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Abstract

The interplay of the isotropic-nematic transition and phase separation in lyotropic

solutions of two types of semiflexible macromolecules with pronounced difference in

chain stiffness is studied by Density Functional Theory and Molecular Dynamics sim-

ulations. While the width of the isotropic-nematic two-phase coexistence region is

narrow for solutions with a single type of semiflexible chain, the two-phase coexis-

tence region widens for solutions containing two types of chains with rather disparate

stiffness. In the nematic phase, both types of chains contribute to the nematic order,

with intermediate values of the order parameter compared to the corresponding single

component solutions. As the difference in bending stiffness is increased, the two chain

types separate into two coexisting nematic phases. The phase behavior is rationalized

by considering the chemical potentials of the two components and the Gibbs excess

free energy. The geometric properties of the chain conformations under the various

conditions are also discussed.

1 Introduction

Blending two different types of polymers may yield materials with some properties superior

to those of their constituents.1–5 However, discussions in the literature focused almost ex-

clusively on the behavior of mixtures of two flexible polymers. In fact, typical theoretical

treatments of polymer miscibility along the lines of the standard Flory-Huggins theory1–7

do not consider at all whether or not there is an effect of polymer chain stiffness on the

mixing behavior. Semiflexible polymers are an interesting class of materials for various ap-

plications due to their liquid crystalline phases,8–10 such as fibers with high tensile strength,8

etc. Solutions containing different kinds of semiflexible biopolymers, e.g., actin filaments and

microtubules, play also an important role in various biophysical/biochemical contexts.11–13

While suspensions of different kinds of viruses, which can be considered as almost completely

rigid rods, have been studied both experimentally14 and theoretically,15,16 (binary) mixtures
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of less stiff semiflexible macromolecules in a good solvent have been only rarely considered.17

The processing of polymer blends often begins with the preparation in a common sol-

vent. If a semiflexible polymer in solution exhibits a transition from the isotropic phase

to the nematic phase, then the location of this transition depends distinctly on chain stiff-

ness.8–10,18–20 In lyotropic solutions, where all monomer-monomer interactions are purely

repulsive, the transition is solely driven by entropic effects.18–26 Thus, even in a good sol-

vent a nontrivial and interesting phase behavior arises for solutions containing two different

semiflexible polymers. While the phenomenological Flory-Huggins theory of polymer misci-

bility was extended to ternary systems (polymer A–polymer B–solvent) in early work27 and

corresponding measurements on such systems were reported as early as 1947 for 35 pairs

of polymers in various solvents common to both polymers,28 mostly more or less flexible

polymers were considered. Somewhat more recent work on the phase behavior of liquid crys-

talline polymer blends in a common solvent was reviewed by Dutta et al.29, but a systematic

study of the properties of such systems is not yet available. So far, theoretical work has

mostly focused on thermotropic systems, where phase separation is driven by temperature,

or on the extreme case of suspensions of flexible polymer coils plus hard rods30–35 or binary

mixtures of hard rods.34,36

In this work, we focus on the case of two semiflexible polymers where one constituent has

a persistence length (`p) comparable to the contour length (L) of the chain, while the other

constituent has a distinctly larger but finite persistence length. Thus, the considered situ-

ation is complementary to the case of solutions where both polymers have contour lengths

much larger than their persistence lengths, as studied in the pioneering work of Semenov and

Subbotin.17 We occasionally include the case of fully rigid rods in our comparative study

too, in order to emphasize the point that chains with large but finite `p/L � 1 still differ

significantly from the limit of fully rigid rods (`p/L → ∞). We present computations for

generic coarse-grained models, such as tangent hard sphere chains or bead-spring models,

both complemented by a suitable bond-angle potential to include the chain stiffness. We
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assume the same perfect solvent quality for both polymers, so apart from the disparity of

persistence length there are no interactions that distinguish them. We study these models

by Density Functional Theory (DFT)26,37 and Molecular Dynamics (MD) simulations, ob-

taining typical phase diagrams with mole fraction of the stiffer polymer and total monomer

concentration as control variables. We pay particular attention to the properties of the pos-

sible nematic order and its effect on the chain conformations in these systems. In this way,

we elucidate the interplay of mixing behavior and nematic order.

In most real solutions containing two types of semiflexible polymers, however, one will

encounter a much more complicated situation: electrostatic interactions due to ions in the

solution and (partial) charges on the effective monomeric units, disparity in size and shape

of these units, different Flory-Huggins parameters for both polymers etc. may exist in

addition to the difference in persistence lengths. Therefore, isotropic-isotropic (I-I) phase

separation competes with the isotropic-nematic (I-N) phase separation in some systems.29

While our model calculations are somewhat too restrictive to describe real experimental

data, we consider it as a key advantage of our coarse-grained model that the effects of these

various contributions can be separately studied. Hence, we can isolate their influence on

the observed phase behavior and relevant physical properties, which helps to improve our

understanding of these complex materials.

2 Models and Computational Methods

We consider two types of polymers A and B, which have equal contour lengths LA and LB

as well as identical sizes of their effective monomeric units. The only asymmetry of these

two constituents is a mismatch between their persistence lengths, `Ap < `Bp . Solvent particles

are not explicitly included, but instead their effect is included implicitly in the effective

(pairwise) interaction between the monomeric units (details provided below). Considering

lyotropic solutions only, these interactions are purely repulsive and identical for the A-A,
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A-B, and B-B pairs. According to the quasi-atomistic interpretation of the Flory-Huggins

χ interaction parameter in solution, χ would be proportional to the difference in repulsion

energies1–6

εAB − (εAA + εBB)/2 = 0 (1)

since εAA = εAB = εBB for this choice of excluded volume interaction. Following this

reasoning, no unmixing would be expected.

Alternatively, a quasi-macroscopic interpretation of χ can be adapted in terms of an

effective contribution to the total free energy of mixing, where χ is defined by1–6

∆Fmix

kBT
=
φA

NA

lnφA +
φB

NB

lnφB + χφAφB, (2)

where φA and φB are volume fractions taken by the effective monomeric units on some

underlying lattice. In this picture, the physical origin of the deviation of the free energy of

mixing from the expression for an ideal mixture is not specified, and hence χ can become

nonzero due to nontrivial entropic effects when a stiffness disparity is present.38–40 We shall

analyze to what extent such effects matter for our model.

In our DFT calculations, we model the polymer chains as a sequence of NA = NB = N

tangent hard spheres of diameter σA = σB = σ, so that the contour length is L = (N − 1)σ

for both species.26 Bending stiffness is included through the potential

Ubend(θijk) = εbend[1− cos(θijk)] (3)

where θijk is the bond angle formed by the two bond vectors ai = rj − ri and aj = rk − rj

between the three subsequent monomeric units i, j, and k. The interaction strength is set

by the parameter εbend, which controls the persistence length `p. The latter is normally

introduced as5

〈ai · ai+s〉 ∝ exp (−s`b/`p) (4)
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for s = 1, 2, 3, . . . , and s`b � `p, with (average) bond length `b. For κ ≡ εbend/(kBT ) & 2

and polymer concentrations in the isotropic regime, one finds

`p ≈ `bκ . (5)

For the MD simulations, we describe the excluded volume interactions through the purely

repulsive Weeks-Chandler-Andersen (WCA) potential41

UWCA(r) =


4ε
[(

σ
r

)12 − (σ
r

)6]
+ ε, r ≤ 21/6σ

0, r > 21/6σ

, (6)

where ε ≡ kBT controls the strength of the interaction.

Bonds between neighboring monomeric units are realized through the finitely extensible

nonlinear elastic (FENE) potential42

UFENE(r) =


−kr20

2
ln

[
1−

(
r
r0

)2]
, r < r0

∞, r ≥ r0.

(7)

The spring constant is chosen as k = 30 ε/σ2 and the maximum bond length is set to

r0 = 1.5σ, resulting in an average bond length of `b ≈ 0.97σ for both polymer types. The

contour lengths of the polymers are then L = (N−1)`b ≈ (N−1)σ, which are close to those

of the tangent hard sphere chain.

Bending stiffness is included using the same potential Ubend as in in our DFT model [see

Eq. (3)]. The difference in bending stiffness κA < κB is the only parameter distinguishing

the two polymer types. As a result, the conformations of A chains and B chains at given

osmotic pressure P (or volume fraction φ of effective monomeric units) differ, due to the

difference in stiffnesses κA < κB [or persistence lengths, cf. Eq. (5), respectively]. In the

occurring nematic phases, the nematic order parameters SA and SB of A and B chains also
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differ. These differences are particularly significant if the stiffness disparity is large, and

hence we focus on this case in the present paper. Further, unless stated otherwise explicitly,

we consider semiflexible polymers consisting of NA = NB = N = 16 monomeric units.

In the MD simulations, the monomeric units are assigned a mass mA = mB = m,

and a barostat43,44 or standard Langevin thermostat42 is applied to realize NPT or NV T

ensembles, respectively (N being the total number of monomeric units). With our choice of

units, the intrinsic MD time unit is τMD =
√
mσ2/ε, and the time step for the numerical

integration of motion was ∆t = 0.005 τMD. Simulations were performed in rectangular boxes

with periodic boundary conditions throughout. Starting configurations were generated by

placing stretched out chains in the simulation box. Initially, all bond angles were zero and

the chains were oriented along the z-direction. The number of chains was chosen according

to the desired average density in the box and composition XB corresponding to the chemical

nature of the chains as A or B in this state. The systems contained typically N = 105 to 106

particles, and simulations were performed for 108 to 109 integration steps to achieve proper

equilibration and the necessary statistical accuracy. This runtime was long enough so that

individual chains could diffuse throughout the box, irrespective of whether the system was

in the isotropic or nematic phase. This large computational effort was possible due to the

availability of graphics processing units (GPUs) employing the HOOMD-blue software.45

For homogeneous systems of one kind of semiflexible chains, DFT is based on the mini-

mization of a free energy functional F using the orientational distribution function f(ω) of

the bond vectors (ω stands for their two polar angles). This free energy functional contains

an ideal part and an excess part. The latter (when normalized per molecule) can be written

as

FexcN/(NkBT ) =
ρmol

2

∫
dω

∫
dω′f(ω)f(ω′)Vexcl(ω, ω

′) , (8)

where ρmol = ρ/N is the molecular concentration, and Vexcl(ω, ω
′) is the excluded volume be-

tween the monomers of two chains with orientations ω and ω′, respectively. While Vexcl(ω, ω
′)

can be obtained analytically in the limiting case of rigid rods46, it can only be obtained ap-

7



proximately for semiflexible polymers (e.g. Ref. 18–26).

While a treatment in terms of the second virial approximation suffices for suspensions

of long thin hard rods, Eq. (8), the extension to solutions of semiflexible polymers is highly

nontrivial for several reasons: (i) for long thin hard rods the onset of nematic order occurs

already at small ρmol so that effects due to higher order virial coefficients are negligible. For

semiflexible polymers, however, this transition to nematic order shifts to higher concentration

with decreasing chain stiffness, and therefore the second virial approximation no longer

suffices. (ii) The orientation of a hard rod is fully characterized by the two polar angles

symbolically denoted by ω, but a separate degree of freedom is needed to describe the

orientation of each bond vector of the chain molecule (or the tangent vector along the contour

r(s) if one uses the Kratky-Porod continuum approximation of the polymer in terms of a

space curve r with coordinate s along this curve).

There are different ways to deal with this issue: Khokhlov and Semenov21,22 and later

Odijk23 and Chen24 based their treatment on the Kratky-Porod model in an effective field

provided by the other chains, still relying on the second virial approximation. It is believed

that this theory (which requires extensive numerical work24) is accurate when `p/`b � 1,

and then `p/L is a single nontrivial parameter of the theory. However, an accurate extension

to chains of intermediate stiffness `p/`b ∼ O(10), where effects due to higher order virial

terms would matter, is not known. In this work, we adapt the alternative approach proposed

by Fynewever and Yethiraj,47 where the semiflexible chains are coarse-grained to effective

rod-like objects. In that model, Vexcl(ω, ω
′) in Eq. (8) describes the excluded volume between

two chains. Then, the angles ω and ω′ describe the average orientation of the entire chains,

characterized by the vector belonging to the smallest eigenvalue of the moment of inertia

tensor. One can simplify the description further noting that Vexcl does not depend on the

two chain orientations separately, but only on their relative angle ϑ. For very thin hard rods
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of length L/σ � 1 (with rod diameter σ), Vexcl(ϑ) has a simple analytic form:

Vexcl(ϑ) = 2σL2 sin(ϑ). (9)

When the thickness of the rod is non-negligible, one finds46

Vexcl(ϑ) =
[
2σL2 + (π/2)σ3

]
sin(ϑ) + [(π/2)(1 + |cos(ϑ)|) + 2E(sin(ϑ))]σ2L, (10)

with E(sin(ϑ)) =
∫ π/2
0

[1− sin(ϑ)2 sin(ϕ)2]
1/2

dϕ being the complete elliptic integral of the

second kind.

For semiflexible chains, Vexcl is a nontrivial quantity which needs to be computed numer-

ically, e.g., by Monte Carlo (MC) calculations.47 In practice, Vexcl is determined for seven

relative orientations 0 ≤ θ ≤ π/2, and then fitted to a function to interpolate between these

points47

Vexcl(γ) = c1 + c2
[
1− c3 cos(ϑ)2

]1/2
(11)

with fitting constants c1, c2, and c3. The resulting excluded volume is also proportional to

L2, as for the case of two rigid rods [cf. Eq. (10)], but there are several distinct differences

which will be discussed below.

Figure 1(a) shows how Vexcl(ϑ) changes with varying persistence length. For ϑ near π/2,

the data for large `p are close to the rigid rod limit. However, the intercept at ϑ = 0 is much

larger for a pair of semiflexible polymers compared to a pair of rigid rods, and the increase

of Vexcl near ϑ = 0 is quadratic in ϑ rather than linear. This difference can be understood

when one considers that the individual bond vectors are not strictly parallel to the average

orientation of the whole chain, so the choice ϑ = 0 is not qualitatively distinct from small

non-zero values of ϑ. Further, the transverse linear dimension `t of semiflexible chains (see

Ref. 48 and references therein) is distinctly larger than unity. We speculate that these factors

enter the prefactor of the correction term for ϑ = 0. Similarly, the leading term no longer has
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Figure 1: (a) Excluded volume for five different values of κA = κB, as indicated. (b)
Difference in Vexcl between a pair of semiflexible chains with κA = κB and a pair of stiff rods
at angles ϑ = 0 and ϑ = π/2. The blue dashed line shows κ−1/2 while the red dashed line
shows κ−1. (c) Average number of chain contacts for the semiflexible cases as shown in (a).
(d) Excluded volume for κA = 24 and κB = 128 and compared to the average (see text).
The inset shows the difference in excluded volume, ∆V/2 = [V AB

excl(ϑ) − V avg
excl (ϑ)]/2, for the

two cases κA = 24, κB = 128 and κA = 24, κB =∞.

a prefactor 2σL2 + (π/2)σ3 [cf. Eq. (10)], but is reduced due to chain bending. For instance,

the mean squared end-to-end distance in the above-mentioned examples is 〈R2
e〉 = 204σ2

(κ = 128) and 〈R2
e〉 = 173σ2 (κ = 16) rather than L2 = `2b(N − 1)2 = 212σ2.

A closer examination of Vexcl(ϑ = 0) and Vexcl(ϑ = π/2) [Fig. 1(b)] shows that for ϑ = π/2

the data converge to the rod limit from below with a variation proportional to 1/`p. This

behavior is plausible, since the mean squared end-to-end distance of a flexible rod is reduced

from the rigid rod limit by a correction of order 1/`p according to the Kratky-Porod model.

In contrast, for ϑ = 0 the convergence to the limiting rod-like behavior is much slower, and

follows a 1/
√
`p law. This behavior can be understood if we recall that only for a pair of

rigid rods ϑ = 0 means that the rods are strictly parallel, while for a pair of semiflexible
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polymers bond vector orientations deviate from the orientation of the whole chain by an

amount of order
√
L/`p, for `p/L � 1 according to the Kratky-Porod model. Finally, we

also draw attention to the fact that not only a single pair of monomer-monomer contacts

contributes to the second virial coefficients between chains, but also a fraction of cases occur

where several contacts contribute [Fig. 1(c)].

In our previous work,26,49,50 we have used numerical MC results for Vexcl(ϑ) between

two isolated chains47 which then were appropriately rescaled.26 In that case, DFT can be

straightforwardly implemented to minimize the free energy functional and hence locate the

I-N transition. However, the nematic order parameter S derived in this way refers to the

chain ordering as a whole, and not to the order parameter Sb associated with individual

bond vectors. As discussed by Tortora and Doye,51 S typically exceeds Sb distinctly. It also

has been suggested that the excluded volume interactions shown in Fig. 1 (calculated from

two unconstrained chains in a large volume) is only accurate in the isotropic phase, since

the stretching of the chains in the nematic phase along the director is not accounted for.49

While in our binary systems the excluded volume interactions between two monomeric

units does not depend on the type of pair {AA, AB, and BB}, this is, however, no longer

true when we consider Vexcl between two coarse-grained chains. In this case, we must dis-

tinguish between V AA
excl (ϑ), V AB

excl(ϑ), and V BB
excl(ϑ), which contain the information on the dif-

ferent chain stiffnesses κA and κB. In Fig. 1(d), we compare the actual excluded volume

interaction V AB
excl(ϑ) between a pair of chains with κA = 24 < κB = 128 with the average

V avg
excl (ϑ) =

[
V AA
excl (ϑ) + V BB

excl(ϑ)
]
/2. This comparison demonstrates that indeed an entropi-

cally driven Flory-Huggins parameter χ ∝ V AB
excl−V

avg
excl arises, although no such term exists in

the monomer-monomer interaction. Despite the smallness of this effect, this entropy-driven

Flory-Huggins parameter can have a pronounced effect on the phase behavior at high poly-

mer concentrations, even leading to coexistence between two distinct nematic phases (one

A-rich and the other B-rich), as is analyzed elsewhere in more detail.40 Here, we shall focus

on the effect of stiffness disparity on the isotropic-nematic phase separation in the mixed
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systems.

3 Numerical Results

3.1 Phase diagrams for moderate stiffness mismatch

We start with a brief discussion of pertinent results of earlier related work. Phase equi-

libria in solutions of chains in the limit where the contour lengths of both types of chains

are much larger than their persistence lengths have already been studied by Semenov and

Subbotin,17 by extending the Khokhlov-Semenov-Odijk approach.21–24 Since this region of

extremely long polymer chains is out of consideration here, we do not discuss the details

of that work. Phase equilibria in binary mixtures of completely rigid and flexible molecules

have been actively studied theoretically, both via various mean-field approaches15,16,30,31,52–55

and by computer simulations.33,56,57 Escobedo and de Pablo33 studied a binary mixture of

semiflexible and fully rigid 16-mers via MC simulations in the expanded Gibbs ensemble at

constant pressure P = 0.14 kBT/σ
3, which corresponds to the pressure reduced with respect

to the I-N coexistence pressure of the rigid component equal to P/P coex
B = 1.3. They have

constructed the corresponding isobaric phase diagram in the plane of the inverse stiffness

parameter of the semiflexible component A, κ−1A , vs. the mole fraction of the rigid compo-

nent B, XB. Their results are reproduced in Fig. 2, demonstrating that the two-phase region

widens considerably with decreasing stiffness parameter κA.

In order to assess the accuracy of our DFT approach (see Sec. 2 for details), we deter-

mined the isobaric phase diagram for selected systems at the same pressure, P/P coex
B = 1.3

(P = 0.14 kBT/σ
3), as in the MC simulations of Escobedo and de Pablo33. To this end, we

computed the four unknown quantities, i.e., the mole fractions of the fully rigid component

in the isotropic and nematic phases, X iso
B and Xnem

B , and the monomer number densities of

the isotropic and nematic phases, ρiso and ρnem, from the four coexistence conditions, i.e.,

Piso = Pnem = 0.14 kBT/σ
3, µiso

A = µnem
A , and µiso

B = µnem
B , where µi is the chemical potential

12



0.0 0.2 0.4 0.6 0.8 1.0

X
B

0.02

0.04

0.06

0.10
0.08

0.20

0.01

κ
A-1

X
B

iso
 (MC, κ

B
=∞)

X
B

nem
 (MC, κ

B
=∞)

X
B

iso
 (DFT, κ

B
=∞)

X
B

nem
 (DFT, κ

B
=∞)

X
B

iso
 (DFT, κ

B
=128)

X
B

nem
 (DFT, κ

B
=128)

Figure 2: Phase diagram for a binary mixture of semiflexible and fully rigid 16-mers at
constant pressure P/P coex

B = 1.3 (P = 0.14 kBT/σ
3) in the variables κ−1A and XB. MC

simulation results by Escobedo and de Pablo33 are shown as circles and our DFT results
are plotted as squares (lines are drawn to guide the eye). Also shown (as diamonds) are the
DFT results for a binary mixture of semiflexible 16-mers with fixed κB = 128 and variable
κA, again at P/P coex

B = 1.3 (P = 0.18 kBT/σ
3).

of the ith component. The corresponding DFT results are also shown in Fig. 2, and the

overall agreement with the previous MC simulations is reasonable, albeit DFT consistently

underestimates the width of the biphasic region. In addition, we show DFT results for binary

mixtures where the second component is not a fully rigid rod, but rather semiflexible with

large stiffness parameter κB = 128, again at P/P coex
B = 1.3 (P = 0.18 kBT/σ

3). One sees a

pronounced difference from the rigid case, and we will return to this point below.

To illustrate in more detail how the DFT data in Fig. 2 were obtained, we plot in Fig. 3(a)

the DFT phase diagram in the variables P vs. XB for the cases κA = 32 mixed with κB = 128

(red lines) or κB =∞ (blue lines). The closed loops correspond to the I-N phase equilibrium,

and one clearly sees that the two-phase region widens considerably and moves to larger values

of XB in going from κB = 128 to κB =∞. Figure 3(b) shows the corresponding MD results

for κB = 128 which are similar to the DFT results, apart from the fact that MD predicts

generally larger pressures for the I-N transition. For the mixtures with κA = 32, no N-N

coexistence has been found, at least for physically reasonable values of pressure. Given that
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Figure 3: (a) Phase diagram from DFT for a binary mixture in the variables P vs. XB for
κA = 32, and two values of κB, as indicated. The closed loops indicate I-N coexistence,
and the symbols indicate XB in I and N phases at coexistence for κB = ∞ and κB = 128.
(b) The same as in (a), but from MD simulations with κA = 32 and κB = 128. The mole
fractions XB(A), XB(B) of the A- and B-rich domains at coexistence pressure are shown by
open and filled symbols, respectively. The total number of beads in the simulated system is
N = 406, 272.

such N-N coexistence is more likely for a larger stiffness disparity, we next consider the

case κA = 24, keeping the same two values of κB as before. The corresponding DFT phase

diagrams are shown in Fig. 4(a), which reveal N-N phase coexistence for the case of the fully

rigid second component (κB = ∞), but not for the case of the semiflexible one (κB = 128),

at least for physically reasonable values of pressure.

In Fig. 4(b), we show the MD counterpart of the DFT results for κA = 24, κB = 128 in

the P -XB plane. The qualitative behavior of the DFT phase diagram is well reproduced,

though there are systematic differences in quantitative respects. DFT predicts distinctly

lower pressures for the I-N two-phase coexistence region, as well as for the location of the I-

N transition in the pure systems. We argue that these differences are not due to the (minor)

differences of the models for the monomeric units (hard spheres in DFT vs. WCA beads

in MD), but rather reflect systematic errors originating from the approximations involved

in DFT, as discussed in Sec. 2. Apart from statistical errors [which are comparable to the

size of the symbols in Fig. 4(b)], MD yields the numerically exact statistical mechanics of

the model. However, the drawbacks of such computer simulations should not be forgotten:
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Each state involving a pair of coexisting phases [shown by symbols in Fig. 4(b)] requires

very extensive runs and cumbersome data analysis: so it is challenging to produce smooth

curves for the phase boundaries [unlike Fig. 4(a)], and the data points are rather connected

by straight lines, to guide the eye.

Figures 4(c) and 4(d) give some information on how the MD data for P -XB phase di-

agrams are obtained. MD simulations of N /N = 25, 392 chains were conducted in an

elongated box with periodic boundary conditions and an aspect ratio 3:1:1, keeping the frac-

tion XB = 0.5 fixed. In thermal equilibrium, the pressure (which we compute from the virial

theorem) is homogeneous in either phases. The situation is subtle if the chosen density ρ

and composition XB leads to a state that falls inside the coexistence region [see Fig. 4(b,c)].

Then two isotropic-nematic interfaces form [see Fig. 4(d)], which are aligned normal to the

long direction and parallel to the director, biased by the initial condition. Figure 4(c) shows

the monomeric density profiles in the box for the case where the total density of monomeric

units is ρ = 0.37σ−3, for both components ρA and ρB. From this plot one can also recog-

nize that the total monomer density in the B-rich phase is higher than in the A-rich phase,

with ρ(A) = 0.355σ−3 and ρ(B) = 0.385σ−3 in this example. Qualitatively this difference in

monomer density between coexisting phases is compatible with the DFT predictions (Fig. 5).

This behavior indicates that the “packing” of the nematically ordered chains is “easier” than

in a dense isotropic phase, where both types of chains are randomly oriented.

Since the coexisting phases differ both in their composition and in their total density

[see Fig. 4(c)], the systems need to be equilibrated carefully: The driving forces for the

associated interdiffusion of chains are small, so that long simulation times are needed to

reach equilibrium. For state points where the volume fraction of the minority phase is small,

it occurs that phase separation is not seen because the lifetime of metastable mixed (isotropic

or nematic) states is too large. Further, finite size effects might also matter if there is not

enough space to form the two interfaces enclosing a small domain. This is a particular

problem when the width ∆XB of the I-N coexistence region is small, which impeded the
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Figure 4: (a) Phase diagram from DFT in the variables P vs. XB for κA = 24, and two
values of κB, as indicated. The closed loops indicate I-N coexistence, and the symbols show
XB in I and N phases at coexistence at P = 0.14 kBT/σ

3 (P = 0.18 kBT/σ
3) for κB = ∞

(κB = 128), i.e., P/P coex
B = 1.3 in both cases. (b) The same as in (a), but from MD

simulations with κA = 24 and κB = 128. The mole fractions XB(A), XB(B) of the A- and
B-rich domains at coexistence pressure are shown by open and filled symbols, respectively.
(c) Density profiles of A-monomers (ρA, red) and of B-monomers (ρB, blue) as well as of the
total monomer density (ρ = ρA + ρB, black) along the x-axis of the simulation box [see (d)]
for total monomer density ρ = 0.37σ−3 and composition XA = XB = 0.5. (d) A snapshot
of the same system shown in (c). Polymers with stiffness κA = 24 are shown in red, those
with κB = 128 in blue. (e) Same as (a) but in the variables P vs. ∆µ = µA − µB. The solid
lines indicate I-N coexistence, while the dashed line shows N-N coexistence with the critical
point marked by a circle. No N-N coexistence was found for κB = 128.
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recording of data points to characterize phase coexistence near the pure phases. Even when

phase separation in the simulation box is observed, quantitative analysis of these states is

difficult: The positions of the two interfaces are not known beforehand, and they diffuse

over the course of the simulation. Hence, the interface positions need to be determined first,

and then the densities of the two species in the pure phases can be computed away from the

interfaces. Further, MD cannot yield a counterpart of the phase diagram in the space of only

intensive thermodynamic variables [Fig. 4(e)]. Thus, MD simulations are rather inconvenient

for gaining a quick overview for a broad range of parameters (N , κA, κB, P ), and DFT is to

be preferred. The MD simulations are crucial, however, to obtain some information on the

numerical accuracy of the DFT calculations due to the approximations discussed in Sec. 2.

The comparison between Fig. 4(a) and the (in principle more reliable) Fig. 4(b) suggests

that the qualitative trends predicted by DFT are correct.

In Fig. 4(e) we re-plot the DFT phase diagrams for the same two binary mixtures in

intensive variables, i.e., pressure P vs. the difference of the chemical potentials of the two

components ∆µ = µA−µB. Finally, in Fig. 5 we provide another representation of the phase

diagrams for (a) κA = 24 and κB = 128 as well as (b) κA = 24 and κB =∞, in the variables

ρ vs. XB. While the tie lines of the pure phases (XB = 0 and 1) are strictly parallel to

the ordinate axis, for the mixed phases they form a nontrivial angle with the ordinate. This

angle increases the more one moves away from the pure phases. Note that this effect is more

pronounced for κB =∞, which can be seen as a precursor effect of a triple point between the

isotropic phase and two different nematic phases, occurring for still smaller κA (see Sec. 3.5

below).

3.2 Thermodynamic Potentials

In this section, we rationalize the observed marked difference between the phase behavior of

the two cases κB = 128 and κB = ∞, namely the absence of N-N phase coexistence in the

former case (for physically accessible pressures) and its presence in the latter case. Under-
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Figure 5: Phase diagram for a binary mixture with κA = 24 and (a) κB = 128 and (b)
κB = ∞. Data are shown in the variables ρ vs. XB. In both panels, solid lines correspond
to I-N coexistence phase boundaries (blue – isotropic branch and green – nematic branch),
while dashed lines with symbols indicate tie-lines connecting coexisting phases at 9 different
values of the pressure P , as indicated in the legend.

standing the difference in phase behavior between solutions of very stiff macromolecules and

strictly rigid rods may be of interest in many cases of physical significance, e.g., suspensions of

various viruses. To this end, we consider the chemical potentials of the two components and

the Gibbs excess free energy Gexc (defined relative to the ideal binary mixture) as a function

of XB. These two quantities are plotted in Fig. 6(a,b) at a reduced pressure P/P coex
B = 1.3,

i.e., P = 0.18 kBT/σ
3 for κB = 128 and P = 0.14 kBT/σ

3 for κB =∞, respectively, thereby

corresponding to the region of I-N phase coexistence in the phase diagram. The symbols

indicate the coexistence points, i.e., Fig. 6(a) illustrates the standard “equal area” construc-
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tion for the phase equilibrium, while Fig. 6(b) shows the “common tangent” construction.

One observes that the curve for Gexc for the case κB = 128 is always below the corresponding

curve for the fully rigid case, κB = ∞. However, as already shown in Fig. 5, the I-N phase

separation is observed for both values of κB, i.e., the difference between the two cases is only

quantitative, with a more narrow biphasic region for κB = 128 compared to rigid rods, but

not qualitative.

Note that the variation of ∆µ − ∆µcoex seen in Fig. 6(a) is not similar to the van der

Waals loop known from the vapor-liquid transition or the equivalent problem of unmixing

for a binary fluid. In the latter case, we find a smooth loop with ∂(∆µ)/∂XB < 0 from

Xcoex
B,1 up to a spinodal point Xs

B,1, and from a second spinodal point Xs
B,2 to Xcoex

B,2 ; these

regimes are interpreted as metastable A-rich and B-rich states, while homogeneous states

with ∂(∆µ)/∂XB > 0 between Xs
B,1 and Xs

B,2 would be unstable. In the present case, the be-

havior is completely different: The metastable branches of Gexc that represent homogeneous

mixtures in the regime Xs
B,1 < XB < Xs

B,2, where equilibrium according to the double-

tangent construction requires two-phase coexistence, do not reach inflection points there,

but rather cross [Fig. 6(b)]. Heuristically, we have terminated these metastable branches

near the crossing points. In the plot of ∆µ − ∆µcoex, we have connected the metastable

branches by a vertical line located such that the equal area rule is satisfied [Fig. 6(a)]. These

vertical lines in Fig. 6(a) do not correspond to any physically realizable states. Rather, as is

well-known from other cases of isotropic-nematic transitions,58 the metastable homogeneous

isotropic and nematic branches of Gexc (and ∆µ) would continue beyond this point of the

vertical lines, even into the region where no longer any two-phase coexistence occurs: The

stability limit of the isotropic phase is inside the region of the homogeneous nematic phase,

and vice versa.

This behavior may seem surprising at first, but it can be understood by considering

that the primary order parameter for the I-N transition is the nematic order parameter

Qαβ, unlike standard fluid binary mixtures where the concentration difference Xcoex
B,1 −Xcoex

B,2
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Figure 6: (a) Difference between the chemical potentials of the two components ∆µ = µA−µB

relative to its value at coexistence ∆µcoex vs. XB for κB = ∞ and κB = 128. Symbols
indicate the values of XB in the two phases at coexistence. (b) Gibbs excess free energy
relative to the corresponding ideal binary mixture Gexc. The dot-dashed lines connecting the
symbols indicate the common tangent construction. All DFT results in (a,b) were obtained
at pressure P/P coex

B = 1.3, i.e. P = 0.14 kBT/σ
3 for κB = ∞ and P = 0.18 kBT/σ

3 for
κB = 128, respectively. (c) Plot of ∆µ vs. XB at P = 0.5 kBT/σ

3. The blue circles indicate
XB in the two phases at coexistence, while the purple circles correspond to the spinodal
boundaries. (d) Same as (b) but for P = 0.5 kBT/σ

3.

is the order parameter instead. This fact is readily recognized when we consider the I-N

phase transition in the plane of intensive variables P and ∆µ, as shown in Fig. 4(e). The

transition is a first order transition occurring at Pt(∆µ), and metastable isotropic states are

expected up to a line Ps,1(∆µ) > Pt(∆µ), while metastable nematic states are expected for

Ps,2(∆µ) < P < Pt(∆µ). One can consider this situation likewise for varying ∆µ at fixed P ,

rather than varying P at fixed ∆µ. In the (P,XB) ensemble, the first order line Pt(∆µ) in

the (P,∆µ)-plane is split into the two-phase coexistence region in between Xcoex
B,2 −Xcoex

B,1 , and

from this consideration it is obvious that Xcoex
B,2 −Xcoex

B,1 is not the primary order parameter

as in a standard binary fluid mixture.

It is well-known that spinodals (stability limit of metastable states) have limited physical
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significance. The practical stability limit is realized when the free energy barrier against

homogeneous nucleation of the stable phase is no longer very large.59 Thus, we have not

attempted to locate the spinodals that DFT would predict. But we note that considerable

metastability of both the homogeneous isotropic and nematic phases was observed in the MD

simulations. Mixed phase configurations [Fig. 4(c,d)] could only be observed when suitable

heterogeneous initial states were used.

The situation is qualitatively different for the case κB = ∞ at high pressures P =

0.5 kBT/σ
3, where an unmixing transition between two nematic phases occurs. For the

two coexisting phases Xcoex
B,1 and Xcoex

B,2 , which are both nematic (though the values of their

nematic order parameters may be different), the concentration difference Xcoex
B,2 −Xcoex

B,1 is the

primary order parameter. Indeed the loop of ∆µ vs. XB has then the familiar van der Waals

form [Fig. 6(c)]. For stiff but not strictly rigid chains (κB = 128), this phase separation is

no longer present, and ∆µ vs. XB shows a monotonic decrease. In order to understand this

qualitatively different behavior of fully rigid and slightly flexible rods, we decompose Gexc

into its four components, i.e., the translational Gtransl
exc , the mixing Gmix

exc , the orientational

entropy Gorient
exc , and the excluded volume Gexcl

exc terms. These four contributions are obtained

as follows55,60

Gtransl
exc = ln(ρ/N)− (1−XB) ln(ρ0A/N)−XB ln(ρ0B/N), (12)

where ρ0i is the (monomer) density of the pure ith component at the given pressure;

Gmix
exc = (1−XB) ln(1−XB) +XB ln(XB), (13)

Gorient
exc = (1−XB)(Sorient,A − S0

orient,A) +XB(Sorient,B − S0
orient,B), (14)

where Sorient,i (S0
orient,i) is the orientational entropy of the ith component in the binary mixture
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(pure state); and finally

Gexcl
exc = (1−XB)(Gexcl,A −G0

excl,A) +XB(Gexcl,B −G0
excl,B), (15)

where Gexcl,i (G0
excl,i) is the excluded volume Gibbs free energy of the ith component in the

binary mixture (pure state).
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Figure 7: The contributions to the Gibbs excess free energy Gexc along the isobar P =
0.5 kBT/σ

3 vs. XB for (a) κB = ∞ and (b) κB = 128 (κA = 24 fixed in both cases). The
energy Gexc is decomposed into translational [Eq. (12)], the mixing [Eq. (13)], and the sum
of orientational entropy [Eq. (14)] and excluded volume [Eq. (15)] terms, the latter is split
into the contributions from the A and B component.

These individual contributions to the Gibbs excess free energy are plotted together with

its total value in Fig. 7 as functions of the mole fraction of the stiffer component XB along the

isobar P = 0.5 kBT/σ
3. Figure 7(a) shows the results for the fully rigid second component

κB = ∞, while Fig. 7(b) corresponds to the case κB = 128. The total Gexc for κB = 128
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is concave in the entire range of XB, i.e., the binary mixture is fully miscible for all mole

fractions of the stiffer component, in contrast to the fully rigid B chains, where the convex

portion of Gexc indicates N-N phase separation, as already illustrated in Fig. 6(a,b) via equal

area and common tangent constructions, respectively. The following observations regarding

individual contributions to Gexc can be made: First, both translational and mixing terms

favor mixing, while the orientational entropy and excluded volume terms (which are plotted

together as a sum) promote unmixing, which is in agreement with the conclusions reached

in the literature.55,60 A key difference between the case κB = ∞ and κB = 128 is the fact

that the sum of orientational and excluded volume terms is significantly larger for the fully

rigid second component [black line in Fig. 7(a)] compared to slightly flexible rods [black line

in Fig. 7(b)]. Finally, when the latter term is split into the contributions from individual

components (i.e. the sums of first terms in Eqs. (14) and (15) for the more flexible component

and the sums of the corresponding second terms for the stiffer component), one sees that

the contribution from the stiffer component largely dominates.

3.3 Nematic Order Parameter

In order to further clarify the reasons for the observed trends, we next consider the order

parameters along the same isobar P = 0.5 kBT/σ
3. We define the total order parameter as

follows:55

S = (1−XB)SA +XBSB, (16)

where SA and SB are the order parameters of the two components in the mixture. In addition,

we define the excess order parameter relative to an ideal mixture:

∆S = ∆SA + ∆SB = (1−XB)(SA − SA,0) +XB(SB − SB,0), (17)

where SA,0 and SB,0 are the order parameters of the pure components. The total and excess

order parameters defined above are plotted in Figs. 8(a-d) as functions of XB along the isobar
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P = 0.5 kBT/σ
3. As expected, SB for fully rigid rods is larger compared to slightly flexible

ones over the entire XB range. The excess order parameter ∆S is positive in both cases, and

is largely dominated by the contribution from the first component, ∆SA, indicating that the

stiffer component imposes stronger ordering of the flexible one in the binary mixture relative

to the ideal mixture. At the same time, ∆SB is slightly negative for both values of κB,

suggesting that the stiffer component is slightly less ordered in the mixture, most likely due

to the fact that the excess density of the mixture (relative to the ideal one) is also slightly

negative (not shown). This slight loss of the orientational order of the stiffer component

does not have any strong effect on the values of Gorient
exc and Gexcl

exc for this component in the

case κB = 128 [see Fig. 7(b)], but does have a pronounced effect on these quantities for the

fully rigid rods [see Fig. 7(a)]. One possible reason for this different behavior is that the

orientational distribution function of rigid rods is much narrower compared to the one of

slightly flexible ones (if the two distributions are fit to Gaussian functions, then the decay

parameter of the former is up to an order of magnitude larger compared to the latter). As

a result, a slight variation in the distribution function upon mixing (as reflected by a small

and negative ∆SB in the mixture) can have a strong effect on both orientational entropy and

excluded volume free energy of the rigid rods, sufficient to cause the unmixing. This inter-

pretation is somewhat different from the standard explanation of N-N unmixing discussed

in the literature.55 Its driving force is usually attributed to the more flexible component,

which is forced to order more strongly in the mixture (as our results for ∆SA confirm), and

therefore can gain orientational entropy upon unmixing, which could be sufficient to offset

the loss of mixing free energy. At the same time, for our particular model and set of param-

eters, it appears that the stiffer component plays an important role, because its slight loss of

the orientational order in the mixture leads to a substantial increase of its excluded volume

excess free energy when it is fully rigid.

Further, note that both ∆µ and Gexc exhibit a discontinuous jump in the I-N coexistence

region [see Fig. 6(a,b)], while both these quantities vary smoothly as a function of XB in
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Figure 8: (a,b) Total order parameters S [defined by Eq. (16)] along the isobar P =
0.5 kBT/σ

3 vs. XB for (a) κB = ∞ and (b) κB = 128 (κA = 24 fixed in both cases).
(c,d) Same as (a,b) but for the excess order parameters ∆S [defined by Eq. (17)].

the N-N two-phase region [see Fig. 6(c,d)]. The reason for this difference stems from the

fact that the I-N case corresponds to the phase equilibrium between ordered and disordered

phases, while both phases are ordered (although to a different extent) in the N-N case. These

two types of behavior in a coexistence region have been discussed by Klushin et al.61 in the

context of nematic brushes. An interesting aspect of Fig. 8 also is that the crossing of the

N-N two-phase coexistence region for κB = ∞ and P = 0.5 kBT/σ
3 does not lead to any

singularities in the variation of S with XB.

In view of possible experiments, where a system can be studied at fixed composition

varying the monomer density by adding solvent (which also amounts to a change of the

osmotic pressure P in the system), we consider in Figs. 9 and 10 the variation of the order

parameters SA and SB at fixed XB = 0.5 with P (or the total density ρ of monomeric

units). In the corresponding pure systems (XB = 0 or XB = 1), the order parameters jump

discontinuously from zero to a non-zero value (near 0.6 in our case) at the pressure Pt of

the I-N transition, and then they increase smoothly with increasing pressure. For the mixed
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Figure 9: (a,b) Nematic order parameters SA and SB of the A chains (solid) and B chains
(dashed) from DFT calculations for (a) κB = ∞ and (b) κB = 128 vs. the overall pressure
P of the binary mixture. Nematic order parameters obtained from the lever rule assuming
the simulated mole fraction of the stiffer component XMD

B = 0.5. Black lines: two phase I-N
region; red lines: two phase N-N region; blue lines: one phase region.

systems (XB = 0.5), however, the first order transition is split in a two phase-coexistence

region, and hence one gets a linear increase of SA and SB from zero (at the boundary of

the mixed phase) to the values at the boundary of the mixed nematic region. These values

are different from their counterparts in the pure systems: SA is larger due to the ordering

field caused by the neighboring stiffer B chains, whereas SB is smaller than its pure B phase

analog, since part of the neighbors of a B chain are the less stiff A chains.

Comparing the case κA = 32, κB = 128 to the case κA = 24, κB = 128 (see Fig. 10) shows

that the slope of the straight lines in the two-phase coexistence region are much larger for

κA = 32, as expected, since this region is much narrower than for κA = 24. For chains that

differ only slightly in stiffness, the width of the two-phase region would presumably be very

hard to resolve. Note that the order parameters shown in Figs. 9 and 10 always refer to the

chain orientation as a whole, unlike previous MD work where the bond order parameter Sb
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Figure 10: (a) Nematic order parameters SA, SB of the A- and B-components vs. pressure
P with stiffness parameters κA = 24 and κB = 128, respectively, at composition XB = 0.5.
The insets show SA, SB vs. monomer density ρ in the A-B-mixture along with the order
parameters SA,0, SB,0 in the corresponding pure phases. (b) The same as in (a) but for
κA = 32, κB = 128 at composition XB = 0.5.

was analyzed for the same model.

When the amount of solvent is varied in an experiment, the monomer density rather than

the osmotic pressure becomes the directly accessible control variable. Thus, we have also

obtained via MD the variation of nematic order parameters vs. the total monomer density

for the corresponding systems at XB = 0.5 [insets of Fig. 10]. The behavior is qualitatively

similar to the case where P is used as a control variable; however, one should note that the

variation of S with ρ is not strictly linear in the two-phase coexistence region, because the

densities of the two coexisting phases differ [cf. Fig 4(c)]. In that case, the phase diagram in

the ρ-XB plane needs to be used to construct the amounts of the coexisting phases at each

state point.

3.4 Chain conformations in mixtures

An interesting question concerns the interplay of the conformations of the chains with the

phase changes that occur in the system. Figure 11(a) shows profiles of the squared com-

ponents of the radius of gyration tensor parallel and perpendicular to the nematic director,

for the same system (κA = 24 and κB = 128) for which the monomer density profiles have
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already been presented in Fig. 4(c). Visual inspection of the simulation snapshots [Fig. 4(d)]

and an analysis of the order parameters SA and SB revealed that a nematic domain extends

in the considered system from about x = −5 to about x = 95, while the rest of the system is

isotropic. The nematic director here is oriented along the z-axis of the simulation box, due to

the choice of initial conditions. The two phases are separated by two interface planes oriented

perpendicular to the x-axis, as desired. In the isotropic phase, there is no distinction between

parallel and perpendicular components, and the radii for the stiffer chains (κB = 128) are

slightly larger than the less stiff ones (κA = 24). In the nematic phase, this difference is

quite pronounced for the parallel components but hardly visible for the perpendicular ones.

The width of the interface between these oriented chains (in the nematic phase) and the

randomly oriented ones (in the isotropic phase) is to a very good approximation the same

as for the density profiles [see Fig. 4(c)].

Figure 11(b) discusses the renormalization of the effective persistence length (extracted as

usual25,26,49 from the cosine of the angle between subsequent bond vectors along the chains):

The enhancement of the persistence length in the nematic phase characterizes the strength

of the average “nematic mean field” that each chain experiences due to the environment.

Note that for κA = 24 this effect is larger than for κB = 128; for N = 16, κB = 128 implies

already such a strong stretching of the chains that the nematic environment can cause only

a relatively small further enhancement. Note that there is no DFT counterpart to Fig. 11

due to the coarse-graining involved in the Fynewever-Yethiraj procedure, where each chain

is represented by a single effective rod.

3.5 The case of strong stiffness mismatch

While for weak enough stiffness mismatch the generic phase diagram of a lyotropic solution of

two semiflexible polymers contains a single phase transition from the (homogeneously mixed)

isotropic phase to a (homogeneously mixed) nematic phase, the phase diagram topology

changes dramatically for strong stiffness mismatch. For intermediate stiffness mismatch,
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Figure 11: (a) Components of the mean square radius of gyration tensor parallel, R2
g,‖, and

perpendicular, R2
g,⊥, to the director field vs. the x-coordinate of the center of mass of the

chain. Data shown for both A and B chains with κA = 24 and κB = 128, respectively, at
XB = 0.5 and total monomer density ρ = 0.37σ−3. (b) Persistence length profiles for the
same system as in (a). The scale for the A and B chains are on the left and right side,
respectively.

we expect that a N-N miscibility gap may appear at high pressures in the well-ordered

nematic phase. This is indeed confirmed in Fig. 12(a), where we plot the phase diagram

from DFT for a binary mixture for κA = 16 and κB = 128 in the variables P vs. XB. The

closed loop indicates I-N coexistence, and the symbols show XB in the I and N phases at

coexistence at P = 0.18 kBT/σ
3, i.e. P/P coex

B = 1.3. Dot-dashed lines show N-N coexistence;

the corresponding critical point is indicated by a black circle at Xc
B = 0.605 and Pc =

0.9547 kBT/σ
3.

It is instructive to compare this phase diagram to the case of a fully rigid second compo-

nent, which is shown in Fig. 12(b). One sees that the N-N coexistence region moves down to

lower pressures and merges with the I-N coexistence region, resulting in a triphase isotropic-

nematic-nematic (I-N-N) equilibrium at the pressure Pt = 0.325 kBT/σ
3 corresponding to
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the triple point, which is indicated by three black triangles. The coexisting mole fractions

of the stiffer component at P/P coex
B = 1.3 are quite similar in the two cases (as was already

seen in Fig. 2), but the overall morphologies of the two phase diagrams are quite different.

In this sense, the results shown in Fig. 2, which focus on a single isobar, are by no means

representative of the overall phase behavior (this comment pertains to the simulation data

as well).
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Figure 12: (a) Phase diagram from DFT for κA = 16 and κB = 128 in the variables P vs.
XB. The closed loop indicates I-N coexistence, and the symbols show XB in the I and N
phases at coexistence at P = 0.18 kBT/σ

3, i.e., P/P coex
B = 1.3. Dot-dashed lines show N-N

coexistence. The corresponding critical point is indicated by a black circle at Xc
B = 0.605

and Pc = 0.9547 kBT/σ
3. (b) Same as (a) but for κA = 16 and κB = ∞. The solid lines

indicate I-N coexistence, and the symbols show XB in the I and N phases at coexistence at
P = 0.14 kBT/σ

3, i.e., P/P coex
B = 1.3. Dot-dashed lines show N-N coexistence; the triple

point is indicated by three black triangles at Pt = 0.325 kBT/σ
3.

Proceeding to even larger stiffness disparity, we set κA = 8 and present the corresponding

DFT phase diagrams for κB = 128 and κB =∞ in Figs. 13(a) and 13(b), respectively. In this

case, the triphase I-N-N equilibrium is observed already for κB = 128, with the triple point

pressure Pt = 0.934 kBT/σ
3. In addition, reentrant behavior is observed for XB > 0.9 in this

case. By contrast, in the case of the rigid second component, DFT predicts a complete I-N

phase separation into two pure components for 0.7 kBT/σ
3 . P < P coex

A = 0.998 kBT/σ
3.

Above P coex
A , one expects to see two immiscible nematic phases of pure components A and

B. Once again, the coexisting mole fractions at P/P coex
B = 1.3 are quite similar in the two
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cases (as was already seen in Fig. 2), but the overall morphologies of the two phase diagrams

are quite different.
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Figure 13: (a) Phase diagram from DFT for κA = 8 and κB = 128 in the variables P vs. XB.
The solid lines indicate I-N coexistence, and the symbols show XB in the I and N phases at
coexistence at P = 0.18 kBT/σ

3, i.e., P/P coex
B = 1.3. Dot-dashed lines show N-N coexistence;

the triple point is indicated by three black triangles, Pt = 0.934 kBT/σ
3. (b) Same as (a)

but for κA = 8 and κB =∞. The solid lines indicate I-N coexistence, and the symbols show
XB in the I and N phases at coexistence at P = 0.14 kBT/σ

3, i.e., P/P coex
B = 1.3.

So far, we have focused exclusively on the case NA = NB = 16, where the I-N coexistence

pressure for the more flexible component becomes rather high for small values of κA [as seen,

e.g., in Fig. 13(a)], and therefore the predicted DFT behavior could be potentially preempted

by the appearance of smectic phase(s). Hence, it would be of interest to consider somewhat

longer chains. Indeed, preliminary DFT work shows that then the phase diagram topology

of Fig. 13(b) is found also for the case κA = 24, κB =∞ if NA = NB = 32.

While our theoretical phase diagrams were presented in the variables P vs. XB, in the

experimental literature it is common to present the data in the form of a triangular ternary

phase diagram with the three corresponding mole fractions, i.e., the two components of the

binary mixture and the solvent. In our approach the solvent is treated implicitly, and there

is no incompressibilty constraint (such as commonly imposed in lattice-based self consistent

field theory calculations). As a result, the total packing fraction is somewhat ill-defined. In

order to construct a triangular phase diagram, we arbitrarily set the total density (monomers

plus solvent) to 0.8σ−3 (our implicit solvent model reaches the crystalline phase at about
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this density). The resulting triangular phase diagram is presented in Fig. 14 for a binary

mixture of 16-mers with κA = 24 and κB = 128. In this representation, the right end-point of

the base corresponds to XB = 1, the left end-point of the base corresponds to XA = 1, while

the upper corner corresponds to a pure solvent XS = 1. The circles connected by dashed

tie-lines mark the coexisting systems. Remember that the perfect miscibility in the nematic

phase in Fig. 14 is a consequence of our model assumption that the only difference between A

and B chains is stiffness disparity. Near the upper corner, the state of the system is a mixed

isotropic phase and in the lower part of the triangle it is a homogeneously mixed nematic

phase. Note that further phases such as smectics and crystalline solids50 are expected near

the baseline in Fig. 14, but are not included in the phase diagrams here.
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Figure 14: Triangular ternary phase diagram for a binary mixture of 16-mers with κA = 24
and κB = 128. At the right end-point of the base XB = 1, at the left end-point of the base
XA = 1, while the upper corner corresponds to pure solvent XS = 1. The circles connected
by dashed tie-lines mark the coexisting systems.

4 Discussion and Conclusions

While blending of different flexible polymers is standard practice for producing polymeric

materials with improved application properties, much less is known about how mixing of

different kinds of semiflexible or stiff polymers affects the properties of the resulting materials,

which might have applications as strong fibers or as parts in liquid-crystalline devices. As a
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first step of dealing with such questions, we have considered lyotropic solutions where two

polymers of comparable contour length but different stiffness exist in a common solvent.

To focus on the effect of stiffness disparity between the two kinds of chains (A and B), we

have assumed ideal good solvents of precisely the same quality, so that no enthalpic driving

force towards separation into A-rich or B-rich phases exists. In many real systems, such an

enthalpic driving force may also be present, but the theoretical model used here allows us

to isolate the entropic effects due to the interplay of configurational entropy and bending

stiffness. Additional enthalpic effects could then be added later, in the spirit of standard

Flory-Huggins type treatment and their extensions for blends formed from flexible polymers.

The considered constituents (polymer A + solvent S and polymer B + solvent S, respec-

tively) exhibit a transition from an isotropic phase (at large enough solvent concentrations)

to a nematic phase (at smaller solvent concentration). We focus here on the question of

how the character of these isotropic and nematic phases changes when we consider mixtures

rather than the corresponding pure phases. Such problems can be conveniently addressed by

Density Functional Theory (DFT) for a wide variety of parameters, such as the chain lengths

NA, NB, polymer stiffnesses κA, κB, and densities ρA, ρB of the corresponding monomeric

units in the solution etc. Hence, we have developed an extension of DFT, which was pre-

viously applied successfully to solutions of a single kind of polymer. This extension is not

at all trivial, since it requires the excluded volume between different types of chains as a

function of the angle between their molecular axes. This task was achieved by extensive

Monte Carlo (MC) averaging of a large number of samples of corresponding chain confor-

mations (see Fig. 1). Although the differences between the results for pairs of equal types of

chains and unequal ones are rather small, Fig. 1, they have nevertheless pronounced effects

on the resulting phase behavior. Since DFT involves several approximations, which cannot

be controlled a priori, we have tested the accuracy of DFT by extensive comparison to both

previous MC results available in the literature33 (see Fig. 2) and new Molecular Dynamics

(MD) results obtained by us. We focused on the case of rather short chains consisting of
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NA = NB = 16 effective monomeric units, and use persistence lengths either on the order

of the chain length, or considerably larger, up to the rigid rod limit. Surprisingly, we found

that even if the persistence length exceeds the chain contour length by a factor of 8, the

results still differ significantly from the rigid rod limit [Figs. 3(a), 4(a)]. For rigid rods, even

a separation into two distinct nematic phases is predicted at high enough osmotic pressure

(or density of monomeric units). For chains with some flexibility, this latter transition is

preempted by other (smectic or crystalline) phases occurring at high enough density, which

are not studied here. But nematic-nematic coexistence can be found in suitable cases for sig-

nificantly longer chains, where also the isotropic-nematic transition is found at lower osmotic

pressure.

While the isotropic-nematic transition in pure polymer-solvent systems is characterized

by an extremely narrow two-phase coexistence region (the density of monomer units ρi, ρn

in units of the corresponding melt density differ only by 1 % or so), much wider isotropic-

nematic coexistence regions occur in the mixed systems (Figs. 9 and 10). In the space

of variables ρ and mole fraction XB, the orientation of the tie lines is highly nontrivial,

and with increasing stiffness disparity the width of the two-phase coexistence regions also

widens. This effect is a precursor of the change of the phase diagram that occurs for very

strong stiffness mismatch, where a triple point appears separating the isotropic phase, and

B-rich and A-rich nematic phases (Figs. 12 and 13). All these findings can be explained in

detail by an analysis of the Gibbs excess free energy and the various terms contributing to

it (translational part, free energy of mixing, orientational contributions). Such a detailed

analysis of the microscopic origins of different features of phase behavior is only possible

with the DFT framework (Figs. 6 and 7). MD, however, can supplement innformation on

chain conformations in the different phases. In fact, the mismatch of the conformation of

a minority chain to the influence of the environment in which it resides is crucial for the

driving forces for the observed phase separations.
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