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ARTICLE

Motion of a polymer globule with Vicsek-like activity: from super-diffusive to 
ballistic behavior
Subhajit Paul , Suman Majumder , and Wolfhard Janke

Institut für Theoretische Physik, Universität Leipzig, Leipzig, Germany

ABSTRACT
Via molecular dynamics simulation with Langevin thermostat we study the structure and dynamics 
of a flexible bead-spring active polymer model after a quench from good to poor solvent condi-
tions. The self propulsion is introduced via a Vicsek-like alignment activity rule which works on each 
individual monomer in addition to the standard attractive and repulsive interactions among the 
monomeric beads. We observe that the final conformations are in the globular phase for the passive 
as well as for all the active cases. By calculating the bond length distribution, radial distribution 
function, etc., we show that the kinetics and also the microscopic details of these pseudo equili-
brium globular conformations are not the same in all the cases. Moreover, the center-of-mass of the 
polymer shows a more directed trajectory during its motion and the behavior of the mean-squared- 
displacement gradually changes from super-diffusive to ballistic under the influence of the active 
force in contrast to the diffusive behavior in the passive case.
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INTRODUCTION

Properties of various biological constituents can be 
understood under the framework of “active matter” 
models which got significant interest to the statistical 
physics community in the past few decades.[1–24] The 
constituents, so-called “active particles”, have the ability 
of their own decision-making either by converting their 
internal energy to work or taking energy from the envir-
onment. This leads to self propulsion due to which these 
objects show directed motion and always remain out of 
equilibrium. Being ubiquitous in nature, such objects are 
seen over a very wide range of length scales, from bac-
teria, sperm, algae, etc., at the microscopic single cell 
level to flocks of birds, schools of fish, etc., in the macro-
scopic world.[1,4,5,8,12] Though the governing factors are 
entirely different, the interesting common feature is that 
such objects always move in a group and in 
a coherent way.

The first minimal model in this direction to describe 
such collective behavior was by Vicsek et al.[7] In this 
model very simple dynamical rules were used to show 
the clusters formed by point–like particles. In the last 
few years, another most studied model in the literature is 
a system consisting of active Brownian particles 
(ABP).[2,3,10,13–15] In the Vicsek model at every instant, 
a particle changes its direction of motion by looking at 
the average direction of its neighbors. On the other 

hand, a system with ABP shows activity induced cluster-
ing for completely repulsive interactions among the 
particles.[2,3,10,13–15] In recent years interest has grown 
in modeling active polymers[5,21–24] which can be visua-
lized as a system of constrained motion of micro–swim-
mers. They are of relevance for various biological 
objects, e.g., bacterial flagellum, microtubules, actin fila-
ments, etc. These filamentous objects can deform or 
bend and play major roles in determining the motion 
and shape of cells to which they belong.[25] As a specific 
example, the microtubules that are part of the cytoske-
letons in eukaryotic cells are like linear polymers made 
up of tubulin proteins. They help in maintaining the 
shape of a cell and its membrane and also work as 
cargo by taking part in cell motility, intracellular trans-
port, etc., supported by some kind of binding or attach-
ment proteins, viz., kinesin, dyenin, etc.[26] Thus, 
understanding the dynamics as well as conformational 
properties of active filaments can help us in elucidating 
some biological mechanisms.

In this regard, efforts were mostly directed to under-
stand the properties of active Brownian filaments.[5,21–24] 

Such a filament model can be constructed in 
a straightforward manner by considering the monomeric 
beads as active Brownian particles and joining them via 
springs. The focus was mainly on studies of the collective 

CONTACT Subhajit Paul subhajit.paul@itp.uni-leipzig.de Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany; 
Suman Majumder suman.majumder@itp.uni-leipzig.de; Wolfhard Janke wolfhard.janke@itp.uni-leipzig.de

SOFT MATERIALS                                             
2021, VOL. 19, NO. 3, 306–315 
https://doi.org/10.1080/1539445X.2021.1909064

© 2021 Taylor & Francis Group, LLC

http://orcid.org/0000-0003-2125-036X
http://orcid.org/0000-0003-3898-7261
http://orcid.org/0000-0002-5165-9097
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/1539445X.2021.1909064&domain=pdf&date_stamp=2021-09-27


behavior and pattern formation by such filaments, for 
which in most cases the passive non-bonded monomeric 
interaction was considered to be a completely repulsive 
one.[21,23] Recently, via Brownian dynamics simulation of 
a single active filament in a good solvent, the activity 
induced conformational changes from coil to globule as 
well as its enhanced diffusion have been shown.[24] In our 
very recent work,[27] upon quenching a flexible polymer 
from good to a poor solvent condition, we looked at the 
effect of Vicsek-like alignment activity on its coil–globule 
transition with particular focus on the coarsening 
kinetics. Such coil–globule transition, in the context of 
a passive polymer, has similarities with the dynamics of 
protein folding and chromosome compactification.[28,29] 

For a passive polymer, the monomers can be made 
“active” by some external non–thermal forces. Dynamics 
of such filaments has been studied in active solvent, with 
or without hydrodynamic interactions.[5,30–32] In experi-
ments active filaments have been designed by joining the 
chemically synthesized molecules, colloids or Janus parti-
cles via DNA strands.[19,20] Then the activity is introduced 
via various phoretic effects, i.e., application of light, elec-
tric or magnetic fields. There also it is shown that the 
activity enhances the diffusive behavior of the polymer 
chain.

Keeping these studies in mind, in this paper, we 
model an active flexible homopolymer in which the 
beads follow the Vicsek–like alignment activity 
rule.[7,17,18,27] The kinetics of the formation of 
a single globule in the passive limit of the model 
has been extensively studied in the literature with 
both Monte Carlo and molecular dynamics 
simulations.[33–41] But such studies are much lesser 
in the context of a single active polymer.[22,24,27] In 
this work, we will mainly look at the motion of an 
active polymer in implicit solvent with particular 
emphasis on the microscopic structural details of its 
pseudoequilibrium steady state conformations and 
compare the results with those from its passive limit.

The rest of the paper is organized as follows. In Sec. II 
we discuss the model and methods of our simulations in 
detail. Section III contains the results followed by the 
conclusions in Sec. IV.

Model and Methods

We consider a model flexible polymer in which the 
monomer beads are connected via spring-like arrange-
ments. For the active polymer model, self propulsion is 
added for each bead. Before looking at how the active 
force is included for the beads, first we discuss the 
various passive interactions among the beads. The 
monomer-monomer bonded interaction has been 

modeled via the standard finitely extensible non-linear 
elastic (FENE) potential[34–36,41] defined as 

VFENEðrÞ ¼ �
K
2

R2ln 1 �
r � r0

R

� �2
� �

; (1) 

where r0 ¼ 0:7 is the equilibrium bond distance. K is the 
spring constant which is set to 40 and R measures the 
maximum extension of the bonds on both sides of r0, for 
which the value is chosen to be 0.3.

The non-bonded monomer–monomer interaction is 
modeled via the standard Lennard-Jones (LJ) 
potential[17,18,34,35] 

VLJðrÞ ¼ 4ε
σ
r

� �12
�

σ
r

� �6
� �

; (2) 

where r is the distance between the monomers and ε is 
the interaction strength, value of which is set to unity. 
This measures the energy scale of the system. The length 
scale of our system is expressed in units of σ, the dia-
meter of the beads, which is related to r0 as σ ¼ r0=21=6. 
Following our non-equilibrium study,[27] here also we 
consider both attractive and repulsive forces for the non- 
bonded interaction among the monomers to ensure 
a poor solvent condition for the polymer and thus for-
mation of globular conformations.

While working with the full form of VLJ, the potential 
is truncated and shifted at rc ¼ 2:5σ for advantages 
during numerical simulations. In that case, the non- 
bonded pairwise interaction takes the form 

VNBðrÞ ¼
VLJðrÞ � VLJðrcÞ � ðr � rcÞ

0 otherwise;

�
dVLJ

dr

�
�
�
�

r¼rc

r< rc;

(3) 

having similar behavior as VLJ.
By truncating VLJ of Eq. (2) at its minimum, i.e., at 

rc ¼ r0 ¼ 21=6σ (where VLJðr0Þ ¼ � ε and 
ðdVLJ=drÞr¼r0

¼ 0) VNBðrÞ becomes the completely 
repulsive Weeks-Chandler-Andersen (WCA) 
potential[42] 

VWCAðrÞ ¼
VLJðrÞ þ ε r< ro;

0 otherwise:

�

(4) 

The dynamics of a passive polymer in a poor solvent 
modeled by VNB is studied via molecular dynamics 
(MD) simulations using the standard velocity-Verlet 
integration scheme.[43] The temperature for the polymer 
is kept constant by employing the Langevin 
thermostat.[17,18] Thus, for each bead we work with 

mi €~ri ¼ � ~ÑUi � γ _~ri þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γkBT

p
~Ri tð Þ; (5) 

where the mass mi ¼ m is unity for all the beads, γ is the 
drag coefficient, which we set γ ¼ 1, and kB is the 
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Boltzmann constant, value of which is also set to unity. 
Ui is the total potential which contains both VLJ and 
VFENE. In Eq. (5), T represents the quench temperature, 
measured in units of ε=kB. We set the value of T well 
below the coil–globule transition temperature of 
a passive polymer to ensure a globular conformation as 
the final steady state. Finally, ~RðtÞ stands for Gaussian 
noise with zero mean and unit variance. This is also delta 
correlated over space and time, which can be repre-
sented as 

hRiμðtÞRjνðt0Þi ¼ δijδμνδðt; t0Þ; (6) 

where i; j represent the particle indices and μ, ν corre-
spond to the Cartesian coordinates. δ is the well-known 
Kronecker delta. The time step of integration δt is cho-
sen as 5� 10� 4 in units of τ0, where τ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mσ2=ε

p
is the 

unit of time. Determination of ~ri; _~ri for all the beads 
from Eq. (5) with time provides the evolution of the 
passive polymer.

The activity for the beads is introduced in the Vicsek- 
like manner following the method described 
below.[7,16,17,27] After each MD step, the passive velocity 
for the i-th bead ~vpas

i ðt þ δtÞ is modified by the active 
force ~fi which is defined as 

~fi ¼ fAv̂avg
i ; (7) 

where fA measures the strength of activity. fA ¼ 0 repre-
sents the case of the passive polymer. v̂avg

i is the unit 
vector pointing in the average direction of the velocities 
of all the beads within a sphere of radius rv around the 
bead i. To calculate this, we choose rv ¼ rc ¼ 2:5σ. 
Then, the passive velocity is modified as 

~v�i ðt þ δtÞ ¼~vpas
i ðt þ δtÞ þ

~f i
mi

δt; (8) 

by the implication of the active force. Thus, the active 
force would change both the direction and magnitude of 
the velocity. The change in magnitude may increase the 
temperature of the system, which is not desired. Thus, to 
keep the temperature of the polymer to the quenching 
value, we rescale the magnitude of ~v�i to its passive value. 
This is done by[17] 

~vf
i ðt þ δtÞ ¼ ~vpas

i ðt þ δtÞ
�
�

�
�n̂i; (9) 

where n̂i is the direction vector of ~v�i . This procedure 
makes sure that the application of Vicsek-like activity 
only changes the direction of the velocities without 
altering their magnitude. Increase of the strength of 
the active force ~fi, by varying fA, will help the velocities 
of the beads to align themselves more rapidly.

The initial configurations have been prepared at high 
temperature or good solvent condition where the con-
formation of the polymer is an extended coil. These 
extended coil polymers were then quenched to 
a temperature T ¼ 0:5, well below the coil–globule tran-
sition temperature (Tθ) for the passive case.[35] The 
results presented in the paper are for polymer chains 
with N ¼ 256 and 512, where N is the number of beads 
in it, the length of the polymer. In each of the cases, all 
presented data have been averaged over 100 indepen-
dent initial realizations.

RESULTS

Before looking into the microscopic details of the final 
pseudoequilibrium conformations of the polymer, we 
will first look at a few quantities during its kinetics 
from coil to the globule conformation. The pathway 
for such transitions is quite complex, details of which 
will be presented elsewhere. Here we will focus on the 
quantities that are most relevant for the following dis-
cussion of the pseudoequilibrium steady state 
conformations.

In Figure 1 we plot the average bond length hravg
b i

versus t for different values of fA. The bond length 
corresponding to any two consecutive beads, say, i and 
iþ 1, is defined as 

rb ¼ ~riþ1 � ~rij j; (10) 

where ~ri denotes the position of the i-th bead. Then, the 
average bond length at each time can be calculated from 

Figure 1. Semi-log plots of the average bond distance versus 
time for different values of fA for N ¼ 512. ravg

b for each time was 
calculated from the first moment of PðrbÞ. Here h:::i denotes the 
average over different initial conformations and time evolutions.
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the first moment of the corresponding distribution func-
tion as 

hravg
b i ¼ ò drbrbPðrb; tÞ: (11) 

In Figure 1 〈…〉 represents the average over different 
independent initial conformations. We see that the pla-
teau value at which the mean bond distance hravg

b i satu-
rates decreases with the increase of fA. The saturation of 
hravg

b i will help us to identify the onset of the steady state 
conformations of the polymer for further analyses.

As already mentioned, in this paper, we are inter-
ested in the structure and motion of the polymer at its 
pseudoequilibrium. As there is always an attractive 
force among the monomers, this will help the beads 
to come closer and form a single cluster. It is expected 
that as we move forward in time during the evolution 
the average coordination number (nearest-neighbor 
beads) for a monomer increases. The number of near-
est neighbors nn is calculated by counting the number 
of beads around any bead within a sphere of radius 
rn ¼ rc ¼ 2:5σ. If nn saturates to some value, then the 
time corresponding to the beginning of this saturation 
will denote the onset of the globular state. To check for 
that in Figure 2 we plot hnni, averaged over all the 
monomers and different initial conformations, versus 
t for all the fA values as considered in the previous 
figure. We see that initially it increases more rapidly 
following a power-law behavior, hnni, t1=3 until hnni

saturates toward the same value ,40 for all activity 
strengths fA. But the times, say ts

n, at which hnni reach 
there are different for different values of fA. It is obvious 
to visualize that if the conformation is a globular one 
then different choices of rn should lead to different 
values of the saturation of hnni. This we have shown 
in the inset of Figure 2 only for fA ¼ 0:5. There we plot 
hnni versus t for two values of rn, i.e., 2:5σ and 3:5σ. 
Indeed, the saturation value is much higher (,100) for 
rn ¼ 3:5σ. Also it seems like the exponent for the initial 
power-law growth of hnni is higher for the larger choice 
of rn. Most importantly the saturation time ts

n is inde-
pendent of the choice of rn. This feature is similar for 
the other values of fA as well. Now coming back to the 
main figure, we see a non-monotonic behavior for ts

n. 
For fA ¼ 0:5 and 1:0, the corresponding times are smal-
ler than for the passive case, whereas for fA ¼ 4:0, the 
value of ts

n is much higher. This fact is quite interesting 
and also demands for further detailed analysis of the 
non-equilibrium kinetics of the globule formation.

The preceding discussions were related to the 
non-equilibrium kinetics of the polymer which 
helped us to understand how and when the steady 
state has been reached. Next, we focus on the main 
subject of our paper. First in Figure 3(a) we show 
the pseudoequilibrium conformations for the passive 
as well as for the active cases. In all the cases, we 
started with a coil state of the polymer (for which 
t ¼ 0 is mentioned) and see that the final conforma-
tions of the polymer are the globules. The times 
mentioned below each of these conformations cor-
respond to the times ts

g at which the globule forms. 
These times were estimated by counting with the 
number of clusters formed along the chain. Thus, 
ts
g corresponds to the time when the number of 

clusters along the chain becomes 1. After that, 
there will be final rearrangements of the beads 
within this cluster to form a compact structure in 
order to minimize the surface energy.[44] Thus, the 
saturation of hravg

b i in Figure 1 occurs little later 
than for hnni. But one should note here that once 
a globule forms it is not possible to break it, as there 
is always an attractive force among the non-bonded 
monomers. Note that a completely repulsive poten-
tial, along with the Vicsek-like active force, is not 
suitable to produce a globular conformation of the 
polymer. We have explicitly checked this fact by 
using the WCA potential (4) with different values 
of fA and chain lengths N varying between 32 
and 128.

Though the final conformations are qualitatively 
similar in all the cases, now we want to look whether 

Figure 2. Log-log plots of the variation of average nearest 
neighbors h nn i versus time for different values of fA for 
N = 512 and rn ¼ rc ¼ 2:5σ. Here also, h. . .i indicates the aver-
aging over different initial conformations and time evolutions. 
The solid line represents a power law with exponent 1=3. The 
inset shows a log-log plot of hnni versus t for fA ¼ 0:5 with two 
different choices of rn mentioned in the figure.
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there exist any microscopic structural differences for 
different values of fA. In this regard, measurements of 
the end-to-end distance Ree can give an idea of the 
spatial extension of the polymer in its globular confor-
mation. Ree, for a polymer, is calculated as 

Ree ¼ ~r1 � ~rNj j; (12) 

where ~r1 and ~rN are the positions of the first and the last 
bead, respectively. In Figure 3(b), we plot hReei versus fA. 
Ree has been averaged over different pseudoequilibrium 
conformations. There we observe a non-monotonic 
behavior as a function of fA. Initially, Ree decreases and 
for fA ¼ 0:5 it attains a lower value than in the passive 
case indicating formation of a more compact globule. 
Then, with the increase of fA we see that Ree again 
increases, and with much higher values of fAð� 3:5Þ it 

exceeds the value corresponding to the passive case. This 
points toward a deviation from spherical shape and 
formation of slightly elongated conformations with 
increasing activity.

From Figure 1 we already got a hint that the average 
bond distance decreases with increasing fA. Now in 
Figure 4 we plot the distribution (normalized) of the 
bond distances for the passive as well as for the active 
cases in the steady state. It appears that in all the cases 
the distributions are non-Gaussian. Also it can be 
observed that with the increase of the strength of activ-
ity, the peak height of the distribution increases and its 
width (a measure of the variance, the second moment of 
the distribution) decreases. We checked that for fA ¼ 4:0 
the width of the distribution is ,55% compared to that 
for the passive case. For all choices of fA we see that the 
distributions are asymmetric with respect to their corre-
sponding mean and have positive skewness which 
decreases with the increase of fA. This fact indicates 
that when the activity overcomes the thermal noise, 
fluctuations in the bond distances decrease. From these 
plots of the distributions it is hard to visualize whether 
there is any shift of the peak position in the abscissa 
variable. The position of the peak is essentially 
a measure for the average bond distance, which, as 
already observed from Figure 1, decreases with the 
increase of fA. Such changes appear in the third decimal 
place and are not easily identifiable from Figure 4. As the 
velocities of all the beads are aligned in a particular 
direction, thermal fluctuations play an insignificant 
role in determining the values of rb. Thus, for the active 

Figure 3. (a) Snapshots showing the pseudoequilibrium globular 
conformations with N ¼ 512 for the passive (fA ¼ 0) as well as 
the active cases with fA ¼ 0:5, 1:0 and 4:0. For all cases, the 
starting conformation is the same which is shown with t ¼ 0. 
The corresponding times, mentioned below each of the glo-
bules, are the times at which a single cluster forms. (b) Plot of 
the average end-to-end distance hReei for the globular confor-
mations of the polymer versus fA.

Figure 4. Probability distribution of the bond lengths of the 
pseudoequilibrium conformations of the polymer for the passive 
as well as for the active cases for the chain length N ¼ 512.
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case, a more directed trajectory than for the passive 
polymer should be expected.

After looking at the microscopic effect of the active 
force on the bond distances, now we look whether there 
are structural differences in the conformations of the 
polymer in its steady state condition, for which a good 
candidate is the calculation of the radial distribution 
function. The radial distribution function gðrÞ, 
a measure for the average local density around 
a monomer, is calculated as 

gðrÞ ¼
nðrÞ

4πr2δr
; (13) 

where nðrÞ represents the average number of monomers 
around a bead within a shell of radius r and thickness δr. 
In Figure 5 we plot gðrÞ versus r for the passive as well as 
for the active cases for the steady state. From this plot we 
see that the positions of the first peak are at nearly the 
same value of r, which is equal to 21=6σ, for all the cases. 
But their heights increase with activity. The positions 
and heights of the subsequent peaks for fA ¼ 0:5 are 
more or less the same as for the passive case. But for 
the higher activities they differ from the fA ¼ 0 case. We 
see that with further increase in activity the positions of 
the peaks (second, third, etc.) shift toward left and their 
heights increase, indicating an increase in the local den-
sity. This is also reflected by small shifts of the positions 
of the higher-order peaks toward the left with increasing 
activity.

For our implementation of activity, it is expected that 
as fA increases the velocities of the beads will be stronger 

aligned with each other. Thus, we want to directly quan-
tify how the Vicsek-like alignment activity has an effect 
on the motion of the polymer. This has been done by 
tracking the motion of the center-of-mass of the poly-
mer as well as a tagged monomer in the steady state. The 
center-of-mass of the polymer is defined as 

~rcm ¼
1
N

XN

i¼1
~ri; (14) 

where ~ri is the position of the i-th bead. In Figure 6(a)- 
(d) we plot the corresponding trajectories of ~rcmðtÞ for 
the passive as well as for the active cases during its time 
evolution in the steady state. For the passive polymer the 
trajectory follows a Brownian motion. As expected, the 
motion of the polymer becomes more directed with the 
increase of fA. For the active cases, the polymer travels 
over a longer distance than in the passive case. This fact 
can be appreciated by looking at the ranges of the x, y 
and z axes for all the cases. We also decided to look at the 
behavior of a tagged monomer.[29,31,45] For our analysis, 
without loss of generality, we considered the central 
bead. The trajectories of a tagged monomer show 
a similar trend, i.e., more directed motion, with increas-
ing activity.

Now to look at the behavior of the motion at 
a quantitative level, we calculate the mean-squared-dis-
placement (MSD) of the center-of-mass of the polymer 
as well as of a tagged monomer. The MSD for any object 
is defined as 

MSD ¼ h½~rðtÞ � ~rðt0Þ�
2
i; (15) 

where ~rðtÞ is the position of the object at time t and t0 
represents the starting time of the measurement. Here, 
h. . .i indicates averaging over different values of t0 in the 
steady state trajectory. In general, MSD follows a power- 
law behavior in t, 

MSD , tα; (16) 

where the exponent α ¼ 1 corresponds to diffusive, 
α< 1 to sub-diffusive and α> 1 to a super-diffusive 
motion, whereas for ballistic motion one has α ¼ 2.

In Figure 7 we plot the mean-squared-displacement 
of the center-of-mass MSDcm versus ts ¼ t � t0 for the 
values of fA as considered for Figure 6. Here ts defines 
the translated time, as it resets the time from the instant 
we start following the trajectory. In all the cases, we see 
power-law behaviors with MSDcm , tαcm

s , where αcm is 
the corresponding exponent. For the passive polymer, 
we see an early regime, where the MSDcm follows 
a ballistic-like behavior for a very short time followed 
by a crossover to the diffusive behavior. In these two 
regimes, MSDcm follows power-law behaviors 

Figure 5. Plots of the radial distribution functions gðrÞ versus r 
which is proportional to the likelihood of neighboring beads at 
a distance r, for the passive as well as the active cases for 
N = 512.
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corresponding to t2
s and ts, respectively. Now while 

increasing fA, for fA ¼ 0:5 and 1:0, we see that the initial 
ballistic regime persists longer than in the passive case 

and then it crosses over to super-diffusive behaviors with 
power-law exponents > 1. The corresponding exponents 
for these super-diffusive behaviors are mentioned in the 
figure adjacent to the data sets. To our understanding, 
even though the polymer model considered in Ref. [31] 
is different as to how activity is put in, a similar super- 
diffusive behavior for MSDcm has been observed. 
Interestingly, for fA ¼ 4:0 we see that the motion of the 
polymer becomes completely ballistic and the 
MSDcm , t2

s over the entire time range. We checked 
that with higher values of activity, the motion of the 
polymer remains ballistic but it travels over a longer 
distance within a particular time. Invoking analogy 
with a hard-sphere granular system where the particles 
move in a ballistic manner and align their velocities 
more parallel to each other upon inelastic collisions 
between them,[46] here the polymer moves ballistically 
when the velocities of all the beads are perfectly aligned 
due to the implication of the active force.

In the discussion above we have considered the poly-
mer globule as a single entity by looking at its center-of- 
mass motion. In its globular phase, it will also be inter-
esting to look at the behavior of a tagged monomer. 
Here, in the globular conformation, any bead can be 
visualized as an active particle moving in a crowded 
environment created by the other beads surrounding 
it. For this, we looked at the MSD for the central bead 
of the chain. In Figure 8 we plot MSDcb versus the 
translated time ts, for the same values of fA as in Figure 
7. For these, MSDcb follows a power-law behavior with 
exponent αcb as MSDcb , tαcb

s . Interestingly, for the 

Figure 6. Plots of the trajectories of the center-of-mass of the 
polymer for different values of fA for N ¼ 256 over a period of 
400τ0 in the steady state. Different axis ticks in all the plots 
denote the x, y and z coordinates.

Figure 7. Log-log plot of the mean-squared-displacements of 
the center-of-mass of the polymer (MSDcm) versus time for 
different values of fA. Here the time on the abscissa is denoted 
by ts ð¼ t � t0Þ which measures the translated time. The differ-
ent solid lines show power laws with exponents mentioned next 
to them. All the results are for N ¼ 256.
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passive case, we see that MSDcb shows a sub-diffusive 
behavior with αcb ’ 0:55 much smaller than the corre-
sponding exponent αcm ¼ 1. Similar anomalous diffu-
sion for a tagged monomer has been observed earlier 
also for the collapsed conformation of a polymer 
chain.[45] Now for the lower activity, i.e., with fA ¼ 0:5, 
it shows a diffusive motion with αcb ’ 1:0 although 
MSDcm shows super-diffusive behavior with 
αcm ’ 1:15. For fA ¼ 1:0, the motion of MSDcb becomes 
super-diffusive with αcb ’ 1:65, comparable to the cor-
responding exponent for the MSDcm (αcm ’ 1:7). For 
a much higher activity (i.e., with fA ¼ 4:0) we see MSDcb 
shows a ballistic behavior with αcb ¼ 2 same as αcm. 
Thus, with increasing activity, we see that difference 
between the exponents αcb and αcm decreases. With 
higher Vicsek-like activities when activity dominates 
over the thermal noise, the dynamics is controlled by 
the former. Then, in the steady state, all beads move 
coherently in a particular direction. Thus, the behavior 
of any tagged monomer becomes very much similar to 
that of the center-of-mass of the polymer globule and 
any dissimilarity between the corresponding exponents 
disappears.

CONCLUSION

We have studied the effect of Vicsek-like activity on the 
pseudoequilibrium conformations and dynamics of 
a flexible homopolymer chain undergoing a coil–globule 
transition. To ensure that the temperature remains at 

our chosen value, which is well below the collapse tran-
sition temperature for the passive polymer, a Langevin 
thermostat has been employed during the MD simula-
tion. Due to the active force, the velocities of the beads 
align in a particular direction decided by its neighbors, 
whereas for the passive polymer, the dynamics is mainly 
governed by the force due to thermal fluctuations acting 
on each bead. For the active case there is always 
a competition between this random and the active force.

The microscopic details of the structures were calcu-
lated by looking at the average bond length as well as its 
distribution in the globular conformation. We see that 
the fluctuations in the bond lengths as well as the aver-
age value decrease with the increase in activity. This has 
been confirmed via calculations of the bond length dis-
tribution and the pair correlation function, which is 
more relevant for an experimental measure. As the effect 
of activity is related to the velocity alignment of the 
beads, the polymer with activity shows a more directed 
motion than its passive limit and can travel a much 
longer distance in a given time interval. To check for it 
at a quantitative level, in the globular phase of the poly-
mer, we looked at the mean-squared-displacement of its 
center-of-mass as well as for a tagged monomer. For the 
passive polymer, its center-of-mass shows a diffusive 
motion, whereas the motion of the tagged central bead 
is sub-diffusive. Interestingly, in both cases, this beha-
vior changes with increasing active force over super- 
diffusive to ballistic motion. With higher activity, when 
all the beads are aligned perfectly in a certain direction, 
the motion of the center-of-mass becomes very much 
coherent with that of a tagged monomer. In our model, 
we have considered the solvent effects implicitly using 
the parameter γ. Thus, tuning the value of γ along with 
the active force can give us more control over the motion 
of the polymer in its overdamped limit. In this regard, 
the non-equilibrium kinetics of globule formation will 
also be insightful. Also it can be interesting to look at 
aging properties encoded in its nonequilibrium kinetics. 
These questions we plan to tackle in the future.
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