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Abstract

Understanding the interplay between topology and ordering in systems on curved manifolds,
governed by anisotropic interactions, takes a central role in many fields of physics. In this paper,
we investigate the effects of lattice symmetry and local positional order on orientational ordering
in systems of long-range interacting point quadrupoles on a sphere in the zero temperature limit.
Locally triangular spherical lattices show long-range ordered quadrupolar configurations only for
specific symmetric lattices as strong geometric frustration prevents general global ordering. Con-
versely, the ground states on Caspar-Klug lattices are more diverse, with many different symmetries
depending on the position of quadrupoles within the fundamental domain. We also show that by
constraining the quadrupole tilts with respect to the surface normal, which models interactions
with the substrate, and by considering general quadrupole tensors, we can manipulate the ground
state configuration symmetry.

1 Introduction

One of the central concepts in studying the electrostatic interactions between building blocks of matter
is the multipolar expansion of electric and magnetic potentials. The significant terms in this expansion
depend on the charge or polarization distribution, as well as the shape of interacting particles [1].
Objects with high symmetry only have a small number of nonvanishing multipolar moments and the
expansion can be truncated after the first significant term as subsequent contributions are often small
in comparison. In many cases, however, higher multipole contributions can have determining effect on
system behavior. They play an important role in nonlinear optical phenomena [2], interactions between
molecules [3,4] and can significantly alter orientational configurations in 2D magnetic systems [5-7].
An important class of systems interacting predominantly via multipole interactions are molecular
adsorbates of Hy, Ny, Oy or CO [8-18], and molecular crystals [19,20], where quadrupole moments of
positionally fixed building blocks dictate the orientational ordering in the system. The energetically
preferred configuration of two quadrupoles is the mutually orthogonal T-configuration. This leads
to high geometrical frustration in systems where the symmetries of interaction and lattice are not
compatible, e.g. quadrupolar glasses [21-23] and systems of quadrupoles on 2D triangular lattices.
Such systems consequently show complex orientational ordering in low temperature states, as well
as rich phase behavior. As found from theoretical considerations [8,15,24] and corroborated by
simulations [9,25,26], the ground state of a quadrupolar system on a triangular lattice is a long-range
ordered pinwheel structure. If additional interaction with the substrate is present that favors in-plane
ordering of quadrupoles, the ground state assumes the herringbone structure instead [8,26-28].
Whereas the behavior of systems with multipolar interparticle interactions is well understood in
Fuclidean geometries, in recent years there has been a general surge of interest in systems on curved
surfaces governed by different anisotropic interactions. The sphere in particular is one of the prototype
systems to study the effects of curvature on system behavior due to its unique topological proper-
ties [29]. Intriguing structural order supported by curvature and interaction anisotropy emerges in



liquid crystals [30,31], dynamical systems [32,33] and thin magnetic spherical shells [34-36]. Further-
more, orientational ordering in systems with pure multipolar interaction, specifically the dipole-dipole
interaction, has also recently been studied on spherical lattices [37,38]. It was shown that the local po-
sitional order and the symmetry of the lattice play a fundamental role in determining the symmetries
of the ground state and excited state configurations.

As spherical lattices lack any translational symmetries and also contain structural defects due to
topological constraints, the pinwheel and herringbone quadrupole global ordering are in general not
possible on a sphere even in cases where the lattice locally resembles the triangular lattice (e.g. the
Thomson lattice). The absence of translational symmetry was previously shown to break long-range
ordering in some 2D systems of quadrupoles [39]. Theoretical studies of systems on spherical lattices
can therefore provide further insight on the effects of local order, symmetries, as well as curvature,
on long-range quadrupole ordering. Furthermore, possible experimental realizations of quadrupolar
systems on a sphere include CO2 and ethylene adsorbates on spherical fullerenes, where quadrupole
moment of molecules was also found to influence orientational order [40-42].

In this work, we use numerical modeling to examine stable configurations of point quadrupoles,
positionally fixed to different spherical lattices. We first define the interaction potential and describe
the general parametrization of quadrupole tensors along with simulation methods used to acquire
stable configurations. We then present the results of ordering on individual Thomson lattices, show-
casing the influence of lattice symmetry on long-range orientational order in quadrupolar systems.
We compare the results to that on the icosahedral Caspar-Klug (CK) lattices to further examine the
effects of local positional order and geometrical frustration on quadrupolar ordering. Finally, a variant
of the problem with constrained tilt between the quadrupoles and the sphere is considered as it more
closely resembles some of the possible experimental realizations.

2 Simulation methods

We consider a system of N point quadrupoles, described by Cartesian tensors {QA} and positionally
fixed to lattice points {r4}. The interaction energy functional of the system in units of 1/4mey can
be written as a quadratic form,
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where r4p = rg — 74 and Einstein summation is implied for lowercase indices. We consider interac-
tions between all pairs of quadrupoles. The interaction tensor
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can be computed in advance as the positions of quadrupoles are fixed which can significantly decrease
energy calculation times. Note that the interaction in consideration is purely classical which provides
a sufficient description of orientational ordering in most quadrupolar molecular adsorbates [43].
Most commonly, quadrupole moments found in nature are of the rotationally symmetric linear
(uniaxial) type with eigenvalues e; = —2ey = —2e3 = 1. Unless specifically mentioned, this is the
type we focus on throughout this paper. For a complete description, we later also consider a continuous
parametrization of all possible quadrupole eigentensors, with eigenvalues e; = 2+ a, e = —1 — 2a
and e3 = —1 + a where a € [0,1]. The case of a = 0 corresponds to the linear type whereas a = 1
describes planar quadrupoles with eigenvalues e; = —es = 1 and e3 = 0 which are not extensively
studied in literature. In energy calculations, we additionally rescale the parameterized eigenvalues so
that Tr(Q?) = 1 which can be formally done by introducing a constraint to minimization of Eq. (1).



We parameterize the orientations of uniaxial quadrupoles in their respective local coordinate
frames by two angles, azimuthal angle ¢4 and polar angle 84. However, this parametrization is
not sufficient to describe orientations of biaxial quadrupoles where the description with Euler angles
is used instead. We use numerical minimization of energy with respect to the parametrization angles
to find the ground state configurations of the system. Our algorithm of choice is the Broyden-Fletcher-
Goldfarb-Shanno algorithm which proved effective as well as time efficient in finding the ground state
and excited state configurations for smaller system sizes (N < 150). Although previous studies of
quadrupolar ordering mostly relied on the simulated annealing Monte Carlo simulations to find the
ground state structure of the system [1,39], the use of a deterministic minimization method allows
us to more systematically examine some excited state configurations. We performed 1000 minimiza-
tion simulations at each IV, starting from different random initial conditions to ensure finding the
global minimum as well as to find excited states with distinct symmetries. Nevertheless, finding the
ground state in this way becomes increasingly difficult with the increase in system size as the number
of metastable states grows exponentially with N. The limit N = 150 represents the approximate
size above which the deterministic minimization becomes sub-optimal. Difficulties in finding a global
minimum numerically arise due to the rough energy landscape. This would also reflect in a physical
system where we would most likely find in a glassy, disordered state instead of the true ground state.

Finding the true ground state from random initial orientations of quadrupoles can be inconsistent
on some non-uniform lattices that deviate strongly from equilateral positional order, due to the fast
decay of the interaction strength with the distance that promotes metastable states on such lattices.
In particular, this problem emerges for many CK lattices. To circumvent it, we additionally performed
minimization simulations with constrained orientational order symmetry, considering all symmetry
subgroups of the icosahedral group of the underlying lattice which drastically improves the quality
and consistency of the results. Such constrained minimization is also computationally more efficient as
imposing symmetries to the resulting orientational order decreases the number of degrees of freedom
in the system.

Due to the complex ordering of quadrupolar systems on the sphere, no single order parameter
can itself sufficiently quantify the long range order. As we will demonstrate in the following sections,
some properties of the quadrupolar systems can be deduced based on the out-of-plane parameter
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where k is the direction of the main quadrupolar axis, evaluating the average of the deviation &; of
quadrupole orientations from tangential ordering. A more comprehensive quantitative approach to
differentiate between quadrupolar states with different degrees of ordering is the expansion of their
orientations over tensor spherical harmonics [44]. This expansion can be defined analogously to the
definitions of scalar and vector spherical structure factors used for investigating scalar and vector order
on the surface of the sphere [38,45,46]. However, comparison between configurations at different N
still proves to be challenging because of relatively small system sizes that strongly influence expansion
coefficients, especially at higher orders in the expansion. As will be shown in the following sections,
long-range order in quadrupolar systems is adequately described by state symmetries and, therefore,
tensor spherical harmonic analysis remains beyond the scope of this article.

3 Results

We study the orientational ordering of quadrupoles, positionally fixed to different spherical lattices,
and explore the general properties and possible symmetries of the ground state and excited state
configurations. First, we focus on uniform lattices, in particular the Thomson lattice, taken as a
representative locally triangular case with many distinct symmetries at different system sizes which



proves to be fundamental for high symmetry quadrupolar ordering. Figure 1 shows the dependence
of the ground state energies on the size of the underlying Thomson lattice N that determines the
positional order in the system. Fitting the power law curve shows scaling as Fy o« N33, closely
matching the exponent estimate of 7/2 calculated from the neighbor distance and energy scaling
ro N2 and E x N /r®, respectively. Another quantity showing distinct trend with increasing
system size is the out-of-plane parameter £ (Eq. 3). Whereas the ground state values, marked by red
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Figure 1: (a) Energies and (b) the deviation from tangential ordering £ for quadrupolar states on the
Thomson lattices from N = 10 to N = 78. Red dots represent ground state values whereas black dots
correspond to excited state configurations. Ground state energies follow a power law trend Ey oc N348,
presented in the log-log plot as a blue straight line. Ground state values of £ vary significantly with
the system size, however, the average value of £ over all configurations at each N is decreasing. The
outliers at N = 16 and N = 44 with the lowest £ correspond to pinwheel configurations.

dots, vary significantly with N, the average values of £ over all configurations at each N are smaller
for bigger systems. Note that in the 2D pinwheel configuration £ = 1/4 [] which already shows that
the ordering in spherical case is more complex. Additionally, the decrease in & with N is consistent
with the assumption that in the limit of large system sizes, the role of curvature on ordering is small
and the pinwheel structure again becomes the ground state of the system, at least in regions away
from disclinations and dislocations.

Large deviations in ground state values of the out-of-plane parameter £ indicate that there is
no general structural order in quadrupolar systems on the Thomson lattice which can be quickly



confirmed by examining individual ground state configurations. This is in stark contrast to the
dipolar case where a general macrovortex configuration was found (cf. [37]) but it is not surprising as
dipolar configurations are not geometrically frustrated on locally triangular lattices. Nevertheless, we
find that many individual configurations with symmetric quadrupolar order are possible on certain
lattices with high positional order symmetry, not only in the ground state but also in excited state
configurations.

Some of these structures are presented in Fig. 2 where quadrupoles are colored depending on
the inclinations with their respective tangent planes, &. More information on ordering at different
system sizes is available in Supplemental Material [47] (SM). We first take a look at the ground
state configuration for N = 12 with icosahedral positional order. Quadrupoles order in a quasi-
vortex configuration with three-fold rotational and inversion symmetries (S¢ point group), with all
quadrupoles showing considerable out-of-plane ordering. This results in the highest value of £ among
all ground state configurations found, at £ = 0.520. Similar vortex ordering is possible for N = 14,
where it actually resembles the pinwheel structure with quadrupoles on the symmetry axis oriented
radially to the surface. However, this Cg symmetric configuration is not the ground state. In fact,
all 8 other configurations found have lower energies and are less symmetric; the ground state has no
symmetries and three other excited states show Co symmetry (symmetry axis is the same as for the
Cs case).

Increasing the system size, we find many other cases of axial symmetries both for the ground state
and excited state configurations. To illustrate this, we show the ground state configurations belonging
to C4 point group found on the octahedral N = 48 lattice and Sy¢ point group on the icosahedral
N = 32 lattice. The latter includes two pinwheels centered at the poles of the sphere. Note that
some excited states for the NV = 48 lattice show other symmetries as well, i.e. Dy, Co and C3. We
can find intriguing configurations also for the case of N = 78 with tetrahedral positional symmetry.
The quadrupolar ground state is not shown here as it is less interesting with only Co symmetry and
excited states showing higher degrees of orientational ordering. In particular, the Sg configuration is
structurally similar to the ground state of N = 12 with quasi-vortex ordering and the highest value
of out-of-plane parameter at this system size, £ = 0.438. In contrast, we also find a configuration
where ordering gravitates towards a pure pinwheel structure, though some quadrupoles still deviate
from in-plane or radial orientations. This provides another demonstration that the long-range nature
of quadrupolar interaction influences local ordering on curved surfaces. The configuration belongs to
the Do point group, with three distinct 2-fold rotation axes that are perpendicular to one another,
inherited from the tetrahedral group of the positional order.

The ground state for N = 32 deserves additional discussion as it can be related to existing
experimental and simulational investigations. Adsorbates of nonpolar molecules, such as Hy, Ny
and ethylene, can form a 1 X 1 commensurate state as they adsorb onto fullerene Cgg, where all
pentagons and hexagons are occupied by exactly one molecule of the adsorbate [42,48-50]. The
energetically favored adsorption sites are the 32 centers of carbon polygons that form exactly the same
icosahedral configuration as the N = 32 Thomson solution. Orientational order of adsorbed ethylene
molecules in such 1 x 1 commensurate configuration was investigated in a molecular dynamics (MD)
simulation in Ref. [42]. It was found that at low temperature (1K), two molecules orient perpendicular
to the surface of the fullerene whereas other 30 lie almost tangentially. This result resembles the
quadrupolar ground state configuration presented in Fig. 2, however, our result shows deviations
from tangential ordering for quadrupoles around the equator. This discrepancy can be attributed
to different causes. MD simulations also take into account the interaction with the substrate, and
additionally, the ethylene molecule is not rotationally symmetric so modeling with linear quadrupoles
does not provide a complete description of ordering. We will further comment on the solutions for
different quadrupole tensors in Sec. 3.2.

The last presented configuration in Fig. 2 indicates that pure pinwheel structures could be possible
on certain Thomson lattices. This is indeed the case, in Fig. 3 we present three such structures at
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Figure 2: Examples of rotationally symmetric configurations on the Thomson lattices: the ground
state for N = 12 (Sg), one of the excited states for N = 14 (Cg), the ground states for N = 32 (Syo)
and N = 48 (Cy4), and two excited states of N = 78 (S¢ and Dy). The quadrupoles are represented
by double arrows and colored according to the projection of its orientation to the surface normal &;.
Radial quadrupoles are colored in red and tangential in blue.

different system sizes, N = 16 (not the ground state), N = 44 and N = 122. What is more, these
quadrupolar configurations preserve the symmetries of their positional order, tetrahedral, octahedral



and icosahedral, respectively. It is immediately clear looking at this configurations that pure pinwheel
ordering is not compatible with every Thomson lattice and emerges only for specific arrangements
of lattice defects. The perpendicular quadrupoles should be centered at all lattice disclinations (as
for N = 122) or completely avoid them (e.g. for N = 16 and N = 44). The arrangement of defects
determines if constructing a complete pinwheel lattice is possible with these conditions. It should
be pointed out that quadrupoles in these pinwheels deviate slightly from the tangential orientations.
Nevertheless, the out-of-plane parameter ¢ is significantly smaller for these configurations than the
others at the same system size which is also reflected in Fig. 1.
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Figure 3: High symmetry configurations on the Thomson lattices: tetrahedral N = 16, octahedral
N = 44 and icosahedral N = 122. Whereas the last two are the ground states for the systems of their
respective sizes, the tetrahedral configuration only emerges as an excited state for N = 16.

We showed that certain symmetric Thomson lattices support long-range ordered symmetric quadrupo-
lar configurations, however, these should be searched for on per lattice basis. Examining stable con-
figurations on the Tammes and Fibonacci lattices, we further confirm this observation (see SM). The
Tammes lattice is similar to the Thomson lattice, i.e. it is locally composed of close-to-equilateral
triangles. This characteristic was found to be central in determining the orientational order in dis-
crete dipolar systems (cf. Ref. [37]). In quadrupolar systems on a sphere, it leads to strong geometric
frustration, especially considering the topological requirement for lattice defects. The ordering on the
Tammes lattice is therefore expectedly similar to the results presented above, with only individual
long-range ordered quadrupolar configurations, confirming that the exact positional order is less im-
portant than its global properties such as the symmetry. On the other hand, quadrupolar ordering
changes if the lattice deviates systematically from local triangular order. An example is the Fibonacci
lattice, where for high enough system sizes, it locally resembles the square lattice around the equator
and, consequently, for N 2 70 the quadrupoles order in the local windmill configuration. The same
ordering was found in the mean-field calculations for the 2D square lattice [27]. On the poles of the
Fibonacci lattices where positional order is highly irregular, long-range quadrupolar order is again
absent.

3.1 Icosahedral Caspar-Klug lattices

Investigation of stable states on the Thomson lattices showed that the symmetrically nontrivial orien-
tational ordering in both the ground states and excited states is mainly connected to the symmetry of
the positional lattice, at least for lattices that are locally composed of (close to) equilateral triangles.
We further explore the role of local order and global positional arrangement on quadrupolar config-
urations by examining ordering on the CK lattices [51,52] where we can manipulate local positional



order while retaining the icosahedral lattice symmetry. We focus on CK lattices with the triangulation
parameters (n,m) = (1,0), resulting in system size N = 60, at different values of parameters (u,v)
that determine the positions of quadrupoles inside the fundamental domain (see Ref. [38] for more
information on lattice construction). These lattices are intrinsically non-uniform, with vacancies in
the positional order even in the equidistant cases (constant nearest neighbor distances) which leads
to ordering that is markedly different than in the Thomson case studied above.

Quadrupolar ground states on some equidistant CK lattices are presented in Fig. 4, marked as
A (truncated icosahedron), B (small rhombicosidodecahedron) and C (snub dodecahedron). The
lattice A supports an icosahedral quasi-pinwheel structure around each vertex (five-fold axis) of the
icosahedron, with a missing perpendicular central quadrupole. Quadrupoles are oriented close to their
tangential planes which results in £ = 0.1, a value much lower than for any configuration on Thomson
lattices. The configuration on the lattice B is similar to the lattice A, with only the arrangement of
the quasi-pinwheels being different. The lattice C, however, does not support any symmetries in the
ground state despite equal distances between quadrupoles. It consists of pentagons and equilateral
triangles between them which leads to geometric frustration of quadrupole orientations and breaks
global ordering.

m G C; M GCs D3 M Ds

Figure 4: A diagram of ground state symmetries depending on lattice parameters u and v for 1239
points over the whole fundamental domain. Additionally, examples of quadrupolar configurations
are also shown, including the equidistant lattices A, B and C, among others. Orientational order
symmetries depend strongly on local positional order. Strong geometric frustration in the middle of
the diagram prevents the formation of long range order, eg., the lattice C, whereas the configurations
towards the edges show many different uniaxial and even higher symmetries, such as the icosahedral
states on lattices A and B.

We conducted symmetry analysis of the ground state configurations in dependence to the position
of quadrupoles in the fundamental domain as determined by the parameters u and v. To ensure finding
the true ground state of the system, we additionally performed the simulations with constrained



orientational order symmetries. The results are presented in Fig. 4. In the left part of the diagram,
quadrupoles are positionally arranged in pentagonal quasi-pinwheel structures around icosahedral
vertices, with the spacing between the nearest neighbors increasing as we move towards the right.
Fast decay of the quadrupolar interaction strength with the distance makes rotational directions for
these pinwheels nearly independent of one-another which leads to configurations with lower symmetries
(i.e. different directions of pinwheel rotations) having very similar energies to the icosahedral case.

As we move towards the right and the quasi-pinwheels become closer to one another, their mutual
interactions become significant and Cy, C5 or Cs configurations show lower energies compared to
the icosahedral structures. Nevertheless, these still prevail along the top edge of the fundamental
domain as we transition towards locally triangular arrangement of particles in the top right part of
the diagram. This positional order also supports tetrahedral ground state configurations that occupy
part of the top right corner of the fundamental domain. Conversely, ground state configurations in the
center and lower right parts of the fundamental domain only show axial symmetries. In the bottom
right corner, each quadrupole only has one nearest neighbor, leading to a strong preference for the
local orthogonal T-configuration. This effectively precludes tetrahedral and icosahedral configuration
symmetry as it is not compatible with Cs rotations of the lattice. In the center of the diagram, many
ground state configurations show no symmetries. This is attributed to strong geometric frustration
as argued already for the case of the lattice C.

In general, the symmetry diagram of quadrupolar ground states on CK lattices qualitatively
strongly resembles the one for the dipolar case studied in Ref. [38]. Icosahedral and tetrahedral con-
figurations are found in the same parts of the fundamental domain (even though they cover slightly
larger regions in the quadrupolar case) and there are almost no configurations with dihedral symme-
tries in the ground state. Nevertheless, the locations of no symmetry regions are different between the
dipolar and quadrupolar case, and in the bottom right corner, the Cs and C5 regions are exchanged
which is a direct consequence of different preferential orientational configurations for pairs of dipoles
and quadrupoles.

Returning back to the quadrupolar case, we plot the values of the out-of-plane parameter £ (Eq. 3)
for ground state configurations in the whole fundamental domain (Fig. 5a). The results in all three
corners are as expected, approaching zero in the bottom left and top right corners, for configurations
with pentagonal and triangular local arrangements of quadrupoles, respectively, and assuming higher
values in the bottom right corner for configurations with pair T-ordering. Approaching the center
of the fundamental domain from & = 0 in the corners, we observe a gradual increase in £, with
a more noticeable change towards higher values in the region with no ground state orientational
order symmetry. Conversely, some configurations on the edges of the fundamental domain, where the
positional order of the lattice is (nearly) equidistant (i.e. around lattices A and B as well as in the
middle of the right edge), show close to tangential ordering.

Furthermore, we compare the energies of ground state configurations with the lowest energy icosa-
hedral state on the same lattice. Note that the icosahedral configuration is not stable in general
and may decay after the symmetry constraint is lifted, especially in the part of the diagram with
non-symmetric ground states. The ratio —AU /U of the energy difference to the icosahedral state and
the energy of the ground state configuration is shown in Fig. 5b. It is small in the bottom left and
top right parts of the fundamental domain which shows that reducing the symmetry to tetrahedral
or axial does not lead to a substantial decrease in the configuration energy for locally pentagonal and
triangular lattices. As expected, the energy difference is proportionally higher in the bottom right
corner where quadrupoles order in local T-configurations, as well as in the center of the diagram with
no symmetric ground states. There are two distinct peaks of the energy ratio; some configurations
between the two also exhibiting symmetries in the ground state as shown in Fig. 4.



0.4

0.3

0.2

0.1

b) —AUMU o

0.6
0.5
0.4
0.3

0.2

0.1

0.0

Figure 5: The out-of-plane parameter £ and the deviation —AU /U of the ground state energy from
the icosahedral configuration energy, evaluated for the whole fundamental positional domain of CK
lattices. Quadrupolar states on lattices in left and top right corners of the fundamental domain
are approaching purely tangential ordering, with inclinations increasing towards the middle of the
diagram. The configurations in bottom right corner and in the center exhibit higher values of £ due
to local pair ordering and geometric frustration, respectively. Consequently, the energies of forced
icosahedral orientational configurations are also higher in these regions, resulting in higher differences
to the ground state energies.

3.2 Constrained solutions and different quadrupole tensors

In real systems, quadrupoles are usually not free to rotate but are rather constrained around some
preferred tilt, dictated by the interaction with the substrate as well as temperature [41,42]. Addition-
ally, quadrupole eigentensors can differ from the rotationally symmetric linear type. We examine the
dependence of the ground state configuration on the parameter a that determines the quadrupolar
eigenvalues, at different fixed inclinations 6 between the surface normal and the eigenvector corre-
sponding to the highest eigenvalue e; = 2 4+ a. To do so, minimization over two Euler angles for each
quadrupole is still required (only the third is constant and fixes the value of 0).

Figure 6 shows a heatmap of the optimal configuration energies in the (a, 8) plane for a quadrupolar
system on the N = 72 icosahedral Thomson lattice. Configurations at higher 6 on the top of the
diagram always show lower energies compared to lower 6 configurations. Similarly, we observe a
general decrease in energy as quadrupoles transition from the linear (left edge) to the planar (right
edge) quadrupole type. Calculating energy heatmaps for quadrupolar systems on lattices of different
sizes and types (including the CK lattices), we note that the dependence of energy on parameters
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a and 6 is qualitatively the same. We also visualize the limiting configurations in all four edges
of the diagram. The configuration at (0,0) is trivially radial whereas at (0,7/2), quadrupoles form
regions with the herringbone orientational order as is also typical on 2D triangular lattices with forced
tangential order. At the pentagonal lattice defects, the herringbones change orientational direction.
Ordering at (1,0) is similar, as constraining one axis of planar quadrupoles to the radial direction
results in the other axis lying tangent to the surface. The solution at (1,7/2) is completely planar
with neighboring quadrupoles trying to align perpendicular to one another. Considering only the

main (red) axes, we again notice the local herringbone structures.

Figure 6: Energy heatmap (in units of 10%) along with a visual comparison of configurations between
different quadrupole types for the N = 72 Thomson lattice. Energies decrease with increasing the
tilt constraint € and the eigenvalue parameter a. The configuration at (0,0) is trivially radial and at
(1,0) and (0,7/2), we observe equivalent herringbone order for the main (red) and secondary (blue)
axes, respectively. At (1,7/2) herringbone order is also observed if we only consider any one of the
two quadrupole axes.

While Fig. 6 only shows ground state configurations for the limiting cases of the parametrization,
the way in which configurations transition from perpendicular to tangential main axis orientation
(0 =0 — 0 = 7/2) warrants an additional comment. If we consider only the orientations of the
tangential components of main axis orientations at increasing inclinations (6 = 0 towards 6 = 7/2),
we notice that for small values of 6, the main axes projections form a quasi-macrovortex. Around
6 = /4, the projected orientations transition towards the herringbone order that then consistently
emerges for § > /3. This behavior does not depend on the eigenvalues of the quadrupoles (parameter
a). Additionally, such orientational order for all configurations of constrained quadrupoles also breaks
any rotational symmetry that might emerge for a system of unconstrained linear quadrupoles on the
same lattice.

It should be noted that while we constrained the tilt of the main quadrupole axes (red double
arrows in Fig. 6) with respect to the surface normal, the orientations of the secondary axes (blue
double arrows) are determined by energy minimization and can therefore be tilted out of the tangent
plane. We plot the average inclination of the secondary axes n; to the surface normal v =), |n;-7;|/N
in Fig. 7. The result v = 0 along the bottom edge of the diagram is trivial, as the secondary axis
must be perpendicular to the main axis at @ > 0. Along the top edge, there is no constraint for
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the orientations of the secondary axes, therefore, values of v close to 0 show that planar ordering is
energetically favorable. Conversely, values of v increase as we approach § = /4 in the middle of the
diagram. These configurations have both the main and secondary axis strongly tilted from the planar
configuration with virtually no dependence on the eigenvalue parameter a (for a > 0). The results for
other lattices (including CK lattices) are similar.
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Figure 7: A heatmap of the average secondary axis inclination v for the N = 72 Thomson lattice on
the whole parametric domain. The values at the bottom edge are zero by definition and the results
for a = 0 are omitted from the plot as they are ambiguous for linear quadrupoles. The inclinations
show no dependence on a, they peak around 0 = 7 /4 with v & 0.65 and are close to zero for § = 7/2,
indicating that the fully planar quadrupolar configurations at this angle are energetically favorable.

We argue that locally triangular lattices do not support symmetric configurations of quadrupoles
if we constrain their inclinations to 8 > 0 or if we consider quadrupoles that deviate from the linear
type (a > 0). Geometric frustration that emerges on these lattices, especially as a consequence of
lattice disclinations, cannot be offset by different quadrupole tilts as is the case for the symmetric
ground states in Fig. 3, leading to a lack of long-range orientational order. In comparison, quadrupoles
in many ground state configurations on CK lattices already have the same inclinations and, due to
vacancies in the positional order, local herringbone structures do not form on these lattices. This
opens up the possibility that long-range ordered symmetric quadrupolar configurations exist on CK
lattices also if the orientations are constrained to a specific inclination 6. More specifically, this
inclination, as well as the type of the quadrupole given by parameter a, can influence the symmetry
of the configuration as shown in Fig. 8 for the equidistant CK lattices A, B and C.

Systems on lattices A and B show icosahedral ground state structures in the majority of the
diagram. In both cases, this symmetry breaks along the left edge, i.e. as we increase the tilts of the
quadrupoles with respect to the surface normal. For the lattice A, the ground state first transforms
into the tetrahedral configuration that also prevails towards the center of the diagram (with increasing
a) and, increasing 6 even further, we encounter regions with C3 and C5 symmetries. Notice also the
narrow Co and Djy transitional regions. For the lattice B, the part of the diagram without the
icosahedral symmetry is subdivided into many smaller regions, possibly indicating that we failed to
find the true ground state in all points. Similarly, some imperfections in the simulations are present in
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the diagram of the lattice C. Despite the lack of symmetry in the ground state of freely rotating linear
quadrupoles (Fig. 4) on this lattice, a large part of the diagram for the constrained case shows Cj
symmetric ordering. Both inclination extremes, ie. the radial (§ = 0) and tangential cases (6 = 7/2),
assume configurations with different symmetries.

n/2
A C
3n/8
/4
||
|
o . =
/8
0.0
0.0 0.25 0.5 0 0.25 0.5 0.75 1.0

0.75 1. . 0.25 0.5 0.75 1.0

0 m C Cs m G D3 M Ds T

Figure 8: Ground state configuration symmetries for CK lattices A, B and C in dependence to the
main axis inclination 6 and eigenvalue parameter a (axes are the same as in Fig. 6 and 7). On the
lattices A and B, the most common symmetry is the icosahedral symmetry as in the case of freely
rotating linear quadrupoles. The lattice A also shows a large tetrahedral region as well as smaller
Cs and Cj5 regions. The Cy and Ds configurations appear to be only transitional. The results on
the lattice B are even more diverse in the non-icosahedral part of the diagram, indicating possible
minimization imperfections. The lattice C which does not support asymmetric ground state without
the constraint to the main quadrupole axes inclinations, assumes the C5 symmetry in a large portion
of the parameter space.

4 Conclusions

We investigated the role of local positional order, lattice symmetry, and inclination constraints on the
orientational ordering in quadrupolar systems on the surface of the sphere. Triangular local positional
order in particular leads to geometric frustration and in general does not support global (long-range)
orientational order, as indicated by the solutions on many Thomson and Tammes lattices. However,
we have shown that lattice symmetry can stabilize long range order for certain lattices, resulting in
quadrupolar configurations with different axial symmetries as well as pure pinwheel configurations
with higher symmetry, i.e. tetrahedral, octahedral and icosahedral. Orientational order supported
by positional symmetry emerges also in many ground state configurations on CK lattices. The sym-
metry diagram shows rich behavior that can be directly attributed to the competition between the
local geometric frustration and icosahedral lattice symmetry. We further expended the discussion by
examining ordering of general quadrupole tensors. Additionally, we constrained the inclinations of
the main quadrupole axis to model possible effects of interactions with the substrate. We find that
both the inclination and the type of quadrupoles influence the ground state ordering, in particular its
symmetry.

In real spherical quadrupolar systems, such as the adsorbates of nonpolar molecules on spherical
fullerenes, orientational ordering is usually influenced by other interactions besides the quadrupole-
quadrupole interaction. Most notably, interactions with the substrate can impose preferential tilt
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of the quadrupoles, leading to some discrepancies with our results. Nevertheless, by keeping our
discussion as general as possible, the role of quadrupolar interaction on orientational ordering can
be analyzed and evaluated in a diverse range of physical systems. Further investigations could focus
on a generalization to more complex interparticle and particle-substrate interactions, or modeling
thermal behaviour of the system at a finite temperature, in turn improving the agreement of the
simulation results with the behavior in real systems. Additionally, our results show the possibility for
the construction of systems with the desired orientational order by choosing the appropriate positional
lattice and manipulating the inclinations of the quadrupoles. Finally, in physical systems that do not
fix the positional order of the quadrupolar units, joint minimization of positional and orientational
interaction free energy would be required, subverting the role of the pre-imposed lattice symmetries.
We leave this discussion open for future investigation.
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1 Additional results

In the main article, we showed several examples of ordering in quadrupolar systems on different
Thomson lattices. We argue that the local arrangement of quadrupoles as well as global positional
symmetry both contribute to the resulting quadrupolar order. As the Thomson lattice represents only
one way of uniformly distributing points on a sphere, we further look to confirm this by exploring the
quadrupolar states on the Tammes and Fibonacci lattices. The Tammes lattice is locally triangular
and thus structurally similar to the Thomson lattice, whereas the Fibonacci lattice!becomes locally
square around the equator as we increase the system size.

A comparison of configurations at N = 72 for different lattices is presented in Fig. 1. The ground
state on the icosahedral Thomson lattice shows Cs symmetry. Conversely, the Tammes lattice, while
similar, lacks the high positional symmetry of the Thomson case, resulting in a ground state without
any symmetries. The configuration shown in Fig.1 is the only symmetric excited state and belongs
to C3 point group. Comparing Thomson and Tammes configurations, we observe in both cases the

Figure 1: Comparison of configurations on different spherical lattices at system size N = 72.

tendency of quadrupoles to form pinwheel structures, at least in the vicinity of the symmetry axis.
The situation differs substantially when we look at the configuration on the Fibonacci lattice. Locally
square distribution of points around the equator results in the formation of windmill structures, similar

'We parametrize the Fibonacci lattice of size N in spherical coordinates as

(On, o) = (arccos [sz T 1} ,2m(2 — a)k) ;

where o = @ is the golden ratio and k = 1... N. Different definitions are possible but they result in a structurally

similar lattice.



to what we observe on planar square lattice. Around the poles, the lattice is highly irregular and
long-range order is absent.

The choice of using a deterministic minimization method for investigating quadrupolar systems
on a sphere limits the maximal system size we are able to explore to N = 150. Nevertheless, we
argue that this is enough to discern ordering trends in bigger systems. Figure 2 shows ground state
configurations for N = 150 tetrahedral Thomson lattice and N = 100 Fibonacci lattice. The former
shows emergent pinwheel structures over the whole surface of the sphere, however, the arrangement
of lattice defects does not support higher symmetry ordering (as e.g. in the case for N = 122) and
the configuration only shows Co symmetry. Nevertheless, the configuration supports our assumption
that in the limit of high N, quadrupolar systems on locally triangular lattices transition towards a
pinwheel ground state (away from lattice defects) as the role of curvature decreases. This is further
corroborated by lower values of out-of-plane parameter £ for all configurations found at this system
size (0.30 < ¢ < 0.38, ground state value {gg = 0.303) compared to values of £ at smaller N. The
Fibonacci configuration at N = 100 shows similar behavior to the N = 72 case in Fig. 1 but with
a much wider windmill region. This results in the out-of-plane parameter value of £ = 0.198 which
is smaller than the pinwheel-limited value of 1/4 for locally triangular lattices (in the limit of high
system sizes).

'Thomson, N = 150 'Fibonacci, N = 100|

Figure 2: Examples of Thomson and Fibonacci quadrupolar ground states at higher system sizes.

2 Tables of optima

Below, we list lowest energy configuration results, along with configurations with the highest symmetry
at given N, for systems of linear quadrupoles both the Thomson and Tammes lattices. The energy
values correspond to the quadrupole tensor eigenvalues that satisfy Tr(Q?) = 1.



N EGS PGGS Esym PGsym N EGS PGGS Esym PGsym
10 | -17.94614 0 -14.79685 Cy 08 | -7847.213 Co -7847.213 Cy
11 | -25.87675 0 -24.98204 Co 59 | -8421.899 0 -8292.696 Co
12 | -30.76187 S -30.76187 S 60 | -8729.22 0 -8707.275 Cs
13 | -44.19957 0 -44.19957 0 61 | -9427.155 0 -9427.155 0
14 | -55.17387 0 -47.42441 Cs 62 | -9841.105 0 -9675.032 Cs
15 | -71.38314 0 -69.48079 Cs 63 | -10541.75 0 -10497.81 Co
16 | -85.16844 0 -81.26653 T 64 | -11218.07 0 -10629.97 Cy
17 | -115.1684 Co -115.1684 Co 65 | -11800.14 0 -11696.37 Co
18 | -132.0108 Co -132.0108 Co 66 | -12593.85 0 -12593.85 0
19 | -165.4244 0 -164.6409 Co 67 | -12792.58 0 -12666.86 Cy
20 | -190.3918 0 -181.4474 Co 68 | -13687.36 0 -13250.64 Co
21 | -231.9683 Co -231.9683 Co 69 | -14379.16 Cs -14379.16 Cs
22 | -266.2751 Sy -266.2751 Sy 70 | -15305.46 Sy -15305.46 Sy
23 | -311.1626 0 -304.6335 Co 71 | -15937.29 0 -15937.29 0
24 | -350.321 Cs -350.0883 Cy 72 | -16265.76 Cs -16265.76 Cs
25 | -425.6512 0 -425.6512 0 73 | -17581.62 0 -17217.24 Co
26 | -475.3702 0 -447.0872 Co 74 | -18796.39 0 -18796.39 0
27 | -553.6096 Cs -553.6096 Cs 75 | -19333.59 0 -19188.43 Cs
28 | -595.3587 0 -580.0058 Co 76 | -20496.73 0 -20496.73 0
29 | -696.4318 0 -689.0495 Co 77 | -20785.71 Cs -20785.71 Cs
30 | -780.5806 0 -772.0964 Co 78 | -21890.22 Cy -21675.97 Se
31 | -852.7957 0 -842.0158 Cs 79 | -22887.72 0 -22887.72 0
32 | -944.3894 S10 -944.3894 S10 80 | -24140.24 0 -23691.7 Cy
33 | -1095.938 0 -1095.938 0 81 | -25375.87 0 -25166.6 Co
34 | -1227.507 Co -1205.856 Dy 82 | -26399.32 0 -26314.82 Co
35 | -1387.788 0 -1387.788 0 83 | -27664.05 0 -27376.7 Co
36 | -1507.733 0 -1427.541 Co 84 | -29065.02 0 -28927.9 Co
37 | -1629.9 Cs -1629.9 Cs 85 | -29901.36 0 -29554.66 Co
38 | -1899.729 S12 -1899.729 S12 86 | -31580.65 0 -31580.65 0
39 | -1923.571 Co -1896.799 Cs 87 | -32441.53 0 -32272.87 Co
40 | -2077.554 0 -2024.524 Cs 88 | -33681.07 0 -33681.07 0
41 | -2266.805 Co -2266.805 Cs 89 | -35199.35 0 -35006.52 Co
42 | -2483.26 0 -2420.833 Co 90 | -36214.78 0 -36214.78 0
43 | -2685.682 0 -2685.682 0 91 | -37825.44 0 -37636.89 Co
44 | -3153.106 O -3153.106 O 92 | -39411.5 0 -39411.5 0
45 | -3203.02 0 -3192.192 Co 93 | -41005.54 0 -41005.54 0
46 | -3433.877 Co -3296.245 Do 94 | -42724.3 Cy -42724.3 Co
47 | -3780.18 0 -3780.18 0 95 | -44286.94 0 -43545.95 Co
48 | -4099.089 Cy -4056.577 Dy 96 | -46302.03 0 -46302.03 0
49 | -4377.138 0 -4232.584 Cs 97 | -47523.83 0 -47523.83 0
50 | -4722.145 S10 -4722.145 S10 98 | -49221.05 0 -49221.05 0
51 | -5071.913 0 -5071.913 0 99 | -51178.49 0 -50711.02 Co
52 | -5311.184 Cs -5311.184 Cs 100 | -52712.89 0 -52638.11 Cs
93 | -5771.033 0 -5641.892 Cs 122 | -105055.6 1 -105055.6 1
54 | -6121.877 0 -6001.246 Co 132 | -139470.9 Cs -139470.9 Cs
55 | -6527.448 0 -6490.042 Co 136 | -155127.9 0 -155127.9 0
596 | -6869.911 0 -6740.875 Cy 150 | -228044.5 Co -220168.9 Dy
57 | -7390.209 Cs -7390.209 Cs

Table 1: Ground state and highest symmetry solutions on the Thomson lattices.
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N Egs PGgs Eoym PGyym N Egg PGgs Egym PGgym
10 | -17.85698 0 -17.25249 Cy 42 | -2586.568 0 -2547.455 Cy
11 | -26.26433 0 -26.26433 0 43 | -2857.83 0 -2857.83 0
12 | -30.76187 Se -30.76187 St 44 | -3073.318 Oy -3073.318 Cy
13 | -45.38164 0 -44.61766 Cy 45 | -3331.461 0 -3331.461 0
14 | -59.1275 Cy -58.55624 Sy 46 | -3665.802 0 -3665.802 0
15 | -74.68377 0 -74.68377 0 47 1 -3903.933 0 -3903.933 0
16 | -96.20829 Sg -96.20829 Sg 48 | -4180.57 Cy -4107.373 Dy
17 | -114.0142 Cy -114.0142 Cy 49 | -4631.788 0 -4512.917 Cy
18 | -131.9526 0 -131.9526 0 50 | -4746.23 Oy -4736.893 Cs
19 | -168.5474 0 -168.5474 0 51 | -5284.134 0 -5284.134 0
20 | -188.9719 0 -180.5959 Cy 52 | -5684.646 0 -5653.811 Cs
21 | -229.2873 0 -229.2873 0 53 | -6128.256 0 -6128.256 0
22 | -275.1527 0 -275.1527 0 54 | -6538.604 Oy -6538.604 Sy
23 | -325.674 0 -325.674 0 55 | -6800.163 0 -6800.163 0
24 | -351.5055 Cy -351.5055 Cy 56 | -7245.993 0 -7187.049 Cy
25 | -440.1661 0 -433.6832 Cs 57 | -7657.339 0 -7657.339 0
26 | -512.0153 0 -512.0153 0 58 | -8128.102 0 -7848.924 Cy
27 | -549.2657 0 -549.2657 0 59 | -8694.171 0 -8694.171 0
28 | -656.3142 0 -656.3142 0 60 | -9022.76 0 -9022.76 0
29 | -731.1445 0 -731.1445 0 61 | -9632.079 0 -9603.014 Cy
30 | -783.7615 0 -780.4043 Ds 62 | -10267.12 Cy -10267.12 Cy
31 | -898.9203 Cs -898.9203 Cs 63 | -10652.79 0 -10597.55 Cy
32 | -957.8877 0 -921.6676 Cs 64 | -11566.38 0 -11566.38 0
33 -1140.2 0 -1088.901 Cs 65 | -12224.11 0 -12042.76 Cy
34 | -1275.227 0 -1275.227 0 66 | -12494.04 0 -12373.88 Cs
35 | -1386.337 0 -1386.337 0 67 | -13538.89 0 -12915.27 Cy
36 | -1546.171 0 -1546.171 0 68 | -14224.9 0 -14224.9 0
37 | -1733.916 0 -1733.916 0 69 | -14688.46 0 -14688.46 0
38 | -1909.507 S -1909.507 S 70 | -15824.37 0 -15824.37 0
39 | -2033.533 0 -2033.533 0 71 | -16407.1 0 -16407.1 0
40 | -2240.636 Cs -2240.636 Cs 72 | -16933.5 0 -16785.31 Cs
41 | -2488.956 0 -2488.956 0

Table 2: Ground state and highest symmetry solutions on the Tammes lattices.



