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Understanding how entanglements affect the behaviour of polymeric complex fluids
is an open challenge in many fields. To elucidate the nature and consequence of entan-
glements in dense polymer solutions, we propose a novel method: a “dynamical entan-
glement analysis” (DEA) to extract spatio-temporal entanglement structures from the
pair-wise displacement correlation of entangled chains. By applying this method to
large-scale Molecular Dynamics simulations of linear and unknotted, nonconcatenated
ring polymers, we find a strong and unexpected cooperative dynamics: the footprint
of mutual entrainment between entangled chains. We show that DEA is a powerful
and sensitive probe that reveals previously unnoticed, and architecture-dependent,
spatio-temporal structures of dynamical entanglement in polymeric solutions. We also
propose a mean-field approximation of our analysis which provides previously under-
appreciated physical insights into the dynamics of generic entangled polymers. We
envisage DEA will be useful to analyse the dynamical evolution of entanglements in
generic polymeric systems such as blends and composites.

Entanglement is a fascinating and ubiquitous phe-
nomenon in nature and yet a comprehensive micro-
scopic theory of entanglement is still not established.
While the tube and reptation models can approxi-
mate the material properties of entangled linear poly-
mers [1, 2], there are systems for which these theo-
ries do not apply. Among the most notable there are
dense solution of ring polymers [3–6]. Here, the global
topological invariance of the system, i.e. the fact that
unknotted and nonconcatenated ring polymers must
remain so at all times, entails that the rings tend to
collapse and to assume crumpled conformations which
are not entangled with each other in a classical “tube-
like” sense [6–12]. Since rings do not have ends to dif-
fuse, the reptation theory and its more modern exten-
sions – such as contour length fluctuations, constraint
release or tube enlargement – cannot be applied [13–
15]. In light of this, a way to define and formalise
entanglement that is also valid for topologically non-
trivial polymers, such as rings, blends [16] and higher
order topological (or chimeric) polymers [17–21], is
highly needed.

Here we propose to study the dynamical effect of
topological constraints (TCs) by measuring the co-
operative dynamics of entangled polymers in a com-
plementary way with respect to other existing ap-
proaches, e.g. primitive path analysis [22–25] or con-
stitutive equations [25, 26]. Importantly, while most
of the existing methods focus on either static entangle-
ment structures or self-correlations (such as self mean
squared displacement or stress relaxation) here we uti-
lize the information of the correlated motion of entan-
gled polymers in order to obtain information on the

A B

FIG. 1: A Snapshot from MD simulations of a dense so-
lution of M = 50 ring polymers N = 256 beads long
within a box of size L = 50σ with periodic boundaries.
B The dynamical entanglement analysis (DEA) proposed
in this work probes the correlation between displacements
∆ri(t, t0) = ri(t0 +t)−ri(t0) and ∆rj(t, t0) = rj(t0 +t)−
rj(t0) of two polymers i and j at lag-time t while recording
their initial relative position rij(t0) = rj(t0)−ri(t0). The
correlation tensor H(t, r) (Eq. (1)) encodes the propensity
of two polymers at relative position r to display correlated
motion at timescale t.

space- and time-dependent entanglement structures.
We dub this method dynamical entanglement analy-
sis (DEA). [We also note that our approach to study
cross-correlations (Fig. 1) is different from that of ear-
lier works [27, 28]].

We apply DEA to large-scale Molecular Dynamics
(MD) simulations of entangled systems of ring and lin-
ear polymers revealing qualitatively different spatio-
temporal entanglement structures. Additionally, we
link these numerical observations with phenomenolog-
ical and mean-field theories which yield a renewed in-
terpretation for the anomalous dynamics of entangled
chains.

In practice, we consider M polymers N beads long
in a cubic box of size L3 with ρ = M/L3 denoting
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FIG. 2: 2D slice of the vector field v(t, r) = H(t, r) · ex

for ring and linear polymers N = 512 beads long at the
lag-time (A-B) t = 104τ0 and (C-D) t = τR = τ0N

2 '
26 104τ0. Note that the vectors are scaled up or down for
visualisation purposes: (A) ×2.5 (B) ×20 (C) ×0.125 (D)
×1. The circles are drawn using the average size Rg of the
polymers as radii and note that the plots are normalised
by the size of the box, which is different for ring and linear
systems (see Table I in SI).

the concentration of chains and at monomer density
c = MN/L3 = 0.1σ−3 (σ is the size of one bead).
The polymers are semiflexible, i.e. have persistence
length lp = 5σ, chosen to lower the typical entangle-
ment length (found to be Ne = 40 beads [29]) and
to promote inter-ring threading [30]. A summarising
table with the key parameters is given in the SI.

The correlation of displacement of different chains
in the system can be computed as follows. Let ri(t)
be the position of centre of mass (CoM) of the i-th
polymer at time t and ∆ri(t, t0) = ri(t0 + t)− ri(t0)
be its displacement during the lag time t. We define
the displacement correlation tensor [31, 32] as

Hαβ(t, r) ≡ 〈∆ri,α(t, t0)∆rj,β(t, t0)〉r, (1)

where the Greek indexes represent Cartesian compo-
nents and the average 〈· · · 〉r is intended over times t0
and pairs of polymers (i, j), which satisfy rij(t0) ≡
rj(t0) − ri(t0) = r (see Fig. 1). We note that this
formalism has been successfully employed in different
contexts, e.g., in 2-point microrheology [32] and to
investigate dynamics near the glass transition in col-
loidal systems [31] but has never been directly applied
to systems of polymers. As we show below, Eq. (1)
allows us to compute the correlation of the displace-
ments at lagtime t between polymers at relative po-
sition r (Fig. 1) and provides more spatiotemporal
information on entanglements with respect to conven-
tional self-correlations.

We compute H(t, r) on our systems of polymers and

choose not to subtract the motion of the CoM of the
whole system (see below and SI for details). To visual-
ize the correlation tensor, we impose a fictitious, arbi-
trary displacement ex = t(1, 0, 0), and plot a 2D slice
of the resulting 3D vector field v(t, r) = H(t, r) · ex
for fixed lag-times. In Fig. 2 we show two examples
at t = 104τ0 and τR ≡ τ0N

2, i.e. the Rouse time
(we identify the microscopic time scale τ0 with the
Lennard-Jones (LJ) time τ0 = τLJ = σ

√
m/ε, where

m is the mass and σ the size of a bead and ε = kBT
the energy scale of the LJ potential).

Figure 2 captures the most important conceptual
finding of this paper, i.e. that we observe a highly
coordinated pattern of the vector fields representing
correlation of displacements. Importantly, such a per-
sistent, coordinated pattern is not observed in unen-
tangled and phantom chains (see Figs. S3 and S4 in
SI). One should interpret these fields as the average
displacement of a polymer at location r from a probe
polymer placed at the origin and that has displaced
a unit length horizontally τ timesteps earlier. The
strong alignment of the correlation vectors should not
be confused with a flow of the polymers but is rather a
signature of strong correlated dynamics and the con-
sequence of entanglement among chains. We connect
this correlation with the notion of “entrainment” –
which amounts to a combination of steric and topo-
logical constraints between neighbouring polymers –
that effectively results in the mutual “dragging” of
neighbours and correlated motion that can persist at
least up to the Rouse time, τR ∼ N2. We note that
the vectors in Fig. 2 are scaled up/down for visualisa-
tion purposes (see caption) and that the rings display
much stronger cooperation with respect linear chains
as their correlation vectors are typically longer (before
rescaling). We stress that this is indication of rings
being more entrained that linear chains of same length
and that this is due to entanglement, as we observe no
persistent coordinated correlation patterns in systems
of phantom and unentangled polymers (see Figs. S3,
S4 in SI). Furthermore, removing the overall CoM mo-
tion in this case effectively corresponds to constraining
the overall flux of the correlation vector field over the
simulation box to be almost zero (actually about 1/M
as we show in the SI).

In order to further quantify this cooperative dynam-
ics, we define the scalar quantity

χ(t, r) =
Tr[H(t, r)]

g3(t)
, (2)

which measures the degree of correlation during the
time scale t between a pair of polymerss that are ini-
tially separated by a distance r = |r|. In Eq. (2),
g3(t) = 〈(rCM (t0+t)−rCM (t0))2〉 is the mean squared
displacement (MSD) of the polymers’ CoM (or mean-
squared self-displacement). [Note that Tr[H(t, r)] is
expected to depend only the separation r = |r| for ho-
mogeneous and isotropic system as the one considered
here.] To elucidate the physical meaning of χ(t, r),
imagine that we start to apply a force f in x direction
at t = 0 only to the polymer i at the origin. This
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force will cause an average displacement of polymer
i that can be computed as 〈∆ri,x(t)〉 = ft/Γ(t) =
fg3(t)/6kBT , where Γ(t) = kBT/D(t) is the effective
friction, and 6D(t)t = g3(t). At the same time, if
chain i is entangled with chain j, it may cause the
motion of chain j initially located at rj(t0) = r. Its
average displacement can be calculated in a similar
way as done for the probe chain:

〈∆rj,α(t)〉r =
Hαβ(t, r)fβ

2kBT
, (3)

where we generalise the mean-squared self-
displacement in time (g3) to include pair-wise
correlation in space-time and along different di-
rections via the time and space dependent tensor
Hαβ(t, r). For an isotropic system, we can take
the angular average, leaving only the component
along the direction of the force in Eq. (3), i.e.
〈∆rj,x(t)〉r = f

6kBT
Tr[H(t, r)]. In the limit of perfect

cooperativity Hαβ(t, r) = 2δαβD(t)t and the previous
equation reduces to that for the probe chain.

In light of this, χ(t, r) can be seen as the ratio be-
tween the average displacement induced on polymer
j and the average self-displacement of the probe i
at time t and conditional to the fact that |ri(t0) −
rj(t0)| = r. As such, χ(r, t) is bound to take values
between 0 and 1, and may be thought as the frac-
tion of monomers of polymer j that are effectively
“dragged” – or entrained – by the motion of the (en-
tangled) polymer i during the time scale t. Thus, the
DEA naturally yields a quantity that has a physically
appealing and intuitive meaning, that of how many
monomers of polymer j at position r are entrained by
i, t timesteps after that it has moved.

At long length- and time-scales, we expect the
hydrodynamic behaviour with macroscopic viscosity
ηb to dominate. In this regime dHαβ(t, r)/dt =
(kBT/8πηbr)(δαβ + r̂αr̂β) is the Oseen tensor and
g3(t) ' (kBT/6πηbRg)t. In this limit, χ(t, r) decays as
∼ Rg/r. On the other hand, at length scales r . Rg, a
cooperative motion will be predominantly caused by
entanglements between polymers and χ(t, r) is thus
expected to be a sensitive measure of the dynamically
evolving entanglement.

In Fig. 3, we show χ(t, r) at different lag-times t
and as function of r. One can notice that at short
lag-times (Fig. 3A,B) χ(t, r) follows an architecture-
dependent but length-independent master curve. In
line with the magnitude of the vector field in Fig. 2,
χ(t, r) also takes larger values for rings than for linear
chains, with the latter catching up the former with
time. The steep spatial gradient indicates that rings
with overlapping CoMs (hence likely interpenetrating,
or threading [30, 33–35]) are more correlated than dis-
tant ones. This spatial dependence is instead weaker
for linear chains, indicating a more uniformly dis-
tributed entanglement structure over the whole con-
tour of the chain, in qualitatively agreement with the
picture of the tube model. In other words, the struc-
ture of entanglements between neighbouring chains is
qualitatively different between ring and linear chains,

Ring: N=256 N=512 N=1024 Linear: N=256 N=512 N=1024
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FIG. 3: Spatio-temporal evolution of dynamical coopera-
tivity χ(t, r/Rg). This figure shows the spatial profile of
χ(t, r) at fixed lag-times: (A) t = 103 τ0, (B) t = 104τ0,
(C) t = 0.1τR = 0.1τ0N

2 and (D) t = τR = τ0N
2. Notice

that the lag-times in (C) and (D) are N dependent, hence
the larger χ(t, r) values for longer chains. The maximum
length-scale here is L/2 due to the periodic boundary con-
ditions and is equivalent to 2Rg in our simulations.

and this difference is mirrored in weaker/stronger cor-
related motion shown in Fig. 2. We also stress that
for phantom and unentangled chains, χ remains close
to zero indicating that, as expected, there is no cor-
relation at any spatial or temporal scales for non-
entangled chains (see SI, Figs. S3 and S4).

To connect DEA with classic theories, we develop a
mean-field approximation of our analysis in line with
the mean-field approach of the tube theory. We cal-
culate the spatial average of χ(t, r) as follows

Ξ(t) ≡
4πρ

∫ r∗
0
r2g(r)χ(t, r) dr

4πρ
∫ r∗
0
r2g(r) dr

(4)

where g(r) is the radial distribution function of the
polymers’ centres of mass, and we take r∗ = L/2
due to the periodic boundary condition. This quan-
tity, plotted in Fig. 4, exhibits a power-law behav-
ior in the short-medium time scale. The scaling of
Ξ(t) can be understood in light of the dynamical
entanglement picture: since each chain has a num-

ber P = 4πρ
∫ r∗
0
r2g(r) dr of surrounding chains,

i.e. those in the spherical volume of radius r∗, the
number of monomers dragged by the motion of i-
th ring is ∼ PNΞ(t) and this provides an estimate
for the effective friction experienced by each chain as
Γ(t) ' γ0PNΞ(t) with γ0 being a segment friction.

This effective friction on the global motion of the
polymer can be compared with the theoretical pre-
dictions of the reptation theory for linear chains [2]
and more recent theories for rings [37]. For linear
polymers, the simplest reptation theory suggests [2]
that g3(t) ∼ σ2(N2

e /N)(t/τe)
1/2 for τe < t < τR,
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FIG. 4: Spatial average of the dynamical correlation, Ξ(t),
for (A) rings and (B) linear chains. The scaling for

rings, ∼ t2/7 and ∼ t1/4 are obtained from Eq.(5) with
df = 3 (crumpled globule) and df = 5/2 (Cates-Deutsch
crossover [7, 36], see SI), respectively. For linear chains
our calculation agrees with the classical reptation picture
which predicts Ξ(t) ∼ t1/2 (see Eq.(5)).

where Ne ' 40 [6, 30] is the entanglement length
and τe ∼ τ0N

2
e is the relaxation time for the en-

tanglement lengthscale. For non-concatenated ring
polymers, the conformation and the dynamics are
self-similar [4, 6, 8, 37] for chain sections that are
longer than Ne and on time scales τe < t < τc,
where τc is the longest conformational relaxation
time. According to the loopy-globule model [37],
τc ∼ τe(N/Ne)(2df+1)/df , which may be thought as an
analogue of the Rouse time in the linear chain coun-
terpart (df denotes the fractal dimension of the ring
conformation at the scale larger than the entangle-
ment length). As shown in SI, the MSD of mass center
turns out to be g3(t) ∼ σ2(N2

e /N)(t/τe)
(df+2)/(2df+1)

for τe < t < τc. With the help of the Einstein rela-
tion, these considerations lead to the effective friction
Γ(t) ' (kBT/g3(t))t, which scales as

Γ(t) ∼ Ξ(t) ∼
{
t1/2 (τe < t < τR) linear
t2/7 (τe < t < τc) ring df = 3

(5)

in good agreement with the numerical observation in
Fig. 4. Note the exponent for ring becomes 1/4 if
we adopt the effective fractal dimension df = 2.5
which is more appropriate for rings with intermedi-
ate length [7, 36] (see also SI).

A further insight on the dynamical entanglement
might be obtained by the following consideration for
linear chains: there are X0 ≡ N/Ne polymers, on
average, entangled with the i-th chain. In our pic-
ture, each entangled chain is entrained by the mo-
tion of the i-th chain, but such a response does not
take place immediately but progressively and follow-
ing the propagation of the tension from the entangle-
ment points [38, 39]. For linear chains, the Rouse
model predicts that n(t) ∼ Ne(t/τe)

1/2 monomers
(counting from each entanglement point) move coher-
ently with the i-th chain and thus contribute to the
friction at time scale τe < t < τR. This leads to the
effective friction

Γlinear(t) ∼ γ0Ne
(
n(t)

Ne

)
×X0 (τe < t < τR) . (6)
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FIG. 5: Displacement correlations display a topology-
dependent behaviour. We compare χ(t, r) (Eq. (2)) for
(A) ring and (B) linear chains against time for increas-
ing distances r/Rg and for fixed polymer length N = 512.
In the figure, τs represents the self-diffusion time of the
polymers, i.e. g3(τs) ≡ R2

g (see SI for g3(t) curves),

τc = τ0N
−1/3
e N7/3 the longest conformational relaxation

time for rings and τR = τ0N
2 the Rouse time. Notice the

non-monotonic behaviour of χ(t, r) at short length-scales
that is peculiar for rings and indicating that the number
of entanglements changes in time in systems of rings.

Besides being in agreement with Eq. (5), the above
discussion provides a physically appealing picture for
the well-established g3(t) ∼ t1/2 scaling for the poly-
mers’ CoM motion in systems of linear chains. Now,
anticipating a similar argument for ring polymers, we
rewrite this effective friction as

Γring(t) ∼ γ0Ne
(
n(t)

Ne

)
×X(t) (τe < t < τc) (7)

and require it to match Eq. (5), where n(t) and
Γring(t) are obtained from the loopy-globule model
(see SI). Remarkably, we find that the number of
entangled chains is now time-scale dependent and it
takes the form

X(t) = X0

(
n(t)

Ne

)−1/df
∼ X0

(
t

τe

)−1/(2df+1)

. (8)

The number of entangled rings will thus be reduced
from X0 = N/Ne at t = τe to (N/Ne)

1−(1/df ) at
t = τc. Such a feature is absent in the entangled linear
polymers for which they have, on average, the same
number of entangled chains at all times. Thus the
predicted power-law scaling for the number of entan-
gled chains represents a unique feature in ring poly-
mers system, which is akin to a tube dilation effect
proposed in the loopy globule model [37]. Note that
in solutions in which N/Ne exceeds the coordination
number (or the overlap parameter) ∼ R3/Nσ3, which
scales as ∼ N1/2 for linear chains but takes constant
value of about 15− 20 for rings [6, 40], the above dis-
cussion may require some modification [41].

Discussion – Using DEA, we find that a chain mo-
bility is dictated by entanglement-driven entrainment,
and that the number of such entrained segments in-
creases in time due to the propagation of entangle-
ments up to the Rouse time τR for linear chains and
the conformational relaxation time τc for rings. Be-
yond these time scales, our current data does not allow
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a quantitative discussion because of the insufficient
statistics, but it is certainly interesting to explore the
behavior of displacement correlation in such a longer
time scale or larger systems. As a preliminary discus-
sion, we show in Fig. 5 the spatio-temporal evolution
of χ(t, r), now plotting several curves at fixed length
scale r and as a function of time. Several marked dif-
ferences between ring and linear chains are evident but
the most remarkable is the following: for linear chains,
χ(t, r) increases until the self-diffusion time τs (defined
as g3(τs) = R2

g) suggesting that this coincides with
the disentanglement time [1, 2, 38] at which the cor-
related motion by mutual entanglement/entrainment
disappears. On the contrary, for ring polymers we see
that χ(t, r) is non-monotonic and its decay at short
length scales indicates – in agreement with our model
discussed above – that the number of entangled rings
X(t) decreases in time (Eq. (8)). At the same time,
the dynamical cooperativity at large length scales dis-
plays a monotonic increase even at times larger than
the self-diffusion time, i.e. t > τs, which can be under-
stood as due to the remaining X(τs) entangled chain
at τs yet to be released from the entrainment. Fur-
ther, we observe remnants of increasing dynamical en-
tanglement at τc and argue that these are fully con-
sistent with, and indeed rationalise, previous results
showing that the time to enter free diffusion is con-
siderably longer than the self-diffusion and conforma-
tional relaxation times (∼ τc) in the dense solution of
rings [4, 30, 34, 42]. A possible scenario for such a slow
diffusion phenomenology is to invoke a mandatory co-
operative structural rearrangement of rings [43], which
may be related to the residual entanglement X(τc).
We also argue that in the case of artificially frozen
polymers [30, 42] or partially active ones [44], the en-
tanglements that induce the entrainment found via
DEA here may be the ones that induce the topologi-
cal glass state.

Conclusions – We have shown that the DEA
(Eq. (1)) can provide rich information on the spa-
tial and temporal evolution of architecture-specific en-
tanglements in polymer solutions. The proposed ap-
proach can be applied to various systems, e.g., from
solutions of active polymers to chromosomes in vivo.
For instance, a direct experimental realization of DEA
may be feasible using fluorescently labelled actin or
DNA [45]; while at present most of the experimental
observables focus on self-correlations, it may be inter-
esting to look at cross-correlation of differently-tagged
molecules.

Furthermore, and additionally to the motion of the
CoMs, it would possible to analyse the interchain dy-
namic correlation at the segment scale, or perhaps
more interestingly over an entanglement length scale;
this may provide additional insights for instance clar-
ifying finite size effects on DEA, which has not been
done here. We also note that the surprisingly long
and spatially extended cooperativity observed using
DEA and the notion of entrainment, may explain
the discrepancies of experiments with theories for lin-
ear [46] and ring [3] polymers and their long subdiffu-

sive regime compared with their self-diffusion time.

Finally, we highlight that our DEA can be applied
to any polymeric system and we envisage interesting
outcomes on entangled blends [16], composites [47, 48]
or chimeric [17] polymer systems.

Acknowledgements. This work was in part sup-
ported by JSPS KAKENHI (No. JP18H05529) from
MEXT, Japan, and JST, PRESTO (JPMJPR16N5).
DM is supported by the Leverhulme Trust through an
Early Career Fellowship (ECF-2019-088). TS thanks
T. Ooshida for fruitful discussion on displacement
correlation analysis. The authors would like to ac-
knowledge networking support by the COST Action
CA17139.

∗ davide.michieletto@ed.ac.uk
† sakaue@phys.aoyama.ac.jp

[1] P. G. de Gennes, Scaling concepts in polymer physics
(Cornell University Press, 1979).

[2] M. Doi and S. F. Edwards, The theory of polymer
dynamics, vol. 73 (oxford university press, 1988).

[3] M. Kapnistos, M. Lang, D. Vlassopoulos,
W. Pyckhout-Hintzen, D. Richter, D. Cho, T. Chang,
and M. Rubinstein, Nature materials 7, 997 (2008).

[4] J. D. Halverson, W. B. Lee, G. S. Grest, A. Y. Gros-
berg, and K. Kremer, The Journal of chemical physics
134, 204905 (2011).

[5] A. R. Brás, R. Pasquino, T. Koukoulas, G. Tsolou,
O. Holderer, A. Radulescu, J. Allgaier, V. G.
Mavrantzas, W. Pyckhout-Hintzen, A. Wischnewski,
et al., Soft Matter 7, 11169 (2011).

[6] A. Rosa and R. Everaers, Physical review letters 112,
118302 (2014).

[7] M. Cates and J. Deutsch, J. Phys. 47, 2121 (1986).
[8] M. Rubinstein, Phys. Rev. Lett. 57, 3023 (1986).
[9] T. Sakaue, Physical review letters 106, 167802 (2011).

[10] M. Lang, J. Fischer, and J. U. Sommer, Macro-
molecules 45, 7642 (2012).

[11] S. Obukhov, A. Johner, J. Baschnagel, H. Meyer, and
J. P. Wittmer, EPL (Europhysics Lett. 105, 48005
(2014).

[12] T. Sakaue and C. H. Nakajima, Physical Review E
93, 2502 (2016).

[13] T. McLeish, Nature materials 7, 933 (2008).
[14] M. Doi, Journal of Polymer Science: Polymer Physics

Edition 21, 667 (1983).
[15] G. Marrucci, Journal of Polymer Science: Polymer

Physics Edition 23, 159 (1985).
[16] D. Parisi, J. Ahn, T. Chang, D. Vlassopoulos, and

M. Rubinstein, Macromolecules 53, 1685 (2020).
[17] A. Rosa, J. Smrek, M. S. Turner, and D. Michieletto,

ACS Macro Letters 0, 743 (0).
[18] Y. Doi, A. Takano, Y. Takahashi, and Y. Matsushita,

Macromolecules 48, 8667 (2015).
[19] E. Uehara and T. Deguchi, Journal of Chemical

Physics 145 (2016).
[20] T. Deguchi and E. Uehara, Polymers (Basel). 9, 13

(2017).
[21] F. Landuzzi, T. Nakamura, D. Michieletto, and

T. Sakaue, Physical Review Research 033529, 1
(2020).

[22] R. Everaers, S. K. Sukumaran, G. S. Grest,
C. Svaneborg, A. Sivasubramanian, and K. Kremer,



6

Science (80-. ). 303, 823 (2004).
[23] A. E. Likhtman, Soft Matter 10, 1895 (2014).
[24] A. E. Likhtman and M. Ponmurugan, Macromolecules

47, 1470 (2014).
[25] D. J. Read, K. Jagannathan, and A. E. Likhtman,

Macromolecules 41, 6843 (2008).
[26] V. A. H. Boudara, D. J. Read, and J. Ramı́rez, Jour-

nal of Rheology 64, 709 (2020).
[27] H. W. Spiess, Berichte der Bunsengesellschaft für

physikalische Chemie 91, 1397 (1987).
[28] J. Cao and A. E. Likhtman, Physical Review Letters

104, 1 (2010).
[29] A. Rosa and R. Everaers, PLoS Comp. Biol. 4, 1

(2008).
[30] D. Michieletto and M. S. Turner, Proceedings of the

National Academy of Sciences 113, 5195 (2016).
[31] T. Ooshida, S. Goto, T. Matsumoto, and M. Otsuki,

Phys. Rev. E 94, 1 (2016).
[32] J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler,

P. D. Kaplan, A. G. Yodh, and D. A. Weitz, Phys.
Rev. Lett. 85, 888 (2000).

[33] D. Michieletto, D. Marenduzzo, E. Orlandini,
G. Alexander, and M. Turner, ACS Macro Lett. 3,
255 (2014).

[34] E. Lee, S. Kim, and Y. Jung, Macromol. Rapid Com-
mun. 36, 1115 (2015).

[35] J. Smrek and A. Y. Grosberg, ACS Macro Letters 5,
750 (2016).

[36] J. D. Halverson, W. B. Lee, G. S. Grest, A. Y. Gros-

berg, and K. Kremer, The Journal of chemical physics
134, 204904 (2011).

[37] T. Ge, S. Panyukov, and M. Rubinstein, Macro-
molecules 49, 708 (2016).

[38] M. Rubinstein and H. R. Colby, Polymer Physics (Ox-
ford University Press, 2003).

[39] T. Sakaue, Polymers 8, 1 (2016).
[40] T. A. Kavassalis and J. Noolandi, Phys. Rev. Lett.

59, 2674 (1987).
[41] A. Ajdari, F. Brochard-Wyart, C. Gay, P. G.

de Gennes, and J. L. Viovy, Journal de Physique II
5, 491 (1995).

[42] D. Michieletto, N. Nahali, and A. Rosa, Phys. Rev.
Lett. 119, 7801 (2017).

[43] T. Sakaue, Soft Matter 14, 7507 (2018).
[44] J. Smrek, I. Chubak, C. N. Likos, and K. Kremer,

Nature Communications 11, 1 (2020).
[45] M. Abadi, M. F. Serag, and S. Habuchi, Nature Com-

munications 9 (2018).
[46] C. M. Ylitalo, G. G. Fuller, J. A. Kornfield, and D. S.

Pearson, Macromolecules 24, 749 (1991).
[47] D. Michieletto, R. Fitzpatrick, and R. M. Robertson-

Anderson, Soft Matter pp. 6703–6717 (2019).
[48] R. Fitzpatrick, D. Michieletto, K. R. Peddireddy,

C. Hauer, C. Kyrillos, B. J. Gurmessa, and R. M.
Robertson-anderson, Phys. Rev. Lett. 121, 257801
(2018).


	 References

