfrequently violated, and theinequality |W;%o;;| = kT becomes possible

e.g. with decreasing temperature. In the case where W/, al j < —kgT, we obtain Sl(sz)Ukl ~ Su( ) from

Eqg.(A.10b). This means that the vacancies do not affect the stress field, which is possible for small
concentrations N, and/or small Vegard tensor components. In the opposite case, W, 70ij > kgT, we

(m)
ijkl

(m)

obtain s; ;. 0k = 6u;; WiV- Ny from Eq.(A.10b). This means that the mobile oxygen vacancies can

completely shield the stress field [8], if |5u<’")| < |W¥ Ny|.

Let us return to the case when the estimate (A.11a) is valid and correctly reflects the system
tendency to reach elastic equilibrium. For the case of an m3m symmetry cubic material and diagonal

Vegard strain, the nontrivial renormalization components are:

7



R N R N R N
s® =50+ WS, 5B =550+ W2 2L, s = s+ (Wh)? L (A1)

4kgT’ 4kgT’ °33 33
R N R N R N
Sty = i + WHW, el s = s L whwy, pred s = s L wyw, o (Allo)
R R R
s =50, 58 =s{, 58 = s (A.11d)

Expressions (A.11) must be averaged over al possible orientations of the elastic dipolein acubic
perovskite ABO:s lattice, where an oxygen vacancy can occupy several equivalent sites corresponding to
the oxygen octahedron vertices. The averaging is, in fact, an averaging over six possible “orientations” of

the anisotropic Vegard tensor. The result for the diagonal componentsis

N
(s§) = s + (WP + Wh)? + Wh)?] (A.129)
whereii = 11,22, 33. Theresult for non-diagonal componentsis
R N
(si) = s + WY WY, + WEWS, + Wi wdh) erymed (A.12b)

where ij = 12,23,13 . The shear components, Egs.(A.11d), remains unchanged. Note that the
combination of elastic compliances, (sg}) = (sl(’f)) + 2(51(5)), coupled with a radia stress, (ar(f)) =

R R R)\ -
(65 + () + (6B, is
Ny
12kgT’

(s = (s8N + 2(s5)) = 5TV + 2557 + (W + Wiy + W) (A.120)

For the case of oxygen vacanciesin SrTiOgz, the Vegard strain tensor is diagona with components
taken from [8] and listed in Table Al. It isinstructive to measure the vacancy concentration Ny, in percent
of molar concentration Nm=1.56-10%8 m™3 (the inverse volume of the unit cell). The change of “effective”

(R

elastic compliances (s;; )y ~ Si(im) + (W¥)? 82% caused by the Vegard strains created by oxygen

vacancies with concentration (2 — 5)% can reach one order of magnitude at room temperature. The change

of effective eastic compliances (si(f)) ~ si(jm) — (WY)? lé\;(—VT are smaler in SITiOs, since W) =
B

—2W,, ~ —2W23; in accordance with Table Al.

The numerical solution of the nonlinear Eq.(A.10b) with respect to the unknown stress gy, in

response to thermal strains 6ui(;.") demonstrates a significant decrease of the radia stress (ar(f)) and a

simultaneous increase of the effective eastic compliances (sgf}), with an increase of vacancy

concentration (see Fig. A1). Theincrease is much stronger than predicted by the approximate expression
(A.12a), which yields |W}, + W), + W] = 0.23 A3 for SITiOs [8]. Note that the increase exists for a

positive sign of the Vegard tensor anisotropy factor W =

i%x/(Wl‘{ — W))2 + (W, — Wos)? + (Was — W,Y)? (see red curves in Fig. Al), and is absent for a
negative W (see blue curvesin Fig. A1). The asymmetry with respect to the sign of W is explained by a
positive sign of thermal strains, B%m)ATSi j» in both core and shell materials. For negative values of

8



BYATS;

j

which is a very rare case, an increase in both the elastic stress compensation and effective

compliances is possible for negative W only.
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) (a, ) and effective elastic compliances (s} 1) (b, d) calculated numerically as

afunction of the vacancy concentration (in %) from Egs.(A.10b) for SITiOs (a, b) and BaTiOs (¢, d). A mismatch

strain is absent. Other parameters arelisted in Table AL

A3. Theimpact of flexoelectricity and gradient effects

The polarization gradient energy and flexoel ectric coupling energy are

Ygrad =

Yijki OP; 0P
2 ax]' dx !

9Pk
Y 6xl !

_ fiju

gflexo - 5 (A-13)



wheretheelasticstrains u;; = s;jx0% + Qijki PP + Fijia %. The substitution of the electrostrictive part
l

of the strains in the case when the stress-related term s; 0y, can be regarded as small (it is the simplest
model) leads to:

_ Gijkl OP; 0P | fijki 0Py 0P
699rad+flexo - 6_x] ax, > QijmanPn + Fijmn 9xn /) 0x;
dijkl qukl 0P; 0P, _ 1 oP;oPy, _ 1 , dP; 0Py
= (LK Fogi) i = 2 (g i Ui S N
( 2 + 2 qsij dx; dx 2 (gl]kl + qumnquklfmmj dx; 0x; 29 ijkl dx; 0% ( )

Since the term %Qi jmanPn% has (almost) a zero average it can be omitted, then a renormalized
l

gradient coefficient g'l.jkl = Gijir t Sqsmnfqskifmnij CaN beintroduced. The renormalization has different

signs for the diagonal and non-diagonal components, but for the cases of interest g',, = g11 +

Sqqmmfqqi1fmm11 and 914 = 9aa t SqgmmSeqasfmmaa, it (typically) increases g;; and decreases g,4.
For a cubic symmetry of the parent phase, the trend g',, > g4, and g’,, < ga4 is responsible for an
increase of intrinsic width of the charged domain walls/structures/configurations, and a decrease of the
width of uncharged domain walls. The formation of uncharged domain configurations, which are the most
common and are significantly more preferable from an energetic viewpoint [13, 14], is affected by the
flexoelectricity. In particular, the flexoelectricity induces the domain wall curvature and meandering in
multiaxial ferroelectrics, and facilitates labyrinthine domain configurations in uniaxial ferroelectrics at

9ijr < Jijii (see eg. Refs. [15, 16, 17]). In addition to influencing the wall shape, the flexoelectricity

(due to the condition g’,, < ga4) increases (but not very strongly) the transition temperature from the
ferroelectric to parael ectric phase (see e.g. [15, 18]). Another role of the flexoelectricity comes from the
inhomogeneous boundary conditionsin strained nanoparticles [see EQ.(A.5) and e.g. Ref. [18] for details].
The inhomogeneity, which is proportional to the flexoelectric coupling strength, can lead to the

appearance of built-in inhomogeneous flexoel ectric fields with specific geometries.

A.3. FEM results: energy contributions and supplementary figures
Table All. Energy contributions (in 10" J) of different polarization states in a BaTiOs ferroelectric
core (R=10 nm) covered by different shells (AR=4 nm), T =293 K

Description of the elastic | Total Landau | Polarization | Depolariza- | Flexo- Figure
sub-problem in a core- energy, G | energy, | gradient tion field Elastic Number
shell nanoparticle Grandau | €NErQY, energy*, energy,

Ggrad Gdep Ges+flexo

Electrostriction and
flexoeffect are absent in
the core covered by a
soft shell

-8.754 -0.174 | 0.415 0.005 <0.001 Fig.2
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Flexoeffect is absent but
anisotropic
electrostriction is present | -6.658 -8.483 | 0.655 0.080 1.091 Fig.3
in the core covered by a
soft shell

Flexoeffect and
anisotropic
electrostriction are 69120 | -8.443 |0.722 0.075 0.734 Fig.4
present in the core
covered by a soft shell 8

Mismatch strain and
flexoeffect are absent in
the core covered by a
rigid shell

-5.990 -7.601 | 0.462 0.047 1.102 Fig.5

Mismatch strainis
absent, but flexoeffect is
present in the core
covered by arigid shell

-6.035 -7.618 | 0471 0.070 1.043 Fig.6

Mismatch strain and
flexoeffect are present in
the core covered by a
rigid shell

-186.6 -5.444 | 1.291 0.718 -183.1, Fig.7

¥ with axis close to [011]

’ d3r % other energies are introduced by Egs.(A.2)

Gaep = — f0<r<R

Soft shell case. Without taking into account the influence of the flexoel ectric effect, the domain
structure of the ferroelectric core in a soft shell can be imagined as follows. Near each of the core poles,
two 180° domains separated by a flat wall are observed (see Fig. A2). Inside the core the domain
polarization is P2; and the anal ogs of the flux-closure domains with polarization P1 appear when the bound
polarization charges approach the core surface near the poles. In addition, the width of the closure domain
increases with distance from the pole such that the distributions of P; and P2 turn out to be almost
equivalent near the equatorial plane, where the structure resembles a vortex without clear boundaries
between the regions with different polarization directions. At the sametime, the polarization in the surface
layers unfolds parallel to the surface (in fact, the component Ps is along the z axis, on which both poles
of the domain structure lie). In other words, near the center of the core there is a vortex-like structure,
where the polarization rotates in one plane about a fixed axis. Near the poles, which are defined as the
points of exit of the vortex axis to the surface, the rotation of the polarization degenerates into a pair of
180° domains of thetetragonal phase. In addition, the domains near the two polesare completely different.
Severa polarization components coexist near the equator, and these “pseudo-domains” correspond to a

certain pseudo-phase with symmetry below tetragonal.
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from the equatoria plane. Core radius R = 10 nm, shell thickness AR = 4 nm, and T = 298 K. The biggest cross-

section corresponds to the equatorial plane, and the smallest cross-section is near the pole.

Rigid shell case. Without taking into account the flexoelectric effect, the domain structure of the
ferroelectric core covered by arigid shell consists of six blurred domains. The boundaries between the
domains become relatively sharp only near the particle “poles”, which are defined as the points at the core

surface where the polarization vector modulus drops to zero. The picture is shown in Fig. A3, where we
use the rotated coordinate frame with the following coordinates, € = (x — y)/V2, ¥ = (x + y — 22) /6,
andw = (x + y + z)/v/3. The axis w is pointed along the six-feature vortex-like configuration. Three

120° domains separated by flat walls are observed near the poles. However, the domains and their walls
are different for different poles; in fact, one group of domains is rotated by 60° relative to the other.
Moving away from each of the poles, the domain walls broaden and blur, such that these regions evolve
into domainswith adifferent orientation. Near the equatoria plane, al six domains are equivalent, so that
the configuration of the polarization vector becomes vortex-like; but the symmetry of the walls is more
complicated than that of 120° domains, since the polarization component along the polar axis of the core
isquite large.

For zero flexoelectric coupling the interna electric field, which isin fact a depolarization field, is
very small. Thisfield is small due the polarization rotation inside the vortex (see Fig. Ada-c). Actualy,
P rotates in such way that divP ~ 0 in the core covered by a soft shell. The bound charges, whose density
pb is equal to —divP, are almost absent (see Fig. A5a-c). The condition divE =~ O follows from the zero
divergence of eectric displacement and polarization, and tiny deviations from divD = 0 are caused by
computational error.

Thejoint action of flexoel ectric coupling and mismatch strain cause the appearance of arelatively
strong electric field, which is well-localized at the core surface (see Fig. A4d). Consequently, the bound

charges with density p, = — divP can be considered as surface charges (see Fig. A5d).

13



10

—9nm(a b, c, d), -6 nm

-10

P [1120]

10

-10

14

Pr1710]

10

¢-coordinate (nm)

-10

P [2110]

10

-10

- ~N
5 3 o 8 3 S 3 o % & 5§ 2 o 5 o g8 2 o & &
] 12 r—r- — S
=) E == U | g =
. S
N P\ ~—r | HN// —
N = P f/ A/ /0NN ——D
S\ e ——— /” T NN fr—
g\ ” 3 LT —<53NNNN 10N\
7 s : \\/v:: o BN o /~NNAN
SN/ 1 AR /g ¥ A \-/7//
N AN AR VW\NN—=7277 7 " e
[ NN\~ /// /] \ VRN PV \ N
~ NANNSS ALY i
4 Vi S
A NS NN s
e ~————
s g o
MBGAZOQAWﬁ.vo.om.J w864207__46o_nm_. m.n_. g ®wo v NOANT O ® Qg
= -9 1= =)
—~
(&)
N
1o 1= =)
s I o
m864207..ﬁ_~.n..a.om.1.. w m.n_. S ®® < NO N YT ©® g
e I |= S
— 1 7’ N
®) -]
N N
\ /
- - o
A %
lo i8 s <
m864207..ﬂ_~ﬂ.un.umd w.. ' N.n_. m854207..45.vnww_
9 12 12 )
—~ , =
© =
N
=
=SSN
SN\
lo io 1o & Y
NN
o
-~
|o 19 . P e .m o
-2 G . 1
gwo s NONY ©® g " =] SRR RGN R A ] g ®wo s NONT O ® g SR S R IR R S ]

= -

(wu) Qm:_Eooo-a

Figure A3. The case of a rigid shell is considered. Flexoelectric coefficients are zero. The distribution of
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(e,f,9,h,),0nm(, ], k,1),6 nm(p, q,r,s),and 9 nm (t, u, v, w), which is the distance from equatorial plane. Core
radius R = 10 nm, shell thickness AR =4 nm, and T = 298 K. The biggest cross-section corresponds to the
equatorial plane, and the smallest cross-section is near the pole.
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SrTiOs shell with mismatch strain 2.2% (c,d). The distribution of the absolute value of the internal eectric field
in the cross-sections {110} (a,b) and {111} (c,d) perpendicular to the vortex axis pointed along [110] (a,b) and
[111] (a,b), respectively. Note the difference in scale in panel (d), showing that the field arising at the surfacesis
significantly larger than in the other cases. Black/white arrows indicate the projection of the polarization vector

onto the corresponding surface (a, b, ¢, d). Flexoe ectric coefficients are either set to zero (a, b) or taken from Table
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I. Coreradius R = 10 nm, shell thickness AR = 4 nm, T=298 K. The dielectric and e astic properties of the SITiOs
shell and al other parameters arelisted in Tablel.
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Figure A5. Ferrodectric cor e cover ed with a soft tunable shell without any mismatch strain (a, b) and arigid
SrTiOz shell with mismatch strain 2.2%. The distribution of the divergence of the dectric polarization in the
cross-sections { 110} (a,b) and {111} (c,d), which are perpendicular to the vortex axis pointed along [110] (a,b)
and [111] (a,b), respectively. Note the difference in scale in panel (d), showing that the density of bound charges
at the surface is significantly larger than in the other cases. Black arrowsindicate the projection of the polarization
vector onto the corresponding surface (a, b, ¢, d). Flexoelectric coefficients are either set to zero (a, ¢) or taken from
Table Al (c, d). Core radius R = 10 nm, shell thickness AR =4 nm, T = 298 K. The dielectric and elastic
properties of the S'TiO3 shell and al other parameters are listed in Table Al.
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A.4. Domain structure mor phology

The analysisof the simulated polarization structuresinvolvesthe search for topological defects, i.e., Bloch
points and Ising lines. These defects are characterized by regions in which the magnitude of P is zero. To
identify them in the polarization configurations calculated with FEM, we use three isosurfaces, P; =
0,P, = 0,and P; = 0, and search for their intersection points [19]. These crossings of the isosurfaces
indicate the position of Bloch Points, displayed as purple spheresin Fig. 10. Ising lines are formed when
the isosurfacesintersect on aline or aline segment, rather than at asingle point. In numerical simulations,
Ising lines are more difficult to identify than Bloch points. Because of the discretized representation of
the polarization vector field, defects of thistype do not appear as one-dimensional continuous objects, but
as a set of aligned Bloch Points whose density depends on the numerical accuracy and on the size of the
discretization cells.

In spite of the method’s inability to identify their one-dimensiona nature, Ising lines are usually easy to
recognize, as can be seen, e.g., in Fig. 10b, 10d. More complicated situations may occur in cases when
the isosurfaces meet at very small angles, such that two (or even three) of them are almost paralel to each
other (see, e.g., Fig. A6b). Thisresultsin regionsin which each of the components P;, P,, and P; isnearly
zero, and it may be practically impossible to discern such regions from “real” Bloch points or Ising lines,
where al of the components are “exactly” zero. The quotation marks are used here to emphasize the
underlying problem, which consistsin the physically ill-defined task of establishing aclear-cut distinction
between these two cases.

Different domain wall and BPS morphologies in a ferroelectric core covered with a soft or rigid
shell in various elastic conditions are shown in Figs. A6. A twisted morphology of the polarization
isosurfaces without BPS (at zero external electric field) isfound in the case of the stress-free core covered
with an elastically isotropic soft shell (see Fig. A6a and compare it with Fig. 5 in Ref. [20], where two
diametrically opposite Bloch points appear at a small distance from the core surface at a nonzero externa
electric field).

Anisotropic electrostriction coupling strongly changes the morphology of polarization isosurfaces
in the core (see Fig. A6b), and flexoelectric coupling induces an additional curvature and twist of the
isosurfaces (see Fig. A6c). The shell rigidity very strongly flattens the twisted morphology of polarization
isosurfaces (compare Fig. A6d with Fig. A6a-c), while the inclusion of flexoelectric coupling leads to a
slight reappearance of the twist (compare Fig. A6e-f with Fig. A6c). However, the twist and the mutual
shift of the isosurfaces induced by the flexoel ectric coupling in a core covered with arigid shell prevents
the Ising line formation. The line defect transforms into a single Bloch point located in the core center
(see Fig. AGe-f).

17



(@) Q11 = Q12, Fi;j = 0[] (b) Q11 # Q12,F;; =0 (C) Q11 # Q2. F;; #0
= &
Ising line =
%)
>
- @
o
S
: =
Il
o
y'.Z z z
X xj Y S ’
No Bloch point structures 2 Bloch points e-P=0
o - P2:O
® - P3:O
(d) Fl] =0,um =0 (e) Fl] iO,um=0 (f) Fl] ¢0,um=05%
2y
1 central Q
. 1 central : o
Ising line Bloch point Bloch point "
>
@
2
QS
=N
[N
#
A z )
X y (‘/\/ ij S

Figure A6. Domain walls and BPs morphologies in a ferroelectric core covered with a soft (|s7;| > 1078 Pa® in
panels (a-c)) or rigid (|sf;| 107** Pa* in panels (d-f)) shell. Electrostriction anisotropy is small (Q77 ~ Q1) for
panel (a) and high (@77 # Q13) for panels (b-f). Flexoelectric effect is absent (F;; = 0) for panels (a, b, d) and
present (F;; # 0) for panels (c, e, f). Mismatch strain is absent (F;; = 0) for panels (a, b, d) and present (F;; # 0)
for panels (c, e, ). The blue, green, and red isosurfaces denote the regions where the P;, P,, and P; are zero,
respectively. The intersection points of these isosurfaces (denoted with a white cross) show the position of Bloch
points (|P| = 0). Core radius R = 10 nm, shell thicknessAR = 4 nm, and T = 298 K. For other parameters see
TableAl.

APPENDI X B. Supplementary figuresfor analysis of the phase diagrams
The minimal value of the total free energy as the function of temperature for the nanoparticles with
different core radii are shown in Figs. B1-B3. Figure B1 displays a comparison of the energies for
nanoparticles covered by soft and rigid shells with and without a flexoelectric effect, and without a
mismatch strain between the core and shell. Figure B2 shows a comparison of the energies for

nanoparticles covered by arigid shell with compressive mismatch strain and without aflexoel ectric effect.
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Figure B3 compares the energies for nanoparticles covered by arigid shell with tensile mismatch strain
and without a flexoelectric effect.
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FigureB1. Minimal value of thetotal free energy asthe function of temperature for the nanoparticles with different
coreradii R=1, 1.2,16, 2, 24,32, 4,5, 6, 7,8, 9, and 10 nm (solid curves from the |eft to right, colored from
brown to red), black dashed line shows the thermal energy level G = k_T. Flexoelectric coupling is zero for panels

(a) and (c). The mismatch strain between the shell and core is not taken into account, un= 0. The dielectric and
elastic properties of the SrTiO; shell and al other parameters are listed in Table Al.
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Rigid shell, F,=0, u = - 0.5%
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Figure B2. Minimal value of the total free energy as afunction of temperature for nanoparticles with different core
radii R=1, 1.2, 16, 2,24,32,4,5, 6,7, 8,9, and 10 nm (specified near the curves). Solid and dashed curves
correspond to the energy of ferroelectric and parael ectric phases, respectively. The case of arigid shell imposing
compression strain on the coreis considered here: the mismatch strain is un=-0.5%; flexoelectric coefficients are
set to zero. The dielectric and elastic properties of the SITiOs shell and al other parameters are listed in Table Al.
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Rigid shell, F,=0, u =+ 0.5%
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Figure B3. Minimal value of thetotal free energy asthe function of temperature for the nanoparticles with different
coreradii R =1,1.2,16,2,24,3.2,4,5,6,7,8,9, and 10 nm (specified near the curves). Solid and dashed curves
correspond to the energy of ferroelectric and parag ectric phases, respectively. The case of arigid shell imposing
tensile strain on the coreis considered here: the mismatch strain is un= +0.5%; flexoel ectric coefficients are set to

zero. The dielectric and elastic properties of the S'TiOs shell and al other parameters arelisted in Table Al.

APPENDI X C. Calculations of the electrocaloric effect
Since the FEM results obtained in this work for core-shell nanoparticles with complex domain structure
show that the transition temperature T, (R) of ananoparticle can bewell fitted by an analytical expression
(Eq. (1) in the main text), we can make analytical estimates for the EC temperature change ATec and EC
coefficient £, and establish therole of asize effect. By definition, the values ATec and £ can be cal cul ated

from the expressions

N (Bext T P (7)
M) = = [} = (Z2 )E dE, (C.1a)
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5(7) = $lee@ (C.1b)

dEext
where E,,.; is an externa field applied to the core-shell nanoparticle via effective media, p is the mass
density, Cp is the heat capacity of the nanoparticle core or shell, and P(¥) is a scalar polarization
magnitude, which depend on the point 7. Following Ref. [21], the spatially averaged values (AT;.) and
(£) can be estimated as

BTz Eex))  — ([P (Bext) = PH(O)] + L [P* (Eer) = PHO)] + E2 [P (Eer) — PEO)]),

(C.29)

ST Ny L aTP+BTP3+yTP5
(Z(Eext, ) = <pCp aT[T—Tpt(R)]+3/3P2+5yP4)'

(C.2b)
Here P? = P + P? + P = B?. When deriving these expressions (C.2), we used a polarization vector P
averaged over core volume that isnearly zero at E,,, — 0, andso P = P3 = P5 — 0.

Using expression (1) for T, (R) from the main text and Egs.(C.2), we can make a prediction about

the values of the (ATg.) and (Z) for an ensemble of noninteracting ferroelectric core-shell nanoparticles
in effective media approximation. Namely, the “effective” LGD free energy leads to the equation for the
polarization magnitude

ar (T = Tye(R)) P+ B(T)P? +y(T)P® = nEey, (C33)
Equation (C.3a) allows the calculation of the field dependence of polarization P(E,,;) if the coefficients

ar, B(T),and y(T), and factor n are known. Material parameters of BaTiOz in EQ.(C.3a) are listed in
TableCl.

Table Cl. LGD coefficients and other material parameters of a BaTiOs core

€p,se eb="7 (core background), &e=10 (surrounding),
&s(T) ~3000 at T=50 K and &,(T) ~300 at T=298 K
oar (C*>mJ/K) | 6.68 x 10°

T (K) 381
B(C~*m>)) Br(T—-393) —8.08 x 108; By = 18.76 x 10°
y(C~®m?®)) v7(T —393) + 16.56 x 10%; y; = —33.12x107*
g1, (m3/F) 5.1 x 10710
gaa(m3/F) 0.2 x 10710

*These parameters are valid until y > 0, i.e. for T < 445 K.
**p=6.02x 103 kg/m?, C, = 4.6 x 10% J/(kg-K) at room temperature.

In accordance with our estimates, listed below, the factor 7 is given by the expression:

_ 9(R+4R)3 &, &
n= 2R3(eo—&5)(es—€p)+(R+AR)3 (2€0+85) (ep+265)"

(C.3b)
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To estimate the factor n, let us consider a core-shell ferroelectric nanoparticle with a

homogeneously polarized core of radius R. The nanoparticleis assumed to have aferroel ectric polarization

averaged over the core volume, T’}. The averaged polarization points along the z-axis, which coincides

with the direction of a homogeneous external field E,... Sincetheferroelectric polarization is vortex-like
at Eext — 0 (see Figs. 2-7 in the main text) the average polarization is absent.

The core, shell, and externa effective medium are dielectrics, and so the electrostatic potential
satisfies the Laplace equation in al of the regions:

Ap, =0, Ap, =0, Apr =0, (C.9)
where the subscripts “f”, “s”, and “€” denote the physical quantities related to the ferroelectric core, shell,
and external media, respectively (see Fig. 1ainthe main text). The electric field and displacement vectors
are:

Efse = —V@rse, Df = go&,Ef + €, P, Dg, = gp€56Ese, (C.H)
here e, is the unit vector along the axis z. The term &y, E¢ corresponds to the dielectric “background”
reaction to the external field, and the term e, Ps is the contribution of the core average ferroelectric
polarization. The electric potential and radial displacement are continuous functions at al interfaces:

(pr—¢s)| _, =0, e(D;=Dg)| _. =0, (C.6a)
(05 — Pe)lr=r+ar = 0, €.(Ds —D¢)lr=psar = 0. (C.6b)
Let us switch coordinate systems from Cartesian to spherical coordinates with the origin {0,0,0} in the
center of the core, and the polar axis aong the z axis. It is natural to assume that the electrostatic field

does not depend on the azimuthal coordinate y, so the general solutionis:

cosf cosf
2

@ = —Egrcost, @5 = —Esrcosd +Bs—-, ¢, =B, —rcosGE®*t,  (C.7)

T

The potential ¢, produces a homogeneous electric field E€*t very far away from the particle. The radial

components of the electric displacement are
e, Dy = gye,Ef cosO + PrcosO, e,.Dg = g,&5 cosh (Es + % ) (C.89)
e.D, = g¢, ( 2“;—26 B, + cosGEe’“). (C.8b)
Substitution of the solution (C.7) - (C.8) into the boundary conditions (C.6) gives a system of linear

equations for the unknown coefficients Ef  and B, .. Using their values yields the following expressions:

9(R+AR)3 0065 E¥ 2R3 (e5—£0)+(R+AR)3 (260 +£5) P

Ef T g0(2R3(ge—g5)(e5—£p)+(R+AR)3 (280 +£5) (ep+265)) (C.9a)
_ 3(R+4R)3 oo (265 +6f)ECX —2R3 (e5—€0) P C.9b

S 7 g0(2R3(go—¢5) (e5—€p) +(R+AR)3 (260 +£5) (ep+2€5))’ (C.9b)
R3(R+4R)3[(2ec+e5)Ps+3eg(ep—e5) EEXE] (C.90)

s = £0(2R3(go—g5)(e5—p) +(R+AR)3(2ep+£5) (ep+2£5))’
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3 3 3 3 _ _ _ 3 ext
B, = 3R3(R+4R)3Pses+(R+AR)3[R3(ep—c5) (2e5+€0)—(ee—&5) (285 +p) (R+AR)3 | €o E ' (C.9d)

£0(2R3(ge—€5)(es—&p) +(R+AR)3(2e+£5) (ep+2¢5))

From Eqgs.(C.7) and (C.9), the électric field inside the core is uniform and is equal to

= —[2R3(e5—€e)+(R+AR)3 (26 +¢5)|P €, 9(R+AR)3e,esECXTE,

= £0(2R3(go—e5)(es—ep) +(R+AR)3(2eo+e5) (ept285))  2R3(o—&s)(e5—p)+(R+AR)3(2€0+£5) (ep+2£5)

(C.10a9)

The electric field is non-uniform in the shell and external media and is equal to:

z
3(R+AR)3egec(265+£p) EX18,— 2R (£5—£,) P e, R3(R+4R)3 [(28e+€s)Ps+3So(£b—£s)Ee’“]V(r—3)
£0(2R3(ge—€5)(es—&p) +(R+AR)3(2g0+£5)(ep+285))  £0(2R3(ge—e5)(e5—€p)+(R+AR)3(2€+£5) (ep+255))’

(C.10b)

E; =

E,=— — €,E®*t. (C.10c)

v (i) 3R3(R+A4R)3Ppes+(R+AR)3[R3 (ep—£5) (2€5+8e) —(Ee—5) (285 +€p) (R+AR)3 | g EEXE
r3 £0(2R3(ge—&5)(e5—p) +(R+AR)3 (20 +£5) (ept+265))

The second term in  EQ.(C.10a) gives EQq.(C.3b) for the factor n=

9(R+A4R)3egpe5
2R3(gp—¢&5)(es—5p)+(R+AR)3 (2e0+£5) (gp+285)°
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