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Abstract

We investigate aspects of topology in protein folding. For this we numerically simulate the

temperature driven folding and unfolding of the slipknotted archaeal virus protein AFV3-109.

Due to knottiness the (un)folding is a topological process, it engages the entire backbone in

a collective fashion. Accordingly we introduce a topological approach to model the process.

Our simulations reveal that the (un)folding of AFV3-109 slipknot proceeds through a folding

intermediate that has the topology of a trefoil knot. We observe that the final slipknot causes

a slight swelling of the folded AFV3-109 structure. We disclose the relative stability of the

strands and helices during both the folding and unfolding processes. We confirm results

from previous studies that pointed out that it can be very demanding to simulate the forma-

tion of knotty self-entanglement, and we explain how the problems are circumvented: The

slipknotted AFV3-109 protein is a very slow folder with a topologically demanding pathway,

which needs to be properly accounted for in a simulation description. When we either

increase the relative stiffness of bending, or when we decrease the speed of ambient cool-

ing, the rate of slipknot formation rapidly increases.

Introduction

Topological techniques are often very powerful. They are used with great success to analyze

numerous problems in Physics, from theories of fundamental interactions to models of con-

densed matter. Here we propose to introduce topological techniques to study protein folding

and dynamics, where thus far these techniques have been used only sparsely. As an example

we analyze the formation of knots and self-entanglement in protein folding. A knot along a

protein backbone is a delocalized structure, with a definite topological character. A knot can

not be removed by any small amplitude local motion such as twisting, bending or crumpling

of the protein backbone. A knotty self-entanglement persists as long as there is no backbone

chain crossing, and provided the C and N terminals of the protein are not circumnavigated.

For a long time it was thought that there are no, or only very few knotted proteins [1–3].

But subsequently it was found and concluded, that proteins with a knotty self-entanglement

are quite common [3–12] among crystallographic Protein Data Bank (PDB) [13] structures.

Dedicated servers and databases are now being developed to identify, analyze and classify
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knotty protein structures [14–16]. It has been estimated that as many as six per cent of all glob-

ular protein structures display some level of self-entangled complexity [17–19].

Topology is a global, collective property of a system. Thus, in the analysis of topological

structures, such as knotty entanglements in a protein, global techniques that are based on

topological concepts should be preferable. However, the prevailing ambition in the protein

modeling community is to simulate the entire folding process as atomistically as possible,

within the limitations of available computer resources. The commonly available techniques

aim to describe protein folding primarily as a local process, with little if any regard to global

aspects such as the backbone topology. Instead, global aspects of protein structure and dynam-

ics are presumed to only reflect the local character of native contacts, and other local details.

For example, in all-atom simulations the interaction range between individual atoms is com-

monly cut off beyond 10-12 Å, and in Gō-type models the range of interactions can be even

shorter. Since knottiness is not a local, but a global characteristic of a protein backbone, we

suspect that such a preference to localize all interactions is a reason why it appears to be very

hard to simulate the folding of a knotty protein with a high success rate. At least unless one

introduces some kind of bias such as funneling, steering or other method of (global) augmen-

tation [5, 6, 11, 12, 19], to cross the topological barrier.

Here we introduce and develop global techniques, as a complement to the already existing

local ones, to account for topological aspects of protein folding dynamics. For this we scruti-

nize the folding and unfolding processes of a protein with a knotty self-entanglement. Our

approach builds on an effective theory description. We employ a mechanical free energy that

describes the entire protein tertiary structure as a single topological object, in lieu of the indi-

vidual atoms or other highly localized interaction centers. The protein is modeled as a topolog-

ical multi-soliton solution of a nonlinear difference equation that determines the critical

points of a mechanical free energy; the equation that identifies the critical points resembles

the discrete nonlinear Schrödinger (DNLS) equation [20, 21].

Soliton solutions of non-linear difference and differential equations are commonly encoun-

tered when searching for principles of structural self-organization in physical scenarios. The

nonlinear Schrödinger equation is the paradigm equation for describing topological solitons.

In our approach an individual topological soliton models a single super-secondary protein

structure such as a helix-loop-helix or a strand-loop-strand motif. We use the DNLS equation

to combine together several mutually interacting individual soliton profiles into a multi-

soliton that models the entire Cα backbone as a single entity. From the point of view of an

energy landscape description [22], the multi-soliton is a stable attractor in the landscape of

all conceivable protein structures. The mechanical free energy of the DNLS equation funnels

unfolded protein structures to progress towards its minimum energy configuration, described

by the multi-soliton.

Our multi-soliton description is computationally highly effective: When we start from a

random chain, the folding simulation proceeds several orders of magnitude faster than in any

other computational approach to protein folding that we are aware of. Thus we can perform

numerical simulations to analyze the mechanism of protein self-entanglement and the dynam-

ics of knot formation, with a very high level of computational efficiency using a simple laptop

computer.

By its design, our mechanical free energy with its multi-soliton critical points models the

protein backbone at very low temperature, with no consideration to thermal fluctuations. In

order to study the folding and unfolding patterns, we subject the multi-soliton to a series of

repeated heating and cooling simulations. For this we use Monte Carlo methodology and the

Glauber algorithm that we adapt to proteins [23], to describe their non-equilibrium thermody-

namics in the presence of variable ambient simulation temperature. In our simulation we
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follow how a knotted multi-soliton unfolds into a random chain when the ambient tempera-

ture increases. We then continue and follow how the random chain folds and self-entangles

back into the knotty multi-soliton configuration, as the ambient temperature decreases. By

varying the rate of temperature change we identify and investigate the different folding and

unfolding patterns and pathways.

We start and construct a multi-soliton that models the three-dimensional Cα backbone

of the folded AFV3-109 protein as a solution of the generalized DNLS equation. We use the

crystallographic Protein Data Bank (PDB) structure with PDB code 2J6B [24] as a decoy. The

AFV3-109 is an α/β protein that, when folded, supports a self-entangled structure akin the

shoelace slipknot. Even though the slipknot is technically not a proper knot, it has nevertheless

a topological character, with a large degree of structural stability under local backbone defor-

mations; the topological character of the slipknotted AFV3-109 is similar to that encountered

in other, more elaborately self-entangled knotty proteins [6, 17–19]. Moreover, our simulation

results reveal that in the case of the AFV3-109 protein, the formation of the slipknot entails a

trefoil knot as a folding intermediate. The AFV3-109 protein has been studied previously as a

prototype example of a slipknotted protein [6, 24], but these previous simulations have not

reported of an intermediate trefoil structure. On the contrary, it is presumed that a slipknot

itself occurs as an intermediate, along the folding pathway of more complex knot formation,

including a trefoil [6, 17–19].

Methods

We model protein structures in terms of topological solitons [20, 21]. These are extended

objects that emerge as a non-local solution to a set of partial difference equations, and are

topologically stable against decay to a “trivial” solution. The pertinent partial difference equa-

tions describe critical points of an energy function, in an effective theory approach that builds

on the (virtual) Cα protein backbone geometry. For this we use the formalism of discrete

Frenet framing [25]: At the location of the ith Cα atom, a discrete Frenet frame comprises the

mutually orthonormal backbone tangent (ti), binormal (bi) and normal (ni) vectors, as follows

ti ¼
riþ1 � ri

jriþ1 � rij
& bi ¼

ti� 1 � ti
jti� 1 � tij

& ni ¼ bi � ti ð1Þ

where ri (i = 1, . . ., n) are the Cα coordinates. These vectors are subject to the discrete Frenet

equation [25]

niþ1

biþ1

tiþ1

0

B
B
B
@

1

C
C
C
A
¼ expf� yiT2g exp f� �iT3g

ni

bi

ti

0

B
B
B
@

1

C
C
C
A

ð2Þ

Here the θ are the virtual backbone bond angles, they are computed as follows,

yi ¼ arccosðtiþ1 � tiÞ ð3Þ

The virtual backbone torsion angles ϕ are computed as follows,

�i ¼ sign½ðbi� 1 � biÞ � ti� � arccosðbiþ1 � biÞ ð4Þ

The T2 and T3 are 3 × 3 matrices that generate three dimensional rotations with (Ti)jk = �ijk,

the permutation symbol. By substituting (1) in (3), (4) we can compute (θi, ϕi) in terms of the
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Cα coordinates ri. Conversely, when we know (θi, ϕi) and the distances between neighboring

Cα atoms, we can reconstruct the Cα coordinates ri by solving (2). Here we assume that the

distances between neighboring Cα atoms coincides with the average PDB value

jriþ1 � rij � 3:8A
�

Once the Cα position have been determined, the remaining heavy atom structure can be fully

reconstructed from the knowledge of the (θ, ϕ) coordinates [26–31], even in the case of a

dynamical protein [32]. Thus, in the sequel we do not explicitely include the effects of side

chains.

The set of all possible (θ, ϕi) values governs the entire conformational space of the Cα back-

bone. Various effective theory conformational free energy functions have been previously con-

structed in terms of these coordinates. Examples include the fully flexible chain model and its

extensions [33–35], that are used widely in studies of biological macromolecules and other fila-

mental objects. Thus, we also employ the Cα backbone angles (θi, ϕi) of each and every Cα
atom, as the dynamical variables to introduce a refined extension of these earlier models. Ours

is the following mechanical free energy [23, 36–39]

F ¼
X

k2solitons

(
Xn

i¼1

� 2yiþ1yi þ 2y
2

i þ lk ðy
2

i � m2

kÞ
2
þ

dk

2
y

2

i �
2

i

� �

þ

þ
Xn

i¼1

ck

2
�

2

i � bk y
2

i �i � ak �i

� �
g þ

Xn

i>j

Vðri � rjÞ ð5Þ

We refer to S1 File for additional discussion including background and motivation in terms

of integrable models and soliton theory. For the present purposes the following is sufficient:

The mechanical free energy (5) is designed to model the geometry of the natively folded Cα
backbone as its minimal energy critical point:

• The first sum over index i (that labels the n residues) coincides with the energy function of

the discretized non-linear Schrödinger (DNLS) equation in the standard Hasimoto represen-

tation [20].

• The second sum over the index i extends the DNLS energy function in a manner appropriate

for modeling a folded protein: The first term in this sum, with parameter ck, is a Proca mass

term. In combination with the second term of the first sum, it constitutes the Kirchhoff

energy of an elastic rod [34]. The second term, with parameter bk, is the conserved momen-

tum in the integrable DNLS hierarchy. The third term, with parameter ak, is the conserved

helicity in the DNLS hierarchy. These two terms break the parity symmetry, and make the

backbone right-handed chiral (for positive ak, bk).

• The last term in the free energy, a sum over two-body interactions V(ri − rj), models long

distance interactions along the chain. However, a topological soliton is also highly non-local,

it is an extended topological object. Thus the topological multi-soliton that we construct to

model the Cα chain also describes non-local effects due to long range interactions. Thus, to

avoid double counting we include in this last term only a hard-core Pauli repulsion that pre-

vents the chain from self-crossing. For this we use a step-wise profile that keeps any two Cα
atoms at least 3.8 Å apart. We refer to [23] for detailed analysis of different choices V(ri − rj).

• Finally, the sum with index k2solitons extends over all the individual super-secondary loop

segments, such as a helix-loop-helix or a strand-loop-strand motif, that characterize the local

PLOS ONE Knotty proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0244547 January 13, 2021 4 / 17

https://doi.org/10.1371/journal.pone.0244547


Cα geometry. The parameters (λk, mk, ak, bk, ck, dk) have constant values in any individual

motif, but these parameter values are in general different for different motifs, with different

amino acid structures.

Note that all the contributions in (5) are functionals of the various tangent vectors ti: For

the (θi, ϕi) dependent terms this follows from (1), (3) and (4) and for the last term we use

ri � rj ¼ ti� 1 þ � � � þ tj ði > jÞ

Accordingly, the free energy (5) can be interpreted as a leading order contribution in a system-

atic expansion of a full, complete free energy that depends on the various two-body interac-

tions, through the distances ri − rj between all point-like interaction centers, expressed in

terms of the tangent vectors ti.

To determine the various parameter values, we demand that the minimum energy critical

point of (5) describes the natively folded Cα geometry, with a prescribed precision. The critical

points of (5) are topological soliton solutions of the following generalized DNLS equation [40,

41],

dF
dyi

¼ 2ð2yi � yiþ1 � yi� 1Þ þ 4lkðy
2

i � m2

kÞyi þ ðdk�
2

i � 2bk�iÞyi ¼ 0 ð6Þ

dF
d�i

¼ ðdky
2

i þ ckÞ�i � bky
2

i � ak ¼ 0 ) �i ¼
bky

2

i þ ak

dky
2

i þ ck

ð7Þ

An individual topological soliton models a segment in a super-secondary structure such as a

helix-loop-helix or a strand-loop-strand motif with constant i.e. fixed-k parameters. For exam-

ple, a right-handed α-helix has

a � helix :

(
y �

p

2

� � 1

and for the β-strand

b � strand :

(
y � 1

� � p

A single soliton is characteristically a loop structure that interpolates between different regular

structures such as α-helices and β-strands. But a long loop can also accommodate more than

one single soliton. Along an individual single soliton structure the values of (θi, ϕi) are variable

while the parameters λk, mk, ak, . . . have constant values, over the entire single soliton. The

multi-soliton solution of (6, 7) combines the individual solitons into a single structure that

models the entire protein tertiary structure, with different sets of k-dependent parameters that

correspond to the different individual soliton segments. The number of individual soliton pro-

files that are introduced, depend on the desired precision of the multi-soliton: An increase in

the number of individual solitons increases the number of parameters, and improves the preci-

sion. Since an individual soliton generically extends over several amino acids, the number of

parameters in the multi-soliton is usually comparable to, in fact often even smaller than, the

number of amino acids in the protein that it describes. A multi-soliton profile that describes

a crystallographic protein structure with its experimental resolution, has usually far fewer

parameters, and accordingly also much more predictive power, than e.g. Gō-like structure

PLOS ONE Knotty proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0244547 January 13, 2021 5 / 17

https://doi.org/10.1371/journal.pone.0244547


based models. In particular, the free energy function (5) does not engage any network of native

contacts between individual atoms or other localized interaction centers.

We aim to describe (un)folding experiments where the protein folding and unfolding pro-

cesses are controlled by temperature variations, rather than by e.g. pH variations, or denatur-

ants such as inorganic salts and organic solvents. This also sets our approach apart from Gō
models [5, 6] that fold the protein at a constant temperature.

There are many techniques to simulate temperature variations, and here we use a Markov-

ian Monte Carlo algorithm. For the Monte Carlo update there are different alternatives, and

we refer to [23] for a comprehensive algorithm comparison in the present model. We adopt

the following variant: At each Monte Carlo step n we independently change either the torsion

angle ϕi or the bond angle θi at a randomly chosen site i and compute the ensuing change ΔF
in the free energy (5)

DF ¼ Fðynþ1
; �

nþ1
Þ � Fðyn

; �
n
Þ

We then use a version of the Glauber algorithm [23] to determine the transition probability P
between the two states

P ¼
e� bDF

1þ e� bDF
ð8Þ

In our simulations we adiabatically decrease and increase the value of the temperature factor β,

to simulate heating and cooling. Note that the inverse Monte Carlo temperature factor β−1 can

not be directly identified with the physical temperature factor kB T where kB is the Boltzmann

constant and T is the ambient temperature measured in Kelvin. But for an equilibrium distri-

bution the two can be related by methods of renormalization, as described in [42].

When the number of updates increases and the value of β is kept fixed, the Glauber algo-

rithm is known to approach the Gibbsian equilibrium distribution at an exponential rate.

Moreover, the Glauber algorithm models pure relaxation dynamics that for simple systems

reproduces Arrhenius’ law. At the same time, small proteins are known to fold according to

Arrhenius’ law [47].

In the case of the torsion angles ϕi the change in their values at each Monte Carlo step is

calculated according to

�
nþ1

i ¼ �
n
i þ

p

2
R ð9Þ

where R is a random number with normal distribution centered at R = 0 and with dispersion

ΔR = 1. The backbone bond angles θi are known to be much stiffer than the torsion angles ϕi.

For this reason we calculate the change in their values using the heat bath algorithm described

in [23]. Accordingly y
nþ1

i is determined in terms of θn using a random number with probability

distribution

Py ¼
1

Zy

e� bhbFy ð10Þ

in the interval [0, π) where Fθ is computed from all the θ-dependent terms in (5). We relate the

parameter βhb to the inverse Monte Carlo temperature factor β and in our production simula-

tions we use βhb = 1013β.

The simulation algorithm consists of three stages; heating, thermalization and cooling.

After each step we change the value of β in (8), by multiplying it with a constant, and the

value of the constant determines the rate of heating/cooling. During the high temperature
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thermalization stage the number of Monte Carlo steps is always fixed to 7×106 steps and in this

stage the value of β remains constant. During heating and cooling the number of steps can be

variable and in the simulation described here we have 480×106 steps.

A full simulation ensemble consists of 1.000 independent heating and cooling cycles at the

given temperature factor value. At the end of each simulation cycle we screen the final confor-

mation for slipknotted structure using a variety of distance measures. These include the overall

RMS distance between the final simulated structure and its crystallographic target, in combi-

nation with distances between individual key residues. In borderline cases we resort to visual

inspection of the final structure, in order to detect/confirm the presence (or absence) of a knot-

ted configuration.

In the case of the archaeal virus protein AFV3-109 studied here, the Protein Data Bank

structure 2J6B that we use as a decoy for constructing the multi-soliton solution has 109

amino acids. The core of this α/β protein consists of a β-sheet with five β-strands that are con-

nected by helices and loops. The residues 78-106 make up a looped segment that is threaded

into a slipknot through a knotting loop that consists of residues 8-77: The Fig 1 shows the slip-

knot structure.

For identifying the soliton profiles we use the software GaugeIT and for determining the

parameter values we use the software Propro. Both are accessible through https://protoin.ru/

propro/index.php.

Results

We have constructed the multi-soliton that describes the Cα backbone of 2J6B as a minimum

energy critical point of the mechanical free energy (5). According to [24] there are 3 helical

and 5 strand-like regular segments in the crystallographic structure. Thus, including the C and

N terminals, there are at least 9 individual loops along the relatively short backbone This sug-

gests us to start and introduce a division of the Cα backbone into 9 individual solitons. How-

ever, a scrutiny of the crystallographic 2J6B structure reveals that it has a more complex

geometry. There are relatively long loops between residues 6-18, 57-74 and 81-91, and some

of the β-strands are slightly bent. In order to describe the backbone with a precision that is

Fig 1. A cross-eye 3D view of the AFV3-109 (PDB code 2J6B), the yellow knotting loop extends over residues 8-77

and the red threaded slipknot consists of residues 78-106.

https://doi.org/10.1371/journal.pone.0244547.g001
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comparable to the resolution of the crystallographic structure we then introduce additional

soliton structures: We identify a total of 20 individual soliton profiles, with the long loops com-

prising more than a single soliton each and the β-strands supporting a soliton that accounts

for their bending. In the S1 File we present the parameter values of the free energy function (5)

that supports the multi-soliton solution as its energy minimum. The Fig 2 Panels a)-c) summa-

rizes the multi-soliton model we have constructed. Fig 2a) shows an overlay comparison

between the Cα trace of the PDB structure 2J6B and its multi-soliton model. The root-mean-

square-distance (RMSD) between the two is 1,23 Å, comparable with the reported resolution

1.3 Å of the experimental structure. Fig 2b) shows a comparison of the Cα trace bond angles

(3) and torsion angles (4) between the PDB structure and its multi-soliton model. Fig 2c) iden-

tifies the secondary structures (according to PDB) and shows how we divide them into 20 indi-

vidual solitons.

Fig 3 show our results for a particular heating and cooling simulation. (In the Fig 6b) we

identify this simulation with an arrow, among all the displayed simulations).

The heating always starts from the multi-soliton that models 2J6B; the folding events we

observe are fully reversible. The solid lines in the Fig 3 denote the evolution of the mean value

over all structures in the simulated ensemble. The spread around each solid line shows the

extent of one standard deviation around the mean. We note that in the high temperature stage

we have random structures that reside in the phase of a self-avoiding random walk, with no

regular structural details and in particular no structural resemblance to the folded

conformation.

The lower horizontal axis in the Fig 3 gives the logarithmic value of the temperature factor

β during the simulation. The upper horizontal axis gives a corresponding Celsius value, that

we deduce from a comparison with myoglobin simulations in [43]; the Celsius value should

not be taken literally, it is intended to be suggestive, and for an accurate comparison between

the simulation temperature and the corresponding Celsius value additional folding and

unfolding experiments need to be performed over an extended range of temperature values.

For a detailed analysis how to derive a relation between the temperature factor β and the physi-

ological temperature value measured in Celsius, we refer to [42].

The Fig 3a) and 3b) show temperature dependence of the Cα root-mean-square distance

(RMSD) between the 2J6B crystallographic structure and the multi-soliton, during the heating

a) and cooling b) phases of the simulation. The final average RMSD value shown in the Fig 3b)

at the end of the cooling has *1.3 Å deviation from the initial multi-soliton, with *2.5 Å
one-sigma spread around the average. This deviation is comparable to the resolution in the

experimental data; notably the final ensemble of our simulation includes all the final struc-

tures, including the small portion of configurations that do not support a slipknot. In Fig 3c)

and 3d) we show the corresponding results for the radius of gyration value Rg.

In the Fig 3e) we show the evolution of Rg at low temperatures, during the very early stages

of the heating simulation. We observe a very slight but systematic initial decrease in the Rg

value. This means that when the chain starts unknotting, its effective volume initially shrinks,

before the chain then expands and unfolds: The initial slipknotted multi-soliton structure

appears to be (slightly) swelled in comparison to an unknotted but collapsed structure, even

though the free energy of the slipknot has a lower value. As shown in Fig 3f) we observe a

corresponding, systematic but very small increase of Rg i.e. swelling at the end of the cooling

period, before the energy minimum is reached.

Even though the swelling is very small in terms of the radius of gyration value Rg, at the

visual level of the structure the effect is much more clear. The Fig 4 shows a structure at the

minimal value of Rg together with the fully folded conformation; the configuration with mini-

mal Rg value appears more compact.
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Fig 2. Panel a) shown overlay comparison of PDB structure 2J6B (red) and its multi-soliton structure (blue). The RMS

distance between the two structures is 1.23 Å. Panel b) shows the virtual Cα trace bond and torsion angles, for the PDB

structure 2J6B and for its multi-soliton model. Panel c) is a cross-eye 3D view that identifies the secondary structures

of 2J6B, together with the individual soliton centers.

https://doi.org/10.1371/journal.pone.0244547.g002
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Fig 3. Panel a) shows the evolution of radius of gyration Rg of the multi-soliton during the heating stage, and Panel b)

shows the Rg evolution during the cooling stage. The solid line shows the mean value of the simulation ensemble that

consist of 1.000 independent cycles, and the spread denotes one standard deviation. Panel c) and d) show the corresponding

results for the root-mean-square distance (RMSD) to the multi-soliton solution. Panels e) and f) are close looks to the Rg
values, at early/late stages of heating/cooling. There is a clear albeit very slight shrinking at the beginning of the unfolding

process, and a similar swelling just before the final slipknot forms. The unfolding always starts from the multi-soliton. But

for folding statistics the entire simulation ensemble is included, including those that do not form a slipknot.

https://doi.org/10.1371/journal.pone.0244547.g003
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A swelling that is caused by knottiness has been previously reported in an analysis of knot-

ted crystallographic PDB structures [44].

We have analyzed the folding and unfolding transitions by following the temperature

dependent fluctuations Δϕ in the values of the torsion angle (4). In terms of Δϕ the initial

unfolding process appears to start at the location of the β-bridge that is centered at the proline

with PDB residue number 61. In Fig 5a) we show how initially, at very low temperature values,

the amplitude of the thermal fluctuations Δϕ(61) slowly increases. This increase coincides with

the decrease in the radius of gyration Rg shown in Fig 3e) and at the same time we observe that

the slipknot starts opening. When the temperature factor reaches a value log10 β� 13.0 we

observe a sharp order-disorder transition in the fluctuation amplitude Δϕ(61). At this β-value

the slipknot opens, and becomes converted into a trefoil knot shown in Fig 5b); see also S1

Movie. When the temperature factor further increases, the trefoil unknots and the chain starts

unfolding, with a rapid, sharp increase in the radius of gyration value Rg as shown in Fig 3e).

The folding transition proceeds similarly but in the opposite direction, the slipknot forms

through an intermediate trefoil knot.

The Fig 6a) shows the simulated temperature dependence in Δϕ along the entire chain. The

first entire regular structure that melts is the β-strand that is located between PDB residues 74-

80. This strand forms the edge of the looped segment that is threaded into a slipknot. In gen-

eral, the β-strands appear to unfold at lower temperatures than the α-helices, and the third α-

helix between residues 93-99 appears to be the last to unfold as temperature increases.

Previous authors have investigated the folding of knotted proteins, mostly using different

variants of Cα structure based Gō models. These authors do not report on trefoil knot folding

intermediate, but they report significant difficulties in reaching the natively folded knotty

conformation. Apparently, a knotted fold either does not appear at all [5] without the help of

funneling or other kind of augmentation during the folding process, or then it occurs only

very rarely, in about 1-2% of folding simulations [6] (2.8% in the case of AFV3-109 [6]). We

have performed a series of folding and unfolding simulations under different conditions and

Fig 6b) summarizes our results: When cooling proceeds very quickly the relative number of

slipknots is small. However, when the cooling process becomes progressively slower, the num-

ber of slipknotted final conformations increases rapidly and as shown in the Fig 6b) we reach

Fig 4. The Panel a) shows the native folded conformation, and the Panel b) shows the conformation with the

minimal Rg value.

https://doi.org/10.1371/journal.pone.0244547.g004
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around 95 per cent success rate in the long and slow cooling simulations that we have per-

formed. Thus we conclude that the slipknotted AFV3-109 is a slow folder [45, 46], proceeding

through a trefoil knot folding intermediate. Moreover, since we observe both a trefoil knot

folding intermediate and a light swelling at the final stages, the folding of AFV3-109 is not a

pure relaxation (Arrhenius) process [47].

Fig 5. The Panel a) shows the initial increase in the thermal fluctuations Δϕ61 of the torsion angle located at the

proline with residue number 61 (the mean value of ϕ61 and its one standard deviation at the given log10(β) value). The

peak that is visible at log10(β) * 13 − 12.5 identifies the β-values where we observe an intermediate trefoil knot. The

Panel b) shows the trefoil knot folding intermediate identified in the Panel a). The Panel shows that the trefoil knot

forms, when the C-terminal of the looped segment pulls out from the knotting loop.

https://doi.org/10.1371/journal.pone.0244547.g005
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Fig 6. Panel a) characterizes the thermal fluctuations Δϕ in the torsion angle values along the entire chain during the

entire heating stage. The Δϕ value is defined as the difference between the native value of the torsion angle ϕ and the

ensemble average of the corresponding angle at the given log10(β) value. The β-bridge with residue 61, together with

the segments 74-80 and 93-99 discussed in the text, have been marked. Panel b) shows the relative number (in

percentage) of slipknotted structures in the final folded ensemble, as a function of Monte Carlo steps after one full

heating-cooling cycle. The arrow identifies the ensemble that we have analyzed in detail; in this ensemble around 94

per cent of final structures fold into the slipknotted multi-soliton of 2J6B. A movie that shows the (un)folding of a

slipknotted structure can be found in S1 Movie. There we also show two examples of misfolding trajectories. In the S2

Movie with no knotted structure in the final stage, and in the file S3 Movie the misfolded state is a trefoil. Misfolding

into an unknotted structure is a generic misfolding event. Despite appearing as a folding intermediate, a misfold into a

trefoil final conformation is a very rare event in our simulations.

https://doi.org/10.1371/journal.pone.0244547.g006
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Finally, when we increase the relative stiffness of the bond angles, the rate of the slipknotted

final conformations increases: We always observe both the trefoil folding intermediate and the

slipknot final fold, at the end of our long and slow simulations in the limit where the bond

angles have constant values during the entire heating and cooling process, when only torsion

angles are truly mobile. In actual proteins the virtual Cα backbone bond angles are known to

be very stiff and the torsion angles are known to be quite flexible. Our simulation results show

that when one properly accounts for the relative stiffness/flexibility of the bond and torsion

angles, the Cα backbone of AFV3-109 practically always folds into a slipknot; misfolded con-

formations are indeed very rare.

Conclusions

Topology and in particular self-entanglement play an important role in protein folding and

dynamics. But topological effects are difficult to investigate. Moreover, conventional simula-

tion approaches aim to describe a protein and its folding as a local process, at atomic level pre-

cision. Due to limitations in available computational resources it then becomes very difficult

to detect large scale collective motions and global, topological phenomena in the conventional

simulation approaches. Nevertheless, knotty and other kind of self-entanglements are often

important to protein stability, and presumably also important for the correct biological func-

tion. Thus there is value to develop global, topological approaches to protein folding and

dynamics, as a complement to local, atomic level scrutiny based approaches.

We have developed a global technique that is rooted on topological concepts, to analyze

and describe the formation of topological structures in proteins, in particular aspects of knotti-

ness and self-entanglement. For this, we have modeled the entire Cα backbone of a protein in

terms of a single topological multi-soliton entity; the multi-soliton describes the minimum of a

mechanical free energy. As a case study, we have investigated the folding and unfolding of the

slipknotted AFV3-109 protein, instigated by variable ambient temperature, using powerful

state-of-art Monte Carlo techniques of non-equilibrium thermodynamics. We have found that

the multi-soliton describes the formation of the slipknot very accurately, and we are able to

describe the folding pathways and make predictions on the physical origin of knot formation.

In paricular, we have been able to observe a trefoil knot as a folding intermediate. Our results

demonstrate the value of developing global approaches to protein folding and dynamics; global

approaches are highly accurate, and even though they may lack in atomic level details they

appear to correctly capture the global, topological aspects of self-entanglement during protein

folding and dynamics.

Supporting information

S1 File. Theoretical/Technical background and data file.

(PDF)

S1 Movie. Unfolding of slipknotted structure, with increasing temperature, as described in

the text.

(MP4)

S2 Movie. Misfolding into an unknotted structure; this is generic misfold, see Fig 6.

(MP4)

S3 Movie. Misfolding into a trefoil structure; this is a very rare misfold event, see Fig 6.

(MP4)
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