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Abstract

We seek to understand the interplay between amino acid sequence and local structure in
proteins. Are some amino acids unique in their ability to fit harmoniously into certain local
structures? What is the role of sequence in sculpting the putative native state folds from
myriad possible conformations? In order to address these questions, we represent the local
structure of each C_, atom of a protein by just two angles, 0 and |1, and we analyze a set of
more than 4000 protein structures from the PDB. We use a hierarchical clustering scheme to
divide the 20 amino acids into six distinct groups based on their similarity to each other in
fitting local structural space. We present the results of a detailed analysis of patterns of amino
acid specificity in adopting local structural conformations and show that the sequence-

structure correlation is not very strong compared to a random assignment of sequence to



structure. Yet, our analysis may be useful to determine an effective scoring rubric for

quantifying the match of an amino acid to its putative local structure.
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Significance statement: We present a quantitative study of the emergent constraints of sterics,
the chain topology, and the quantum chemistry on local protein native state structures
measured in a simple representation. We present two main classes of results: the propensity of
amino acids to occupy certain local structures and a grouping of amino acids based on their

similarity in hosting local structures.

It is known that there are just a few important principles (1-6) that drive the folding process of a
protein: the requirement of avoiding steric overlaps in both the folded and unfolded states, the
lower conformational entropy in the folded state than in the unfolded state, the hydrophobic
effect favoring a compact conformation that is able to expel water from the core of the folded
state and the delicate balance of hydrogen bonds with the solvent and within the protein
backbone that can tip the energetic balance between the unfolded and folded state. The
fundamental issue is how nature has effectively explored the astronomically large sequence

space through evolution to make proteins the molecular target of natural selection.



Here we characterize the native state folds within a simple coarse-grained representation and
elucidate the role, if any, played by the repertoire of amino acids in fitting into one of these
local geometries. We model a chain by just its C, atoms and follow the coordinate
representation shown in Figure 1. With the knowledge of the preceding C, locations, we specify
the position of a given C, atom by three coordinates (7), the bond length, b, and two angles, 6
and L. O is the bending angle at the given C, location, whereas L is the angle between successive
binormals (Figure 1). The binormal associated with a specific consecutive triplet of C, atoms is
the unit vector perpendicular to the plane of the triplets. The tangent, the normal, and the
binormal, all at the middle C, atom, form a right-handed Cartesian coordinate system. This
coordinate system was introduced by Rubin and Richardson in a paper describing the Byron
bender that allowed for a simple construction of protein C, models (8,9).

Our analysis is carried out with a set of more than 4000 experimentally determined protein
native state structures. Starting from the Top 8000 set proteins of the Richardson laboratory
(10,11) with 70% homology level, we excluded all structures with missing atoms in the protein
backbone, yielding a set of 4416 protein native state structures that we used for our analysis
(the same set was employed in Ref. 7) (see Table S1 in Supplementary Information). We
successfully validated our analysis using 478 proteins from the Dunbrack data set (12), this time
with a maximum sequence homology level of 20%. There were 205 proteins in common
between the Richardson and Dunbrack sets that we employed. We carried out the (0, W)
analysis for both the Richardson and Dunbrack data sets and obtained virtually identical results
with the Dunbrack data being understandably more sparse. We present here the detailed

analysis for just the much larger Richardson data set.



Figure 1: Definition of coordinate system. The bond length b at location i, b; is the distance
between the points i and (i+1). The angle 6; is the angle subtended at i by points (i-1) and (i+1)
along the chain. The third coordinate L, is the dihedral angle between the planes 7; and T,
formed by [(i-2), (i-1), i] and [(i-1),i,(i+1)] respectively and is the angle between the binormals at
(i-1) and i. Knowledge of the coordinates of the previous three points (i-2,i-1,i) and the three

variables (b;, 0;, L) are sufficient to uniquely specify the coordinates of the point (i+1).

A simplification arises because the vast majority of bond lengths is nearly constant (Figure 2).
Figures 2a and a blown up version, Figure 2b, depict histograms of bond lengths with two peaks

centered around 3.81A and 2.95A. The shorter bonds are associated with a Ramachandran



angle o (1) around 0 degrees (13) (Figure 2c). Because the fraction of short bonds is relatively
small (0.3%), our analysis here is carried out with all C, positions, each characterized by a bond
length, the 6 and UL angles and the amino acid identity. An analysis of the amino acids
associated with just the short bonds shows the preponderance of glycine in the first position
and proline in the second position (because of the low barrier for transitioning between its cis

and trans conformations).
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Figure 2: Distribution of bond lengths. Figure 2a shows a histogram of bond lengths in our data
set. A blown up version in Fig 2b shows that the distribution is bimodal with short bonds

(centered around 2.95A) and long bonds (centered around 3.81A). The red arrow is the length



we use for partitioning the bonds into the short and long categories. Figure 2c shows the link

between the Ramachandran w angle (1,13) and the bond length.

For a non-interacting phantom chain, one obtains a uniform distribution of points in the (0, L)
plane (not shown as a figure). As a benchmark, we studied, using Wang-Landau Monte Carlo
simulations (14), a simple self-avoiding polymer chain model comprised of 40 unit diameter
tangent spheres (tethered hard spheres) subject to a self-attraction between sphere centers
located within a distance of 2 units of each other. Figure 3a and 3b show a cross plot in the (0, W)
plane of 17 conformations in the coil phase adopted by the chain at high temperatures and for
17 low energy conformations, respectively. The situation is dramatically different for proteins
compared to a standard self-avoiding polymer model. Figure 3c is the (0, ) cross plot for the
protein data set with a highly selective occupancy of (0, 1) space (a version of this graph was

presented earlier in Ref. 7).

We binned the data in Figure 3c into squares of width 5° along 6 (24 bins in the range 60°-180°)
and 5° along L (72 bins spanning the range from 0° to 360°) to determine the three highest
density regions. These density peaks are shown in the figure as black X’s along with three larger
squares of size 10°x10° around them. They are identified as helices (blue region with black X at
0 =92.5° and 1 = 47.5°), B-strands (red region with black X at = 122.5° and 1 = 192.5°), and
loops (green region with black X at 6 = 92.5° and 1 = 242.5°) with 184382, 16372, and 10974
points respectively. The density of points in the o-helix peak is approximately 20 times that of

loops and B-strands but the loop and B-strand regions are more spread out than the helical



region. The other populated regions in the (6, L) plane correspond to variants of helices and B-

strands and the loops that link them together in the native state structure.
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Figure 3: Local structure representation. a) (0, L) cross plot for the high temperature coil phase
of tethered hard spheres. The only constraint here is the requirement of self-avoidance of the
spheres. The points are scattered across the plane with no 6 angle less than 60° (a steric
constraint) and few almost straight line triplets with a 6 near 180°. b) (6, 1) cross plot for low
energy states of tethered hard spheres. Here again one observes no 6 angles below 60° and
favored 0 angles of 60°, 90°, 120°, and 150° showing that the order favors a face-centered-cubic

packing locally, which would be appropriate for the close packing of untethered spheres. c) (0, )



plot for the Richardson data set comprising 4416 proteins and 972519 residues (purple points).
The three highlighted regions correspond to density peaks related to o-helices (blue region 0 =
92.5° and | = 47.5°), B-strands (red region 0 = 122.5° and i = 192.5°), and loops (green region 0
=92.5°and L = 242.5°) (d) Plot of the Ramachandran (@, ) angles for the highlighted regions

in Figure (c).

It is important to note that the angles 6 and U are distinct from the Ramachandran (1) angles,
which require the knowledge of the locations of backbone atoms besides those of the C, atoms.
The (6, 1) pair is a coarse grained representation of the Ramachandran angles and can be useful
to describe a generic chain conformation and employed in models of statistical mechanics (15).
In fact, knowing a sequence of Ramachandran angles, one can derive the values of 6 and .. The
inverse process of determining the Ramachandran angles from the (0, L) values does not have a
unique solution. For the C, atoms in the interior of all 4416 proteins, we measured the (0, ) as
well as the Ramachandran (@, ) angles. We illustrate the relationship between the two
coordinate systems in Figure 3d. We plot the three colored regions (blue, red and green) of
dense points in Figure 3c, but this time expressed as the (¢, ) Ramachandran angles color
coded in the same manner as in the (0, l) plot. Note that the closely packed points in the (6, L)
plot are more dispersed in the Ramachandran plot sometimes occupying non-contiguous
regions. This is because 6 and L depend on more than one set of Ramachandran angles and the

relationship is complicated and non-linear.



There are four important earlier papers that our work builds on. Rackovsky and Scheraga (16)
considered a torsion-curvature plot (distinct from but related to the plot we studied) for 22
protein structures for two different structural groups (helices + bends and extended strands)
and the amino acids present therein. Levitt (17) analyzed 13 proteins and considered a

(6, W) plot similar to ours except that the definition of mu was shifted by one C, position in the
backward direction compared to our definition. Our own definition was motivated by defining 6
and U at a given site i that would determine the coordinates of the (i+1)-th C, coordinate.
Importantly, Levitt determined an approximate empirical relationship between his 6 and | to

elucidate approximate potentials for folding simulations.

Oldfield and Hubbard (18) considered two successive 0 angles and one | angle (defined for a
bond joining the two C, atoms) for a set of 83 protein structures and carried out a
comprehensive study of local conformational space (but not amino acid preferences)

recognizing that the two major building blocks of protein native state structures, helices and
strands, are repetitive conformations. DeWitte and Shakhnovich (19) considered 87 protein
structures with a goal of deducing the pairwise potentials, in the spirit of Miyazawa and Jernigan,
for the formation of secondary structures in protein simulations based on a cross-plot of two
successive |L angles (this time again defined as bond variables rather than at a site) and
employing Levitt’'s empirical relationship. Finally, the approach of Bahar, Kaplan, and Jernigan
(20) is most similar to ours. They do have a (6, 1) plot just like ours except that their | definition

is shifted by one position compared to ours. They employed 302 protein structures for their



analysis, they carried out an amino acid propensity estimate like we do, and they successfully

developed short-ranged (along the sequence) rotational potentials for single amino acids.

In essence, our work here builds on these earlier advances. The principal distinctions are the
definition of L - our W is defined at a site not at a bond, it is shifted with respect to other
definitions, and the number of protein structures we employ, many decades after the earliest
work, is understandably larger and comprises over 4000 experimentally determined and curated
protein structures. Our goal in this paper is not to extract effective potentials but rather analyze,
more generally, sequence-local structure relationships. Furthermore, we seek to group the 20
amino acids into distinct groups in terms of their similarity to substitute for each other in local

conformational space.

Figure 4 shows histograms of 0 and L values and evidence for a clear correlation between the
average values of 0 and the average value of L among all proteins. Table 1 presents data on the
amino acid occurrence probability and the degree of localization in (6, L) space. For each amino

acid, we measured the inverse participation ratio (IPR) defined as

(=N, xF)?

IPR = YN A (1)

i=1"i

where x; denotes the normalized density of occupancy of the i-th bin in (6, L) space and the
total number of bins N=1728. An IPR value of 1 indicates perfect localization in just one bin

whereas the largest possible value of the IPR is N=1728 for a uniform occupancy of all 1728 bins.
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A perfect localization (IPR=1) is indicative of an amino acid that is always associated with the
same local structure leading to a perfect sequence-structure relationship. The most localized
amino acid is LEU (IPR=2.70) while the least localized is PRO (IPR=83.28). Figure 5 shows the
occupancies of the (0, L) space of amino acids LEU and PRO. Interestingly, even the most
localized amino acid, while being largely concentrated in just a few squares, is yet spread out
over many squares indicating that there is no strong selection of local structure by amino acid

identity.

We carried out an analysis of triplet amino acids identities of all the 324 tight bends with 6
angles less than 80°. The smallest 6 angle in the data set has a value of 59.98° and the
corresponding amino acid triplet is GLY-GLN-ASP. These tight turns (i-1,i,i+1) have no selectivity
in L angles. However, there is indeed a sequence-structure relationship with (GLY or SER)
accounting for a total of 34% occupancy in the i-1 position, (PRO or SER) having 31% residency

in site i, and (ALA or SER) accounting for 21% in site (i+1).

11
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Figure 4: a) and b). Histograms of 6 and L values showing a multi-peaked structure. c). A plot
of the average value of 0 versus the average value of |1 for all 4416 proteins showing a tight
correlation with a Pearson correlation coefficient of 0.97. This may be readily understood by
noting that a protein structure is primarily composed of helices and sheets with varying
fractions depending on the protein being considered. The 8-l values for an a-helix are both
smaller than those of a B-strand leading to the correlation. Note that the standard deviations

(not shown) are large because of the relatively large width in angle space of the regions.
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Amino acid Inverse
type Fraction [%] | Participation
Ratio (IPR)
ALA 8.53 3.28
ARG 4.84 3.24
ASN 4.42 4.53
ASP 5.96 4.60
CYS 1.36 3.69
GLU 6.48 3.25
GLN 3.61 3.30
GLY 7.90 11.61
HIS 2.32 4.31
ILE 5.62 2.93
LEU 8.79 2.70
LYS 5.70 3.43
MET 2.02 2.95
PHE 4.04 4.06
PRO 4.59 83.28
SER 5.88 5.14
THR 5.58 4.75
TRP 1.52 3.99
TYR 3.61 4.25
VAL 7.23 3.77

Table 1: Frequency of 20 amino acids in the set of 4416 proteins (second column) and a

measure of the localization of each amino acid in (0, L) space (third column).
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Figure 5: Occupancy pattern of amino acids LEU and PRO in (0, i) space. a) and b) depict the
locations of the two amino acids. LEU is the most localized amino acid (IPR=2.70) whereas PRO
has the largest IPR=83.28 value among the amino acids and is spread out the most. A rank
ordered normalized occupancy fraction of the two amino acids is shown in c), and d). The
number of bins needed to account for 50% and 90% occupancy for the two amino acids are LEU

—33 and 356, and PRO — 66 and 248, respectively.

We studied histograms of the 6 and L values associated with each of the twenty amino acids.
The distributions are roughly equally wide and substantially independent of amino acid identity

(see Figures 6 and 7).
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Figure 6: Histograms of the 0 values for each of the twenty amino acids. While the shapes of
the histograms vary from amino acid to amino acid, the ranges are mostly independent of

amino acid identity. PRO is a bit of an outlier with a somewhat lower upper cut-off value of 0.
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Figure 7: Histograms of the |1 values for each of the twenty amino acids. Even though the
shapes of the histograms vary from amino acid to amino acid, the ranges are mostly

independent of amino acid identity.

Unlike the o-helix region associated with tight local packing and hence a relatively small
variation in the 0 angle, there is a range of 0 values associated with the B-strand region. We
carried out sequence analyses of the B-strands to understand whether there is an amino acid
selection principle for 0. We selected the (6, 1) subspace consisting of L values in the range
from 175° to 185° (+5° degree interval around the ideal value of 180°) and of 8 angles in the
range from 105° to 145°. We divided up the relevant range of 6 angles into 40 bins of width 1°.
Again, we measure the IPR defined in Eq.(1) with N=40 in this case. The extreme values of the

IPR are 16.08 for the most localized amino acid, PRO, and 31.46 for the most spread out amino
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acid, ASP (see Figure 8). The average 0 value and its standard deviation for all amino acids in the

B-region is 128.0° and 9.5° respectively.
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Figure 8: Distribution of O angles in the B- region for PRO (a) and ASP (b). PRO is the most

localized amino acid, yet exhibits some spread of 6 angles.

We also studied the identities of the 210 pairs of amino acids (and their associated side chain
sizes) located at sites i-1 and i+1 (these side chains stick out in roughly the same direction with a
possibility of steric clashes) flanking site i in the B-region. We considered only those statistically
significant pairs (i-1,i+1) which occurred at least 162 times (estimated as the total number of
pairs divided by 210) with beadsi-1, i, i+1 all lying in the B-strand region and divided the 6
range again into 40 equally spaced bins. The number of amino acid pairs that met the 162
threshold was 52 out of the 210 pairs. We find that all pairs are spread out in 0 values. The most
localized pair among these was ALA-THR with an IPR of 10.51 and the most spread out pair was
PHE-PRO with an IPR of 22.77 (see Figure 9 for histograms of 0 values associated with these
pairs). A cross plot of the mean van der Waals diameter of a pair and its average 6 value (not

shown) results in a weak correlation and an overall negative trend. All these results indicate that
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the sequence does not play a significant role in determining the 6 angle associated with a B-

strand.
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Figure 9: Distribution of 0 angles in the B-region for (ALA-THR) and (PHE-PRO) amino acid
pairs in positions (i-1,i+1) respectively. ALA-THR is the most localized pair in 0 space, yet is

spread out. PHE-PRO is the most spread out pair.

We carried out simple sequence analyses of the loop region as well, to understand whether
there is a selection principle for the value of the L angle. We select the (0, L) subspace
consisting of 0 angles in the range from 87.5° to 97.5° (+5° interval around the value 92.5°,
identified as the peak density green region in Figure 3c) and [ values in the range from 90° to
360° to ensure that there is no overlap with the o-helix region. We divided up the range of n
angles into 54 bins of width 5°. We measured the IPR value for the 20 amino acids and we find
that the most localized amino acid is GLY with a value of 8.49, whereas the most delocalized
amino acid is PHE with an IPR equal to 28.42 (see Figure 10). Note that u=180° and 360°
correspond to planar configurations of 4 consecutive C, atoms, with the former corresponding

to zig-zagging and the latter to rotation in the same sense.
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Figure 10: Distribution of L angles in the loop region for GLY and PHE. GLY is the most localized

amino acid, yet exhibits a spread of angles.

Based on the normalized density of occupancy of the amino acids in (0, L) space, one can assess
the mutual similarity of the 20 amino acids by measuring the Cartesian distance between the
190 pairs of amino acids, which serves as a proxy of similarity. We have employed the
Bhattacharyya coefficient (21) in order to calculate the degree of closeness of the (6,11)
distributions of amino acids. We carried out hierarchical clustering by rank-ordering the
closeness — the two closest amino acids were placed into a single group thereby now having
effectively 19 groups of amino acids. This procedure was repeated recursively to reduce the
effective groups of amino acids by one each time. A natural stopping point for this hierarchical
clustering is when there is a relatively large jump in the measure of closeness of the remaining
groups. The result of this analysis is shown in Figure 11 and yields 6 different groups comprising
7,7,2,2,1,and 1 amino acids each. Figure 12 shows the occupancy in (0, 1) space of the six

amino acid groups.
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Group A: ALA-ARG-GLN-GLU -LEU-LYS - MET
Group B: CYS - HIS - PHE - SER -THR - TRP - TYR
Group C: ILE - VAL

Group D: ASN - ASP

Group E: GLY
Group F: PRO
ARG == LYS PHE =—TYR ILE == VAL
(ARG, LYS) == GLN HIS — (PHE, TYR) ASN — ASP
(ARG, GLN, LYS) == GLU (HIS, PHE, TYR) —THR
ALA= (ARG, GLN, GLU, LYS) (HIS, PHE, THR, TYR) — TRP
(ALA, ARG, GLN, GLU, LYS) — MET CYS— (HIS, PHE, THR, TRP, TYR)

(ALA, ARG, GLN, GLU, LYS, MET) —LEU (CYS, HIS, PHE, THR, TRP, TYR) — SER
Figure 11: Clustering of amino acids into groups. The 6 amino acid groups obtained based on
their similarity in occupying the local structural (6, L) space are shown. 6 is a natural choice
because the closeness for the next collapse into five groups is approximately twice as large as
the previous closeness measure. A5 member group would result in the merger of the two
largest groups, Group A and Group B. If one were to retain seven groups, SER would detach
from Group B and remain isolated as its own group. The sequences of hierarchical clustering for
the first four groups A (blue), B (red), C (purple) and D (green) is shown with the link thickness

guantitatively representing the closeness measure.
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Figure 12: Occupancy of the six amino acid groups in (0, |L) space. Groups A and B are

somewhat similar with the main difference being the relative weights of the a-helix and B-

strand regions. The most distinctive groups are E and F corresponding to GLY and PRO

respectively. We remind the reader (see Figure 3c) that the density peaks occur at (6 = 92.5°

and U = 47.5°) for a-helices, (0 = 122.5° and 1 = 192.5°) for B-strands, and (0 =92.5° and L =

242.5°) for loops.

We alert the reader that this grouping is distinct from the more familiar groupings of amino

acids based on their non-local interactions (22-29). Here, instead, it is entirely based on the

similarity of their propensity to adopt specific local conformations.
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We defined three significantly occupied regions of (0, L) space corresponding to o-helix
(6€[90°,95°], ue [45°,50°]), B-strand (B [105°,145°], ue [175°,185°]), and loop (0< [87.5°,97.5°],
Le [90°,360°]). The amino acid occupancies of the three regions are normalized by their
frequencies in the entire (0, |1) space of all 4416 proteins and they are shown in Table 2. Amino
acids having a normalized occupancy greater than 1 are over-represented in a given region and
vice versa compared to the expectation from random considerations. The over-represented
amino acids in the a-helix region (second column of Table 2) are all members of Groups A and C
of amino acids with the top four being LEU (1.56), MET (1.46) and ALA/GLU both having 1.42
normalized occupancy. The amino acids over-represented in the B-strand region (third column
of Table 2) are all members of amino acid Groups B and C, the top three being VAL (1.93), ILE
(1.55) and TYR (1.51). Finally, the most over-represented amino acids in the loop region
correspond to those that are the most under-represented in both the o-helix and B-strand
regions: PRO (2.49), GLY (1.76), ASP (1.33) and ASN (1.31). These four amino acids are members
of the amino acid groups D (ASN and ASP), E (GLY), and F (PRO) — see amino acid grouping
analysis and Figure 11. The strong correlation observed between the values of normalized
occupancies of amino acids in the three regions and the results of the amino acid groupings
suggests that amino acid Group A can be interpreted as the “o-helical” group, amino acid Group
B as the “B-strand” group, while Group C is over-represented in both o-helix and B-strand
regions. Finally, amino acid Groups D, E, and F can be described as “loop” groups, since they are
strongly over-represented in loops and under-represented in both o-helix and B-strand regions.
These findings are in a good accord with the observed amino acid propensities in protens

previously reported in the literature (3,5,31-33).
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Amino acid | Normalized Normalized Normalized
type occupancy in | occupancyin | occupancy in
the a-helix the B-strand the loop
region region region
ALA 1.42 0.85 0.89
ARG 1.29 1.02 0.89
ASN 0.77 0.60 1.31
ASP 0.77 0.48 1.33
CYS 0.87 1.41 0.67
GLU 1.42 0.63 0.97
GLN 1.38 0.78 0.88
GLY 0.34 0.60 1.76
HIS 0.80 0.98 0.81
ILE 1.26 1.55 0.51
LEU 1.56 0.94 0.70
LYS 1.21 0.75 1.08
MET 1.46 1.21 0.69
PHE 0.88 1.38 0.64
PRO 0.14 0.40 2.49
SER 0.61 1.05 1.04
THR 0.67 1.43 0.76
TRP 0.89 1.23 0.89
TYR 0.80 1.51 0.63
VAL 1.00 1.93 0.50

Table 2: Propensity of the 20 amino acids to occupy the a-helix, B-strand, and loop regions in
(9, ) space. The numbers shown have been normalized by the amino acid occurrences in all of

the (0, 1) space.

With the identification of just six groups, we proceeded to an analysis of correlating the local
structure (0, L) at bead i to the identity of the triplet of amino acid groups at positions (i-1,i,i+1).
The simplicity now is that the total number of distinct triplets is 216 instead of 8000. We

considered each of these triplets and studied the number of times these occurred. Obviously,
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one would expect that triplets containing the amino acids in groups C, D, E and F would be

fewer than those occurring in Groups A and B. Indeed, the number of triplets which occurred

more than 4461 times (deduced by dividing the total number of triplets = 963681 and the total

number of types of triplets = 216) was just 57 and we used these for our analysis because of

their statistical significance. The results are summarized in Figure 13.
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Figure 13: The six panels show the distributions of the 6 most localized triplets in the (0, 1)

plane. They all occupy the o-helix region predominantly. But they are spread out considerably

underscoring the weak role of the amino acid sequence in matching with the local structure.

We remind the reader (see Figure 3c) that the density peaks occur at (0 = 92.5° and i = 47.5°)

for a-helices, (0 = 122.5° and p = 192.5°) for B-strands, and (0 = 92.5° and 1 = 242.5°) for loops.

24



We conclude with the lessons learned from our analysis. Our goal here was to characterize the
local structures associated with protein native state folds using the simple representation of just
two angles (6 and ) for each C, position (Figure 1). This simplification is made possible because
the vast majority of bond lengths is substantially constant (Figure 2). The (0, |t) variables are a
coarse-grained representation of successive Ramachandran angles. The local structures adopted
by proteins are captured by simple patterns of points in the (6, i) plane. This reveals that
protein native state structures (even at the local level) are highly structured unlike the behavior
of a generic chain. Even though there is a great deal of spread in the 6 and L values, there is a

tight correlation in the plot of the mean 0 versus mean L for the 4416 proteins (Figure 4).

Armed with insights on the local structural pattern, we explored a potential sequence-structure
relationship in multiple ways. We considered the propensity of the 20 amino acids to occupy
certain regions of local structural space. We also divided the 20 amino acids into 6 groups based
on their similarity to each other in being associated with regions in the (0, |1) space. We
explored singlets and triplets based on grouping. The basic result of our analysis is that any
sequence-local structure relationship is not very strong and there is flexibility in the ability of
the amino acids to adapt to the local structure. This is consistent with the prevalence of neutral
evolution where neither the native state fold nor the ability to function changes under many
amino acid substitutions. It serves to underscore the pioneering results of Brian Matthews
(34,35) and his team who “used the lysozyme from bacteriophage T4 to define the contributions
that different types of interaction make to the stability of proteins”. One of their key findings

was that “the protein is, in general, very tolerant of amino acid replacement”. Our findings also
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are in accord with more recent experimental studies on proteins (36,37) which showed that,
while protein structures are highly tolerant of amino acid substitutions, a small number of key
alterations can yield distinct structure and function. An interesting challenge is to be able to

predict, in a transparent and reliable manner, the identity of these key amino acids.

We conclude by revisiting a seminal paper by Levitt (38) more than four decades ago in which
he very carefully measured the Chou-Fasman propensity (39) of the twenty amino acids to be
housed in three secondary structures. He noted that, generally, the preferences of the
individual amino acids for secondary structure are rather weak. He provided a physical
interpretation of his results by noting that “the chemical structure and sterochemistry of the
amino acid plays a major part in determining its preference and dislike for secondary
structure..... Bulky amino acids, namely, those that are branched at the B-carbon or have a large
aromatic side chain, prefer B-sheet. The shorter polar side chains prefer reverse turns, as do Gly
and Pro, the special side chains. All other side chains prefer a-helix, except Arg which has no
preference.” Table 3 shows a side-by-side comparison of the results of Levitt obtained with less
than a hundred protein structures and our findings with entirely different methods and more
than 4000 protein structures. Our results match those of Levitt (38) confirming the adage — old

is gold.
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a-helix propensity B-sheet propensity Loop propensity
Ourstudy | Levitt [38] | Ourstudy | Levitt[38] |Ourstudy | Levitt[38]
LEU (1.56) | MET (1.47) |VAL(1.93) |VAL(1.49) |PRO (2.49) |PRO (1.91)
MET (1.46) | GLU (1.44) |ILE(1.55) |ILE(1.45) |GLY(1.76) |GLY (1.64)
GLU (1.42) |LEU(1.30) |[TYR(1.51) |PHE(1.32) |ASP(1.33) |ASP(1.41)

Table 3: Identities of three amino acids with the highest propensities to occupy the o-helix,
B-strand, and loop regions in (0, |L) space (taken from Table 2). The Table also shows the
winning amino acids from Levitt’s analysis of 1978 (38). There is excellent accord between our
results and those of Levitt. The key difference is the identity of one of the top three amino acids
in the B-sheet propensity group. PHE scores third in Levitt’s analysis with a normalized
probability of 1.32 whereas PHE scores fifth in our analysis with a similar probability score of

1.38. TYR scores third in our study and fourth in Levitt’s analysis.
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“Local sequence-structure relationships in proteins”
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Table S1: PDB codes of the 4416 proteins used in our analysis.

16pk_A ligc_C lpnc_A 1wOp_A 2buw_B | 2hwn_D | 2rc3_A 2zk9_X 3euf D 3kl0_B
lali_A ligg_A lpnd_A 1wOu_A 2bv2_B 2hxm_A | 2rc8_B 2zkd_B 3eul_A 3kl6_B
la2p_B ligz_A 1pp0_C 1wlh_C 2bv4d_A 2hxp_A 2rci_A 2z16_B 3eun_A | 3klg_A
la2y A lirg_A lpsr_A 1w2c_A 2bwO_A | 2hxs_A 2rcq_A 2znd_A 3eup_B | 3kir_A
la2y B lisp_A lptq_A 1w2i_B 2bw8 A | 2hxt_A 2rev_E 2znr_A 3evf_A 3kmt_C
la2z_C lisu_A lpuc_A 1w3i_A 2bwf_A | 2hy5_A 2rcz_B 2z00_A 3evk_D 3kmv_D
1la34_A lit2_B 1lpuf B 1w3dw_A | 2bwl_A 2hy5_B 2rdh_C 2zpd_A 3evy_B 3knb_B
la3a_A litw_D lpvm_A | 1w3y A 2bwr_B | 2hy7_A 2rdg_A 2zpo_A 3ew0_A | 3knv_A
1ladi_B litx_A 1pvx_A 1wids_A 2c0c_A 2hyk_A 2rdu_A 2zpu_A 3ewl_D | 3kp8_A
1la73_A liu8_B 1lpxv_B 1wat_A 2c0h_A 2hyv_A 2rdz_A 2zqe_A 3ewi_A 3kpb_D
1la7d_A liue_B lpyo_B 1wdv_B 2c0r_B 2hzl_B 2ree_A 2zqm_A | 3exe_D 3kq0_A
1la7t_B liuz_A lpzs_A 1wix_A 2c0z_A 2hzy B 2reg_A 2zqn_B 3exr_A 3kqi_A
1a88_A liv3_D 1908_B 1w53_A 2¢1d_D 2i0g_A 2rem_B 2zs0_A 3ey6_A 3kqr_A
1la8q_A livo_A 190g_A 1w5r_B 2cls_A 2iln_A 2rer_A 2z2s0_D 3eye_A 3kre_A
1la8s_A liwd_A 190r_A 1w66_A 2clv_B 2i24 N 2rfg_A 2z2s1 B 3eyi_A 3krs_A
1a92_C lix1_B 1qlr_B 1wes_C 2¢c29_F 2i2q_A 2rfm_B 2251 C 3eyp_B 3kru_A
labl_A lixg_A 1qlu_A 1wés_D 2c2n_A 2i3f_A 2rh2_A 2zsi_A 3ezi_B 3kse_D
laba_A liy8_C 1g2h_A | 1w70_A 2c2p_A 2i49_A 2rh3_A 2ztl_C 3foy_C 3ksh_A
lafb_3 liyb_A 1q4u_B 1w80_A 2c2u_A 2ida_A 2rhi_A 2zul B 3f17_A 3ksv_A
lag9 B liye_C 1g5m_B | 1w8u_A 2¢3n_C 2i5r_B 2rhk_C 2zu2_A 3f1l_A 3ksx_A
lagy A liyn_A 195z_A 1w99_A 2c41_F 2i5v_0O 2ri0_B 2zux_B 3flp_A 3kt9_A
lah7_A lizc_A 1g60_A 1w9p_A 2c¢42_B 2i61_A 2ri7_A 2zuy_A 3flp_B 3ktz_A
laho_A lize_A 1q97I_A 1w9s_A 2cde_A 2i62_D 2ri9_A 2zw2_A | 3f2e_A 3ku3_B
laii_A 1j05_B 1q7I_B lwa3_A 2caf T 2i6v_A 2rik_A 2zwd_A | 3f2u_A 3kus_B
lako_A 1j0h_B 1g8f_A 1wb0_A 2c4j_D 2i7c_C 2rig_A 2zwj_A 3f3g_A 3kuv_A
laky_A 1j0p_A lgau_A 1wb6_B 2c4n_A 2i7d_A 2rji_A 2zwn_A | 3f3x_A 3kwe_A
laoh_B 1ljly_A lgav_A lwba_A 2c53_A 2i7f B 2rjiw_A 2zwu_A | 3f47_A 3kxt_A
laoz_A 1j24_A lgaz_A lwbe_A 2c6q9_B 2i8t_B 2rk3_A 2zx2_A 3fam_A | 3kyj_A
larb_A 1j27_A 1qb5_E lwbh_B 2c6u_A 2i9a_D 2rk5_A 2zxj_B 3f4s_A 3kz5_A
last_A 1j2j_B 1gb7_A | 1wbi_H 2c6z_A 2i9i_A 2rkl_A 2zxy_A 3f52_A 3kz7_A
latg_ A 1j2r_A lgba_A 1wbj_A 2c78_A 2iax_A 2rka_A 2zya_B 3f51_B 3kzj_A
latl_B 1j30_B lgcx A 1wbj_B 2c7p_A 2ib8_A 2rku_A 2zyh_B 3f50_G 3kzu_B
latz_B 1j34_A 1qd1l_B 1wc2_A 2c81_A 2ibj_A 2rky_C 2zyo_A 3f6o_A 3107_B
laun_A 1j34_B 1qd2_A 1wc9_A 2c82_B 2ibl_A 2sak_A 2zzd_E 3f6q_A 3l0f_A
lavb_A 1j3w_C 1qd9_C lwcf_A 2c8h_D 2ibp_B 2sec_| 2zzd_) 3f6q_B 3i01_B
lawd_A | 1j48_A lqdd_A lwcg B 2¢92 D 2ic6_A 2sga_A 2zzj A 3fey_A 3118_A
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laye_A
1b0Ob_A
1b16_A
1blc_A
1b2s_F

1b37_B
1b3a_B
1b4f B

1b5e_A
1b63_A
1b66_A
1b67_A
1b8a_B
1b8d_K
1b8p_A
1b93_A
lbas_A
lbaz_A
lbdo_A
lbeh_A
1bf6_A

lbgf A

lbgp_A
1bhp_A
1bj7_A

1bkp_A
1bn8_A
1bg8_A
lbgb_A
lbgk_A
lbrt_A

1bs3_B
1bs9_A
lbsg A
lbue_A
1bx4_A
1bx7_A
lbxu_A
lbxy A
lbyi_A

1c02_A
1cOp_A
1cld_A
1clk_A
1cll_A

1lcly A
1cly B

1c4q_B
1c52_A
1c5e_A
1c75_A
1c7j_A

1c7k_A

1j71_A
1j75_A
1j77_A
1j7d_A
1j7g_A
1j8e_A
1j8u_A
1j91_A
1ja9_A
ljae_A
ljak_A
ljat_A
ljay_B
ljcd_A
ljcv_A
1jd0_B
1jd1_C
1jd5_A
1jdh_B
1jdI_A
ljek_A
ljev_A
1jf8_A
1jfl_B
1jfr_A
1jfu_A
1jfx_A
ljgl A
1jhd_A
1jhf_A
ljhg_A
1jhj_A
ljhs_A
1jil_A
1jid_A
1jif_A
ljke_C
ljkg_A
1jkx_A
1jl11_A
1j17_A
1jlj_A
1jlt_A
1jlt_B
1jm1_A
ljnr_C
ljnr_D
1jo0_A
1jo8_A
ljpe_A
1jg5_A
ljge_A
1jr8_A

1gfv_B
1lggi_A
lggj_A
1ggu_D
1gh5_B
1ghf_A
1gho_A
1ghg_A
1ghv_A
19j5_B
1gjc_B
lgjw_B
lgkk_A
1ql0_B
1qI3_B
1glw_A
lgmy_C
1gnj_A
1gnn_C
lgnp_A
lgnx_A
1goz_B
lgre_A
1grp_E
1gs1_A
1gsa_A
1gsg A
1qt9_A
lgtn_A
lgtw_A
lqul_D
lgve_B
1gw9_B
lqwd_A
lgwg_A
lgwk_A
lgwm_B
lgwz_A
lgxy_A
1qgy6_A
19z9_A
1rOr_E
1r12_A
1r17_A
1rip_A
1rit B
1r26_A
1r29_A
1r2m_A
1r2r_B
1r3g_A
1r45_B
1r55_A

lwck_A
1wd3_A
lwdd_S
lwdy_A
1wf3_A
1whi_A
lwka_A
1wko_A
1wkqg_B
1wkr_A
1wku_B
1wkx_A
1wld_A
lwlg_B
1wlz_C
lwm2_A
lwma_A
lwmd_A
lwmh_A
lwmw_A
lwmz_D
lwn2_A
lwny_A
1lwo8_D
1wod_A
lwog_E
lwoq_B
lwor_A
lwpa_A
lwpn_B
lwpu_A
1wq8_A
1wqj_B
1waqj_l
1wr8_B
lwrd_A
lwri_A
lwrm_A
1ws8_A
lwst_A
1wt6_A
lwta_A
lwte_A
1wtj_A
lwto_A
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