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Using isobaric Monte Carlo simulations, we map out the entire phase diagram of a system of hard cylindrical
particles of length L and diameter D, using an improved algorithm to identify the overlap condition between
two cylinders. Both the prolate L/D > 1 and the oblate L/D < 1 phase diagrams are reported with no
solution of continuity. In the prolate L/D > 1 case, we find intermediate nematic N and smectic SmA phases
in addition to a low density isotropic I and a high density crystal X phase, with I-N-SmA and I-SmA-X
triple points. An apparent columnar phase C is shown to be metastable as in the case of spherocylinders.
In the oblate L/D < 1 case, we find stable intermediate cubatic Cub, nematic N, and columnar C phases
with I-N-Cub, N-Cub-C, and I-Cub-C triple points. Comparison with previous numerical and analytical
studies is discussed. The present study, accounting for the explicit cylindrical shape, paves the way to more
sophisticated models with important biological applications, such as viruses and nucleosomes.

I. INTRODUCTION

After nearly one century since Onsager’s pioneering
prediction that orientational order can be entropically
induced for elongated particles1, simple models of rod-
like objects continue to play a central role in the study of
colloidal liquid crystals2,3 and self-assembly processes4,5.

The simplest model for a rod-like molecule is the hard
spherocylinder, an object formed by a cylinder of length
L capped with two hemispheres of matching diameter
D. This shape can be obtained by rolling a sphere of
radius D/2 around a segment of length L. The great
advantage of this model, and the key to its popularity,
is the simplicity of the overlap condition between two
such hard spherocylinders; this condition can be cast in
a simple analytical form6,7 that can be computed very
efficiently. As early as 1997, Bolhuis and Frenkel8 per-
formed a remarkably detailed study of the phase diagram
of this model that is now reckoned as a classic reference
in the field. Other similar shapes have also been pro-
posed in the literature, including hard ellipsoids9, hard
helices10, and hard dumbbells11.

However, there are physically relevant objects whose
shape cannot be represented as hard spherocylinders but
rather as hard cylinders. Examples include biologically
relevant cases such as viruses3,12,13 and nucleosomes14,15.
Hard cylinders of length L and diameter D have also
the additional advantage of having a natural oblate limit
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L/D < 1, approaching a disk for L/D → 0, as well as the
prolate limit L/D > 1 (rod). This is not the case of hard
spherocylinders where the oblate limit is obtained by re-
sorting to a slightly modified model8. By contrast the
overlap condition between two cylinders is significantly
more evolved with respect to the spherocylinder case.
This notwithstanding, and given the similarity in shape,
one might rightfully wonder what are the differences, if
any, in the two phase diagrams. For instance, the phase
diagram of hard ellipsoids16 is different from the phase di-
agram of hard spherocylinders, in spite of the significant
similarities in their shapes. This issue goes far beyond a
simple academic problem in view of the strong propensity
of nucleosomes14,15 and filamentous viruses17,18 to form a
columnar phase, whose existence in the phase diagram of
spherocylinders has been ruled out by recent detailed nu-
merical simulations19 for prolate particles even if it were
predicted theoretically20 for oblate ones.

The aim of the present paper is to tackle this issue
by performing a detailed analysis of the phase diagram
of hard cylinders both in the prolate (L/D > 1) and in
the oblate (L/D < 1) cases. While simulations of hard
cylinders have been performed in the past6,21,22, to the
best of our knowledge, our study is the first one provid-
ing the complete phase diagram. For this purpose, we
perform isobaric Monte Carlo simulations of a system of
hard cylinders in a wide range of aspect ratios L/D and
volume fractions, using an efficient method for the over-
lap test that compares well with existing ones6,21,22. The
algorithm, inspired by Ref. 22, is described in the Ap-
pendix. By monitoring the appropriate order parameters
and correlation functions, we provide the corresponding
phase diagram in the L/D volume fraction plane and
compare it with the corresponding phase diagram of the
hard spherocylinders8. Particular care has been devoted
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in avoiding possible finite size effects along the lines of a
recent similar analysis for spherocylinders19.

The outline of the paper is as follows. In Section II we
described the details of our numerical approach, as well
as the arsenal of tools (order parameters and correlation
functions) useful to identify all different phases. Some
technical details have been confined in Appendix A. Sec-
tion III will report the main results of the present study
with additional Figures and Tables reported in Section
B. Finally, Section IV reports the key messages of this
study and some interesting perspectives for the future.

II. SIMULATIONS

A. Monte Carlo simulations

Our particles consist of N cylinders/disks of height L,
diameter D, and whose orientations are identified by a
unit vector û, as shown in Figure 1 (a). Pressures are
measured in reduced units P ∗ = PvHC/kBT , and the
density ρ = N/V is represented by the volume fraction
η ≡ NvHC/V , where vHC = LπD2/4 is the volume of a
hard cylinder (HC). We then performed isobaric (NPT)
Monte Carlo (MC) simulations at different aspect ratios
L/D both for rods (L/D > 1) and for disks (L/D < 1).
All simulations were organised in cycles (MC steps), each
consisting on average of 1000 attempts to translate and
rotate a randomly selected particle, and one attempt to
change the volume of the simulation box. In all cases, we
have performed compression runs starting at low pres-
sure in the isotropic phase, and an expansion run starting
from a close-packed solid configuration at high pressure.
Each system was first equilibrated using ≈ 5.45×106 MC
steps, with additional production runs of 1.5× 105 steps.
The typical number of particle was N ≈ 1000, but dif-
ferent numbers were used depending on the aspect ratio,
as detailed in Tables I and III. In the case of disks, the
number of particles N was adjusted depending on L/D to
keep the simulation box roughly cubic. In our NPT sim-
ulations, we have used floppy (i.e. shape-adapting) rect-
angular computational box, where one axis was randomly
selected and its length was allowed to change, with peri-
odic boundary conditions to obtain an isotropic pressure8

in the prolate L/D > 1 case, and simple uniform vol-
ume move with cubic periodic boundary conditions in
the oblate L/D < 1 case. In some specific cases, we have
also extended the computational box along the main axis
of the cylinders to minimise finite size effects19.

B. Overlap of hard cylinders

The first method for testing overlaps of hard cylinders
was proposed by Allen et al.6, and also used by Blaak,
Frenkel, and Mulder21. An alternative method was re-
cently proposed by Orellana, Romani, and De Michele22.
In the following, we use a refined version of this method

outlined below. The overlap of two cylinders can occur
in either of the following three ways: disk-rim, rim-rim,
and disk-disk (Figure 1). Therefore, to ensure that the
cylinders do not overlap, we have to check whether the
overlap occurs in one of those possible configurations, as
detailed in Appendix A.

Preliminary simulations were initially performed to as-
sess the computational effort of this algorithm compared
with the hard spherocylinders counterpart. We found the
present algorithm to be slightly slower - of the order of
20% or less, and hence in line with Ref. 22

(a) (b)

(c) (d)

FIG. 1: (a) Our cylinder model, where L is the height,
D is the diameter, û is the unit vector defining the

orientation of the cylinder; possible overlap
configurations between two cylinders (see appendix):

(b) rim-rim; (c) rim-disk; (d) disk-disk.

We perform the less expensive test first, and progres-
sively include additional more expensive ones. So we
first check whether the two spheres (of diameter L+D)
that encompass the cylinders overlap; if they do not, the
cylinders cannot overlap. If the encompassing spheres
do overlap, the test is repeated for the spherocylinders
enclosing the particles, using the standard algorithm to
calculate the shortest distance between two rods7. Only
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if the spherocylinders overlap, the overlap between two
cylinders is tested for. See Appendix A for additional
details.

C. Order parameters

To identify different thermodynamic phases, we rely
on information based on global orientational and trans-
lational order, i.e., the nematic, smectic and hexatic or-
der parameters, on correlation functions such as the ra-
dial g(r), parallel g‖(r‖) and perpendicular g⊥(r⊥) dis-
tribution functions, as well as on visual inspection of
the simulation snapshots. Figure 2 displays represen-
tative snapshots of all different phases obtained in the
L/D = 10 case – all snapshots were obtained with the
Ovito Software23 where different colours represent differ-
ent orientations of the cylinders. While the isotropic I
phase is both positionally and orientationally disordered
the nematic N phase is positionally disordered but orien-
tationally ordered, and its presence can be inferred mon-
itoring the nematic order parameter P2. This is obtained
as the largest eigenvalue of the tensor

Qαβ =
1

N

N∑
i=1

3

2
ûiαû

i
β −

1

2
δαβ (1)

where α, β = x, y, z. The corresponding eigenvector then
gives the main director n̂.

In addition to the orientational order along one pre-
ferred direction n̂, the smectic phase SmA is further char-
acterised by a one-dimensional ordering (layering) along
n̂ that is best captured by a combination of the radial
distribution function

g (r) =
1

Nρ

1

4πr2

〈
N∑
i=1

N∑
j 6=i

δ (r − rij)

〉
(2)

as well as the parallel

g‖(r‖) =
1

N

〈
1

ρLxLy

N∑
i

N∑
j 6=i

δ(r‖ − rij · n̂)

〉
(3)

positional correlation function. Here ri is the center of
mass of the i-th cylinder, and rij = rj−ri, and rij = |rij |.
The smectic order parameter

〈τ1〉 =
∣∣∣〈ei2π r·n̂

d

〉∣∣∣ (4)

also proves convenient. Here r is the position of a parti-
cle’s centre of mass and d the optimal layer spacing. Here
and below, 〈. . .〉 is the average over independent config-
urations at equilibrium. Then we have 〈τ1〉 ≈ 1 in the
smectic SmA phase and 〈τ1〉 ≈ 0 elsewhere (phases with
no layered structure).

By contrast, the columnar C phase is characterised
by two-dimensional in-plane hexagonal order and one-
dimensional positional disorder along n̂. This is best cap-

tured by the perpendicular positional correlation func-
tion

g⊥(r⊥) =
1

2πr⊥N

〈
1

ρLz

N∑
i

N∑
j 6=i

δ (r⊥ − |rij × n̂|)

〉
(5)

positional correlation functions, as well as by the use of
the hexatic (or bond) order parameter

〈ψ6〉 =

〈
1

N

∑
j

∣∣∣∣∣∣ 1

n(j)

∑
〈lm〉

e6iθlm

∣∣∣∣∣∣
〉
. (6)

Here θlm is the angle that the projection of the inter-
molecular vectors rjl and rjm onto the plane perpendic-
ular to the director n̂, n(j) is the number of nearest-
neighbours pairs of molecule within a single layer, and
the sum

∑
〈lm〉 is over all possible pairs within the first

coordination shell. With this definition, 〈ψ6〉 ≈ 1 for
hexagonal in-plane ordering and 〈ψ6〉 ≈ 0 otherwise. We
refer to past literature (see e.g. Kolli et al.24and refer-
ences therein) for additional details.

Finally, the cubatic Cub phase corresponds to a long-
range orientationally ordered phase without any posi-
tional order but with the presence of three equivalent per-
pendicular directions. In this phase, the particles form
short stacks of typically few particles with neighbouring
stacks tending to be perpendicular to one another along
the three selected directions. While a suitable order pa-
rameter can be devised25, visual inspection is usually suf-
ficient to unambiguously identify this phase. The details
of the cubatic Cub phase will be discussed in Section III.

TABLE I: Number of particles N used in the
simulations of rods.

L/D N L/D N

2.5 968 6.25 1350

3.0 1152 6.5 1350

3.25 1152 7.0 1536

3.5 1352 7.5 1536

5.0 1176 10.0 1944

6.0 1350

III. RESULTS

A. Cylindrical rods L/D > 1

We first consider the prolate case, i.e. cylindrical rods
with L/D > 1. Figure 3 (a) depicts the reduced pres-
sure P ∗ as a function of the volume fraction η (i.e., the
equation of state) for L/D = 5 and L/D = 10. Figure
3 (b) shows also the corresponding orientational order
parameter P2 again as a function of the volume fraction
η.
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FIG. 2: Representative snapshots of the thermodynamic phases found for HC for L/D = 10: Isotropic (I), Nematic
(N), Smectic A (SmA), and Crystal (X). Reduced corresponding pressures P ∗ are displayed.

In the case L/D = 5 (open symbols) the system is in
an isotropic phase I until η ≈ 0.4, then switches to a
smectic SmA phase, and then to a crystal X. The same
sequence of phases is also found for the large aspect ratio
L/D = 10 (closed symbols) but with transitions shifted
to lower η, and with the additional presence of a nematic
N phase in the region 0.3 ≤ η ≤ 0.4. The isotropic-
nematic transition is signalled by an abrupt jump in the
nematic order parameter P2 and by a discontinuity in the
equation of state as shown in Figure 3 (a).

Here it is worth to notice that our definition of crys-
tal phase X includes the so-called smectic SmB phase,
another name often used in this framework24, that is a
smectic SmA phase with additional in-plane long-range
hexagonal order3, thus hardly distinguishable from a
crystal phase due to the finite size of the simulations box.

Additional insights can be obtained by looking at
the correlation functions at an intermediate aspect ra-
tio L/D = 7 – see Figure 14 for the analogue of Figure 3
in the case L/D = 7. Figure 4 presents the correspond-
ing radial g(r) (a), parallel g‖(r‖) (b), and perpendic-
ular g⊥(r⊥) (c) distribution functions of cylinders with
L/D = 7 for increasing pressures.

At P ∗ = 3.96 (continuous red line) all correlation
functions are featureless, indicating the presence of an
isotropic I phase. As pressure is increased up to P ∗ =
4.40 (yellow dashed line), the correlation functions do
not show any significant change but the nematic order
parameter P2 (see Figure 14 (b)) shows an abrupt up-
swing, signalling the onset of a nematic N phase.

At P ∗ = 7.70 (green dotted line), both the radial distri-
bution function g(r) and the parallel correlation function
g‖(r‖) display a clear periodicity consistent with a smec-
tic SmA ordering. The absence of regular oscillations in
the perpendicular correlation function g⊥(r⊥) confirms
the radial liquid-like order of the mesophase, which there-
fore does not correspond to the crystal X phase. The lat-
ter phase is eventually reached at P ∗ = 9.90 (dash-dotted
line) as shown by the characteristic periodicities for all

directions in the g⊥(r⊥) as well as in g(r) and g‖(r‖).
It comes as no surprise that the low-η behaviour of

Hard Cylinders is qualitatively similar to the correspond-
ing HSC counterpart8, with small quantitative differ-
ences for the smaller aspect ratio L/D = 5. However,
at high pressure and volume fraction, one possible im-
portant element of distinction between the two phase
diagrams is the presence of a putative columnar phase
that has already been demonstrated not to exist in the
HSC counterpart19. We explicitly addressed this prob-
lem following the method proposed by Dussi, Chiappini,
and Dijkstra19 who suggested that the apparent stabili-
sation of a columnar phase in HSCs could be ascribed to
finite size effects when the number of layers is not suf-
ficiently high compared to the aspect ratio L/D. For
sake of consistency, we first reproduced the same results
found in Ref. 19 for HSCs, and then applied the same
method to the HC case. We note that the metastability
of the columnar phase for HSCs was also independently
confirmed by Liu and Widmer-Cooper26 using a different
method.

The results obtained are presented in Figure 5. Figure
5 (a) shows a production run with aspect ratio L/D = 6
at packing fraction η = 0.6. In this case, both visual
inspection and the behaviour of the corresponding cor-
relation functions (see solid line in Figure 15 for results
with N = 675) strongly suggest the presence of a colum-
nar phase. However, if the number of particles is doubled
along the director n̂, the same calculation produces the
final configuration shown in Figure 5 (b) that can clearly
be classified as smectic SmA (see dotted line in Figure 15
for results with N = 1350). This shows that there is no
stable columnar phase in HCs as in the HSCs case. This
effect is likely to be ascribed to the preference for finite
size domains to arrange locally in columnar structures
whose stability is eventually overwhelmed by long-range
effects.

A sketch of the final phase diagram for HCs in the
plane packing fraction η as a function of the aspect ra-
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FIG. 3: (a) Reduced pressure P ∗ versus cylinder volume
fraction η. Open symbols: L/D = 5, closed symbols:
L/D = 10; (b) Nematic order parameter P2 versus

volume fraction η for both L/D = 10 and L/D = 5.
Same symbols as above. The different symbols and
colours refer to different mesophases, as detailed in

Fig 2.

tio ranging from L/D = 2.5 to 10 is displayed in Fig-
ure 6. The colour code used to represent different phases
are outlined in Figure 2 that also presents representa-
tive snapshots of each phase. Here we employ the same
classification as Dussi, Chiappini, and Dijkstra19.

Similar to hard spherocylinders, the system exhibits
the isotropic (I), nematic (N), smectic A (SmA), and
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g
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(c)

FIG. 4: Distribution functions of cylinders with
L/D = 7.0. P ∗ = 3.96 continuous red line (I); P ∗ = 4.40

yellow dashed line (N); P ∗ = 7.70 green dotted line
(SmA); P ∗ = 9.90 dash-dotted line (X). Note that
r = |r| in (a), r = |r‖| in (b), and r = |r⊥| in (c).

crystalline (X) phases. Not surprisingly, this behaviour
is similar to that of HSC8,27 but few differences are worth
noticing.
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(a) Unstable columnar phase

(b) Crystalline phase

FIG. 5: Equilibrated configuration with aspect ratio
L/D = 6 at packing fraction η = 0.6 with (a) N = 675
initially distributed on two layers;(b) The same result
with twice the particles exhibits a different structure.

As in the case of HSC, no liquid crystal phases are ob-
served below a critical aspect ratio L/D ≈ 3. This fact
can be easily rationalised via Onsager theory1, as the ra-
tio between the covolume and volume of rods with lower
L/D are not sufficiently larger than that of a sphere,
and the excluded volume effects then are insufficient to
promote an organised orientationally ordered phase. By
contrast, at sufficiently high densities and aspect ratios,
exclude volume effects tend to promote orientational or-
der to increase the translational entropy, then minimising
the free energy.

Accordingly, the system is in isotropic phase for any
ratio L/D below a certain packing fraction that decreases
by increasing the rod aspect ratio, as shown in Figure 6.

FIG. 6: Computed phase diagram of hard cylinders of
packing fraction η versus aspect ratio L/D. Visible

phases are isotropic (I), nematic (N), smectic (SmA),
and crystal (X). Colour codes are as in Figure 2.

Upon increasing η, the first organised phase encountered
is a smectic SmA phase in the range from L/D = 3.25 to
L/D = 6, and a nematic N phase above L/D ≈ 6. This
mirrors the HSC case where, however, the smectic SmA
phase is limited to a very small range 3 < L/D < 4.
At higher packing fractions η, the system undergoes a
smectic SmA to crystal X transition irrespective of the
aspect ratio L/D.

The sketched phase diagram in Figure 6 prompts the
existence of an isotropic-smectic-solid (I-SmA-X) triple
point at η ≈ 0.55 and L/D ≈ 3.0, and an isotropic-
nematic-smectic (I-N-SmA) triple point at η ≈ 0.4 and
L/D = 6.5.

Interestingly, the location of the I-N-SmA is found at
L/D ≈ 6.5 and shifted to higher aspect ratios compared
to that of HSCs that is found at L/D ≈ 3.78. As a result,
the nematic N phase stabilises at shorter aspect ratios in
the HSC system when compared to its HC counterpart.

It is also interesting to notice that our results are com-
patible with both the I-N and the N-SmA being first-
order transitions, thus mirroring what is known for HSC
from the work by Polson and Frenkel28. It would be in-
teresting to pursue the same analysis carried out by these
authors in the present case as well. The same considera-
tion holds true for interesting analysis of the L/D →∞
Onsager limit that has been performed for the HSC case8

that could be also replicated in this case.
As a final remark we note that the length L for HSCs

corresponds to L + D in case of HCs. This is impor-
tant when comparing the corresponding phase diagrams
and indeed it rationalizes why the isotropic-smectic I-
SmA transition for HCs occurs at L/D ≈ 3 whereas for
HSCs occurs at L/D ≈ 4. However, the tendency of a
flat edge to promote the onset of a smectic SmA phase
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appears to be a general feature as also suggested by a re-
cent study29 on hard equilateral triangular prisms, where
the particles feature also flat sides and the smectic SmA
phase is shifted to considerably lower packing fractions
as compared to HSCs.

B. Cylindrical disks L/D < 1

We now tackle the oblate case of cylindrical disks with
L/D < 1. One important advantage of dealing with
cylinders is that this limit can be achieved with no solu-
tion of continuity, unlike the spherocylinders counterpart
where this is not possible8. Figure 7 depicts the four
different phases that we find in this case: a disordered
isotropic I, a cubatic Cub, a nematic N, and a columnar
C phases, as detailed in Table II and illustrated in Figure
7.

TABLE II: Colours and symbols used to represent disk
phases.

Colour Phase Notation Symbol

red isotropic I circle

yellow nematic N triangle

purple cubatic Cub squares

blue columnar C diamond

TABLE III: Number of particles N used in the
simulations of disks.

L/D N L/D N

0.05 540 0.2 625

0.1 640 0.25 864

0.11 576 0.3 720

0.12 528 0.35 612

0.125 528 0.5 686

0.15 825

As in this case of prolate cylinders, we performed the
same detailed analysis of the different obtained phases
in terms of correlation functions and order parameters
to derive the equation of states. Supplementary Figure
S3 reports the reduced pressure P ∗ and the P2 nematic
order parameter as a function of the packing fraction η
for both L/D = 0.2 and L/D = 0.05 as representative
examples, from which one can obtain the correspond-
ing phase diagram of Figure 8 in the volume fraction
η aspect ratio L/D plane, that can be contrasted with
its prolate counterpart of Figure 6. Here a range from
L/D = 0.05 to L/D = 0.5 has been analysed and in
Figure 7 representative snapshots of different phases are
depicted colour-coded according to Table II, in analogy
with the discussion of the prolate case L/D > 1.

For aspect ratios 0.3 < L/D < 0.5 there is a direct
transition from an isotropic I to a columnar C phase upon

increasing η above ≈ 0.4. In the columnar phase the
disks are arranged on a hexagonal lattice in the direction
perpendicular to the main director n̂ but their centres
of mass are disorderly distributed in space. For smaller
aspect ratios 0.1 < L/D < 0.3, a cubatic Cub phase ap-
pears between the I and C phase. In the cubatic phase,
the disks tend to assemble in short stacks of about four
or five units, with neighbouring columns perpendicular
to each other. This differs from the cubic phase because
it lacks translational order30. At even smaller aspect ra-
tio (L/D ≤ 0.1) the cubatic Cub phase is replaced by a
nematic N phase up to η ≈ 0.4 and by a columnar phase
at higher η. At even higher packing fractions η we did
observe the formation of a crystal phase X but the loca-
tion of corresponding boundaries would require a specific
investigation that was not pursued in the present paper.

All these transitions can be best inferred by looking
at the correlation functions as shown in Figure 9 (see
Fig. 7 for the corresponding snapshots). In the I phase
(red continuous line) the radial distribution function g(r)
displays a flat behaviour for r > D, indicating the ab-
sence of short-range aggregation, a feature confirmed by
the behaviour of both g‖(r‖) and g⊥(r⊥). By contrast,
the columnar C phase (blue dashed line) displays char-
acteristic regular oscillations in g(r) and g⊥(r⊥), but the
behaviour of g‖(r‖) is irregular, indicating the absence
of a one-dimensional ordering along the main director n̂.
Likewise, the radial distribution function g(r) of the cu-
batic phase (dotted purple line) is quite different from
both the I and C phases, while the nematic order param-
eter P2 is close to zero for I, and Cub. An evidence of
the formation of short stacks is the higher peak at short
distances (L/D < r/D < 2L/D) in the radial distribu-
tion function g(r) of the cubatic Cub phase (purple line
in Figure 9), which is significantly smaller in the the g(r)
of an isotropic phase (red line in Figure 9). Finally, the
onset of the nematic N phase (dash-dotted yellow line)
is signalled by the significant oscillation of the radial dis-
tribution function g(r) and by the abrupt upswing in the
nematic order parameter P2, as shown in supplementary
materials.

At variance with the prolate L/D > 1 counterpart, in
the oblate case three triple points appear. The I-N-Cub
triple point occurs at L/D ≈ 0.1 and η ≈ 0.3. The N-
Cub-C triple point is approximately located at L/D ≈
0.1 and η ≈ 0.4. Finally, the I-Cub-C triple point has
approximate coordinates L/D ≈ 0.35 and η ≈ 0.45.

Our results qualitatively agree with density function
calculations by Wensink and Lekkerkerker20 who pre-
dicted the existence of a nematic region for flat disks
that becomes progressively narrower as L/D increases.
The same authors also predicted a transition from the
isotropic phase directly to the columnar C phase, in
agreement with our results. At a more quantitative
level the predicted volume fractions ηIN ≈ πL/D for
the isotropic-nematic transition and ηNC ≈ 0.4 for the
nematic-columnar N-C, as somewhat larger than those
found in the present study.



8

FIG. 7: Representative snapshots of the different phases found in the oblate L/D < 1 case: Isotropic (I), Cubatic
(Cub), Nematic (N), Columnar (C). The corresponding values of aspect ratios L/D and reduced pressure P ∗ are

also reported.

At variance of these theoretical findings, our results in-
dicate also the existence of a cubatic Cub phase, in agree-
ment with the results by Veerman and Frenkel30, as well
as by Duncan et al.25, in simulations of cut spheres, and
by Blaak, Frenkel, and Mulder21 in simulations of hard
cylinders. Where direct comparison with the above two
papers is possible, we find complete agreement between
their results and ours.

FIG. 8: Phase diagram of the oblate hard cylindrical
disk case L/D < 1 in the volume fraction η aspect ratio

L/D plane. Different phases are colour coded as
detailed in Figure 7 and Table II.

Duncan et al.25 simulated cut spheres of L/D = 0.1,
0.15, 0.2, 0.25 and 0.3 and, despite the differences in
shape, our results are very similar to theirs. These au-
thors showed that there is a nematic N but no cubatic
Cub phase at L/D = 0.1, and that the opposite is true for
L/D ≥ 0.15. Figure 8 shows that for HCs a cubatic Cub
phase is already present at L/D = 0.11, as the nematic

N phase vanishes. The cubatic Cub phase is present until
L/D ≈ 0.3 whereas only the isotropic I and columnar C
phases exist at larger aspect ratios.

As in our case, Blaak, Frenkel, and Mulder21 investi-
gated a system of HC with L/D = 0.9 and did not find
any cubatic phase. Our results explain this finding by
showing that L/D = 0.9 is a too large aspect ratio to sup-
port a cubatic phase that is however present at smaller
aspect ratio 0.1 < L/D < 0.3, as shown in Figure 8.

IV. CONCLUSIONS

In this paper we have used isobaric (NPT ) Monte
Carlo simulations to study the phase diagram of a system
of N hard cylinders as a function of their aspect ratio and
volume fraction. To achieve this, we have implemented
a new and efficient overlap test for hard cylinders that
compares well with those existing in the literature21,22.
This allows us to study the complete phase diagrams in
the aspect ratio versus volume fraction for both the pro-
late L/D > 1 and the oblate L/D < 1 cases.

In the prolate case L/D > 1, we find a phase diagram
very similar to the hard spherocylinders counterpart, fea-
turing the presence of a nematic N and a smectic SmA
phases, in addition to the isotropic I and the crystal X
phases, as well as two I-Sm-X and I-N-SmA triple points.
As in the spherocylinder case19, we have shown that the
appearance of a columnar C phase can be traced back to
a finite-size effect and that it disappears for sufficiently
large systems. Our simulations confirm the lack of exis-
tence of a stable columnar C phase, that was nevertheless
predicted by density functional theory20.

In the oblate case L/D < 1, we identified the pres-
ence of a columnar C, a nematic N and a cubatic Cub
phase, in agreement with theoretical prediction20, as well
as with past numerical simulations of cut spheres25,30 and
of hard cylinders21. In the latter case, we have provided
an explanation of the failure of past simulations of iden-
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FIG. 9: Distribution functions of hard cylindrical disks.
L/D = 0.1 and P ∗ = 1.18 red continuous line I;
L/D = 0.05 and P ∗ = 1.37 blue dashed line C;
L/D = 0.2 and P ∗ = 5.50 dotted purple line Cu;

L/D = 0.5 and P ∗ = 8.25 dash-dotted yellow line N.
Colour code is outlined in Table II.Here again r = |r| in

(a), r = |r‖| in (b), and r = |r⊥| in (c).

tifying the cubatic Cub phase that can be ascribed to the

too large aspect ratio used in these simulations. Inter-
estingly, the phase diagram also includes three I-N-Cub,
N-Cub-C, and I-Cub-C triple points.

The present study paves the way to tackling more com-
plex systems building upon cylindrical shapes that are of
experimental interest, such as hard cylinders interacting
via a Yukawa tail3, as well as hard cylinders with short-
range directional attractions15,31. Such investigations are
underway and will be reported elsewhere.
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Appendix A: Algorithm to check overlap between two
cylinders

a. Parallel Cylinders

If two cylinders are parallel, the overlap can occur be-
tween disk-disk or rim-rim only, and it can be easily
checked. For each particle pair we define four vectors
starting from the the vector joining the two centres of
mass, r12. We do this by extracting its parallel and per-
pendicular component with respect to the director ûj of
each particle, i.e.,

r1‖ = (rij · û1)û1

r2‖ = (rij · û2)û2

r1⊥ = r12 − (r12 · û1)û1

r2⊥ = r12 − (r12 · û2)û2

(A1)

In a parallel configuration, the directors can either be
the same of one the opposite of the other. The overlap
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occurs if all the following conditions are satisfied:

|r1‖| ≤ L
|r2‖| ≤ L
|r1⊥| ≤ D
|r2⊥| ≤ D

(A2)

When the cylinders are exactly parallel, û1 = ±û2,
and half of the conditions above are redundant since
|r1⊥| = |r2⊥| and |r1‖| = |r2‖|; when implementing com-
puter code, however, one has to include tolerances and
care must be taken in in handling these conditions con-
sistently.

b. Rim-rim overlap

Since the overlap between spherocylinders is the first
test that is done, and the rim of a spherocylinder is sim-
ilar to the rim of a cylinder, if the rims of two sphero-
cylinders do overlap, than the two cylinders will certainly
overlap as well. Hence, having performed the sphero-
cylinder overlap test, we now check if the overlap occurs
in a rim-rim configuration.

To that end, we define the vectors V1 = −r12 + λû1

and V2 = r12 +µû2, where the numbers λ and µ, consis-
tently with Ref. 7, identify the points of closest approach
between the axes of the two cylinders. These values are
calculated using the Vega and Lago’s algorithm7, which
we implement in the spherocylinder overlap test. If the
cylinders are in a rim-rim configuration, the two condi-
tions below must both be satisfied:

|V1 · û2| <L/2
|V2 · û1| <L/2

(A3)

In Figure 10, we see that in the case of a disk-rim
configuration, for instance, the projection of V1 on the
direction of û2 is larger than L/2.

(a)Rim-rim configuration (b)Disk-rim configuration

FIG. 10: The star symbols represent the points of
closest approach on each cylinder.

c. Disk-disk overlap

The orientations of the cylinders are perpendicular to
the planes of the disks. The planes of the two disks in-
tersect in a line parallel to û1× û2. We define P1 and P2

as being the points in the intersection line that are closer
to the disks centers d1 and d2, respectively, as shown in
Figure 11.

FIG. 11: Disks of two cylinders.

To find P1, we minimise (P1−d2)2, which is equivalent
to minimising |P1 − d1|. The minimisation can be done
by applying Lagrange multipliers with two constraints:

(P1 − d1) · û1 = 0 (A4a)

(P1 − d2) · û2 = 0 (A4b)

The constraints presented in Equation A4 ensure that
P1 is in a line perpendicular to both û1 and û2. Applying
the Lagrange multipliers:

L = (P1 − d1)
2−λ (P1 − d1)·û1−µ(P1−d2)·û2 (A5)

From ∇L = 0, one has:

P1 = d1 +
λû1

2
+
µû2

2
(A6)

Replacing Equation A4a into Equation A6:

λ = −µ (û1 · û2) (A7)

Substituting Equations A4b and A7 into A6 yields:

µ =
−2 (d1 − d2) · û2

1− (û1 · û2))
2 (A8)

Replacing Equation A8 into A7:

λ =
2 [(d1 − d2) · û2] · (û1 · û2)

1− (û1 · û2)2
(A9)

Replacing Equations A9 and A8 into A6:

P1 = d1 +
[(d1 − d2) · û2] · ((û1 · û2) · û1 − û2)

1− (û1 · û2)
2 (A10)



11

We define d12 = d2 − d1 and ∆2
1 = (P1 − d1)2, and

rewrite Equation A10 as:

∆2
1 =

(d12 · û2)2 · ((û1 · û2)2 − 2(û1 · û2)2 + 1)

(1− (û1 · û2)2)2
(A11)

Simplifying Equation A11:

∆2
1 =

(d12 · û2)2

1− (û1 · û2)2
(A12)

Similarly for disk 2:

∆2
2 =

(d12 · û1)2

1− (û1 · û2)2
(A13)

A necessary, but not sufficient, condition for the over-
lap to occur is that both ∆1 and ∆2 have to be less than
the cylinder radius D/2. If this condition is satisfied, the
intersection line crosses both disks through segments of
length 2δ1 and 2δ2, as presented in Figure 12.

FIG. 12: Disks of two cylinders.

The expressions to calculate δ1 and δ2 are presented in
Equation A14.

δ1 =

√
D2

4
−∆2

1

δ2 =

√
D2

4
−∆2

2

(A14)

Finally, an overlap will occur if the condition in the
following equation is true:

|P2 −P1| =
∣∣∣∣d12 ·

(û1 × û1)

|û1 × û2|

∣∣∣∣ ≤ δ1 + δ2 (A15)

d. Disk-rim overlap

Let us take a disk with centre in dj and a cylinder with
centre in ri. We define Ui as the point on cylinder i that
is the closest to dj , Pd a point on the disk j that is the
closest to cylinder i, Pc a point on cylinder i that is the
closest to disk j, φ an angle between ŵj and dj − Pd,
v̂j , ûj , an axis system fixed on cylinder j and, finally, φ
as an angle between ŵj and dj −Pd.

FIG. 13: Disk-rim configuration.

Ui is obtained from:

Ui = ri + [(dj − ri) · ûi] ûi (A16)

First, we test the following conditions:

1. If |dj −Ui| > d : there is no overlap

2. If |dj−Ui| < d/2 and |dj−ri| > L/2 : the overlap
would be a disk-disk kind and not a disk-rim, and
therefore we do not need to handle this condition
test at this stage.

3. If |dj −Ui| ≤ d/2 and |(dj − ri)| < L/2 : the two
cylinders are overlapping, since the centre of the
disk j is within cylinder i.

Test number 3 is a sufficient, but not necessary, condi-
tion for the overlap to occur, since another point can be
touching cylinder j even if dj is not within cylinder i.

Hence, if condition 3 is not satisfied, we have to find
Pd, the closest point in disk j to cylinder i.

Arbitrary points on the border of disk j (d), and on
the line of cylinder i (c) are defined as:

d = dj +R cos (φ)ŵj +R sin (φ)v̂j (A17a)

c = ri + λûi (A17b)

where R ≡ D/2 is the radius of the cylinders.
The square of the distance between d and c is thus:

(d− c)
2

= (dj − r2)
2

+R2 + λ2 (A18)

+ 2R cosφ ((dj − ri) · ŵj)

+ 2R sinφ ((djri) · v̂j)− 2λ ((dj − ri) · ûi)
− 2λR cosφ (ŵj · ûi)− 2λR sinφ (v̂j · ûi)

Pc and Pd are the points that minimise Equation A18,
therefore:

λ− r cosφ(ŵj · ûi)− r sinφ(v̂j · ûi) + (A19)

− ((dj − ri) · ûi) = 0
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sinφ [λ (ŵj · ûi)− ((dj − ri) · ŵj)] + (A20)

− cosφ [λ (v̂j · ûi)− ((dj − ri) · v̂j)] = 0

Rewriting Equation A21 gives:

sinφ

cosφ
=

λ (v̂j · ûi)− ((dj − ri) · v̂j)
λ (ŵj · ûi)− ((dj − ri) · ŵj)

(A21)

If the numerator and denominator of Equation A21
are taken as the catheti of a triangle, the hypotenuse can
then be found to give the expressions for cosφ and sinφ.
Once we have these expressions, they are applied into
Equation A20, resulting in an equation for λ. Since we
were not able to find an analytical solution to the previ-
ous equation, a numerical method such as the Newton-
Raphson or bisebsection method is used to find λ. In
our code, we combine both methods, running a few steps
with one and a few with the other until convergence is
found to machine precision.

Once Pd is obtained, we define T = Pd − ri, and cal-
culate the components of T that are parallel T‖ and per-
pendicular T⊥ to ûi.

T‖ = (T · û1) û1 (A22a)

T⊥ = T−T‖ (A22b)

Finally, the overlap only occurs if |T‖| ≤ L/2 and
|T⊥| ≤ D/2.

Appendix B: Supplementary material

1. Figures
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FIG. 14: (a) Reduced pressure P ∗ versus volume
fraction η for L/D = 7. (b) Nematic order parameter

P2 versus volume fraction η for L/D = 7.
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FIG. 15: Distribution functions of hard cylinders with
aspect ratio L/D = 6 and η = 0.6x§ (a) g(r); (b) g‖(r‖);
(c) g⊥(r⊥). Dotted line N = 1350 and P ∗ = 9.42 , Solid

line N = 675 and P ∗ = 8.01.
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FIG. 16: (a) Reduced pressure P ∗ versus volume
fraction η. Open symbols: L/D = 0.2, closed symbols:
L/D = 0.05; (b) Nematic order parameter P2 versus

volume fraction η for both L/D = 0.2 and L/D = 0.05,
with the same symbols as before.



14

2. Tables

TABLE IV: L/D = 0.05

P ∗ η S ψ6 τ Phase

0.20 0.066 ± 0.001 0.047 ± 0.008 0.068 ± 0.007 0.178 ± 0.052 I

0.39 0.096 ± 0.001 0.061 ± 0.002 0.133 ± 0.003 0.181 ± 0.049 I

0.59 0.121 ± 0.001 0.086 ± 0.027 0.190 ± 0.006 0.185 ± 0.060 I

0.98 0.187 ± 0.001 0.830 ± 0.019 0.308 ± 0.009 0.253 ± 0.022 N

1.18 0.212 ± 0.003 0.883 ± 0.014 0.332 ± 0.009 0.193 ± 0.013 N

1.37 0.231 ± 0.004 0.896 ± 0.031 0.360 ± 0.011 0.203 ± 0.012 N

1.57 0.251 ± 0.003 0.925 ± 0.008 0.386 ± 0.008 0.178 ± 0.018 N

1.77 0.267 ± 0.001 0.935 ± 0.009 0.405 ± 0.007 0.204 ± 0.012 N

1.96 0.283 ± 0.005 0.955 ± 0.008 0.427 ± 0.006 0.113 ± 0.022 N

2.16 0.296 ± 0.004 0.959 ± 0.005 0.437 ± 0.011 0.205 ± 0.011 N

2.36 0.310 ± 0.003 0.963 ± 0.009 0.447 ± 0.013 0.194 ± 0.015 N

2.55 0.322 ± 0.001 0.966 ± 0.006 0.455 ± 0.010 0.216 ± 0.003 N

2.75 0.335 ± 0.003 0.976 ± 0.005 0.477 ± 0.009 0.176 ± 0.013 N

2.95 0.346 ± 0.004 0.978 ± 0.006 0.483 ± 0.015 0.205 ± 0.008 N

3.14 0.357 ± 0.005 0.977 ± 0.007 0.488 ± 0.010 0.198 ± 0.007 N

3.34 0.369 ± 0.005 0.983 ± 0.004 0.500 ± 0.008 0.142 ± 0.015 N

3.53 0.376 ± 0.003 0.984 ± 0.002 0.501 ± 0.005 0.172 ± 0.016 N

3.73 0.388 ± 0.005 0.986 ± 0.001 0.515 ± 0.009 0.198 ± 0.011 N

3.93 0.396 ± 0.007 0.987 ± 0.003 0.513 ± 0.010 0.158 ± 0.005 N

4.32 0.445 ± 0.007 0.990 ± 0.001 0.586 ± 0.014 0.185 ± 0.007 C

4.52 0.455 ± 0.008 0.991 ± 0.000 0.597 ± 0.017 0.210 ± 0.005 C

4.71 0.467 ± 0.006 0.992 ± 0.000 0.613 ± 0.004 0.189 ± 0.004 C

4.91 0.473 ± 0.006 0.993 ± 0.001 0.607 ± 0.016 0.195 ± 0.014 C

5.11 0.481 ± 0.007 0.992 ± 0.002 0.626 ± 0.017 0.180 ± 0.012 C

5.30 0.489 ± 0.006 0.992 ± 0.002 0.633 ± 0.020 0.200 ± 0.015 C

5.50 0.502 ± 0.006 0.994 ± 0.001 0.643 ± 0.016 0.204 ± 0.014 C

5.69 0.511 ± 0.007 0.994 ± 0.000 0.632 ± 0.012 0.208 ± 0.005 C

7.85 0.575 ± 0.001 0.999 ± 0.000 0.397 ± 0.006 0.217 ± 0.003 C

TABLE V: L/D = 0.20

P ∗ η S ψ6 τ Phase

0.79 0.194 ± 0.002 0.042 ± 0.004 0.285 ± 0.008 0.120 ± 0.067 I

1.57 0.260 ± 0.001 0.043 ± 0.006 0.391 ± 0.006 0.130 ± 0.050 I

2.36 0.304 ± 0.002 0.048 ± 0.011 0.434 ± 0.010 0.128 ± 0.049 I

3.14 0.342 ± 0.003 0.052 ± 0.011 0.450 ± 0.004 0.129 ± 0.043 I

3.93 0.372 ± 0.004 0.051 ± 0.012 0.460 ± 0.006 0.114 ± 0.076 I

4.71 0.405 ± 0.004 0.058 ± 0.028 0.458 ± 0.007 0.135 ± 0.029 Cub

5.50 0.434 ± 0.004 0.048 ± 0.016 0.455 ± 0.008 0.122 ± 0.062 Cub

6.28 0.532 ± 0.003 0.930 ± 0.006 0.767 ± 0.006 0.216 ± 0.004 C

7.07 0.551 ± 0.004 0.927 ± 0.007 0.788 ± 0.010 0.207 ± 0.011 C

7.85 0.560 ± 0.001 0.946 ± 0.004 0.808 ± 0.006 0.218 ± 0.002 C

8.64 0.583 ± 0.004 0.955 ± 0.006 0.822 ± 0.008 0.183 ± 0.008 C

9.42 0.607 ± 0.006 0.963 ± 0.006 0.837 ± 0.011 0.110 ± 0.008 C

10.21 0.625 ± 0.004 0.979 ± 0.003 0.840 ± 0.010 0.099 ± 0.015 C

11.00 0.640 ± 0.003 0.985 ± 0.002 0.840 ± 0.008 0.111 ± 0.006 C

11.78 0.648 ± 0.002 0.986 ± 0.001 0.856 ± 0.007 0.132 ± 0.003 C

12.57 0.670 ± 0.003 0.995 ± 0.001 0.726 ± 0.010 0.210 ± 0.009 C

13.35 0.679 ± 0.003 0.994 ± 0.001 0.795 ± 0.008 0.156 ± 0.005 C

14.14 0.662 ± 0.002 0.971 ± 0.002 0.658 ± 0.012 0.202 ± 0.002 C

14.92 0.688 ± 0.002 0.994 ± 0.000 0.858 ± 0.007 0.135 ± 0.006 C

15.71 0.677 ± 0.002 0.983 ± 0.000 0.745 ± 0.009 0.187 ± 0.006 C

TABLE VI: L/D = 5.00

P ∗ η S ψ6 τ Phase

0.79 0.193 ± 0.003 0.029 ± 0.005 0.002 ± 0.001 0.395 ± 0.100 I

1.18 0.229 ± 0.004 0.030 ± 0.004 0.004 ± 0.001 0.367 ± 0.128 I

1.57 0.256 ± 0.004 0.029 ± 0.002 0.007 ± 0.002 0.361 ± 0.124 I

1.96 0.280 ± 0.002 0.034 ± 0.009 0.010 ± 0.002 0.426 ± 0.153 I

2.36 0.299 ± 0.003 0.034 ± 0.007 0.015 ± 0.001 0.350 ± 0.153 I

2.75 0.317 ± 0.004 0.033 ± 0.004 0.021 ± 0.002 0.423 ± 0.149 I

3.14 0.332 ± 0.003 0.032 ± 0.010 0.028 ± 0.004 0.350 ± 0.133 I

3.53 0.348 ± 0.002 0.041 ± 0.006 0.036 ± 0.002 0.335 ± 0.192 I

3.93 0.359 ± 0.002 0.040 ± 0.029 0.045 ± 0.002 0.297 ± 0.222 I

4.32 0.372 ± 0.001 0.045 ± 0.010 0.056 ± 0.003 0.406 ± 0.229 I

4.71 0.385 ± 0.002 0.042 ± 0.010 0.071 ± 0.009 0.270 ± 0.377 I

5.11 0.397 ± 0.002 0.059 ± 0.011 0.089 ± 0.003 0.208 ± 0.098 I

5.50 0.408 ± 0.003 0.044 ± 0.015 0.118 ± 0.011 0.408 ± 0.218 I

5.89 0.480 ± 0.004 0.927 ± 0.002 0.444 ± 0.017 0.625 ± 0.077 SmA

6.28 0.500 ± 0.002 0.951 ± 0.003 0.504 ± 0.008 0.756 ± 0.088 SmA

6.68 0.515 ± 0.002 0.963 ± 0.001 0.536 ± 0.008 0.825 ± 0.039 SmA

7.07 0.526 ± 0.001 0.966 ± 0.002 0.554 ± 0.006 0.839 ± 0.010 SmA

7.46 0.537 ± 0.003 0.971 ± 0.001 0.556 ± 0.004 0.875 ± 0.012 SmA

7.85 0.549 ± 0.002 0.974 ± 0.001 0.554 ± 0.003 0.861 ± 0.042 SmA

8.25 0.561 ± 0.004 0.978 ± 0.001 0.546 ± 0.003 0.880 ± 0.025 SmA

8.64 0.567 ± 0.002 0.979 ± 0.001 0.539 ± 0.004 0.890 ± 0.032 SmA

9.03 0.603 ± 0.004 0.992 ± 0.001 0.658 ± 0.010 0.855 ± 0.022 X

9.42 0.608 ± 0.005 0.991 ± 0.001 0.638 ± 0.005 0.895 ± 0.016 X

9.82 0.617 ± 0.003 0.992 ± 0.001 0.649 ± 0.006 0.888 ± 0.011 X

10.21 0.618 ± 0.003 0.991 ± 0.001 0.628 ± 0.006 0.921 ± 0.010 X

10.60 0.633 ± 0.006 0.993 ± 0.001 0.673 ± 0.011 0.897 ± 0.034 X

11.39 0.642 ± 0.004 0.995 ± 0.000 0.687 ± 0.004 0.898 ± 0.010 X

11.78 0.650 ± 0.001 0.995 ± 0.001 0.709 ± 0.009 0.900 ± 0.005 X
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TABLE VII: L/D = 7.00

P ∗ η S ψ6 τ Phase

3.96 0.354 ± 0.002 0.097 ± 0.031 0.043 ± 0.005 0.537 ± 0.347 I

4.07 0.384 ± 0.003 0.823 ± 0.015 0.060 ± 0.004 0.203 ± 0.005 N

4.18 0.392 ± 0.003 0.863 ± 0.016 0.065 ± 0.005 0.210 ± 0.007 N

4.29 0.397 ± 0.001 0.876 ± 0.009 0.071 ± 0.012 0.198 ± 0.008 N

4.40 0.401 ± 0.002 0.880 ± 0.009 0.075 ± 0.003 0.203 ± 0.008 N

4.95 0.442 ± 0.002 0.941 ± 0.005 0.221 ± 0.012 0.541 ± 0.045 SmA

5.50 0.471 ± 0.003 0.963 ± 0.003 0.342 ± 0.015 0.708 ± 0.032 SmA

6.05 0.495 ± 0.004 0.971 ± 0.001 0.442 ± 0.013 0.793 ± 0.016 SmA

6.60 0.517 ± 0.002 0.977 ± 0.002 0.505 ± 0.018 0.837 ± 0.061 SmA

7.15 0.532 ± 0.004 0.981 ± 0.001 0.531 ± 0.013 0.850 ± 0.026 SmA

7.70 0.546 ± 0.002 0.984 ± 0.001 0.542 ± 0.004 0.861 ± 0.050 SmA

8.25 0.560 ± 0.003 0.986 ± 0.002 0.554 ± 0.004 0.866 ± 0.033 SmA

9.90 0.621 ± 0.003 0.996 ± 0.000 0.664 ± 0.005 0.899 ± 0.003 X

10.45 0.629 ± 0.004 0.996 ± 0.001 0.677 ± 0.010 0.902 ± 0.012 X

11.00 0.637 ± 0.001 0.996 ± 0.001 0.679 ± 0.003 0.915 ± 0.011 X

TABLE VIII: L/D = 10.00

P ∗ η S ψ6 τ Phase

0.79 0.165 ± 0.001 0.024 ± 0.008 0.000 ± 0.001 0.367 ± 0.161 I

1.57 0.224 ± 0.001 0.043 ± 0.013 0.002 ± 0.001 0.273 ± 0.366 I

2.36 0.299 ± 0.042 0.804 ± 0.113 0.007 ± 0.001 0.220 ± 0.004 N

3.93 0.386 ± 0.002 0.953 ± 0.003 0.033 ± 0.004 0.217 ± 0.004 N

4.71 0.432 ± 0.002 0.971 ± 0.002 0.118 ± 0.008 0.543 ± 0.022 SmA

5.50 0.475 ± 0.001 0.982 ± 0.002 0.270 ± 0.016 0.763 ± 0.010 SmA

6.28 0.504 ± 0.002 0.986 ± 0.001 0.374 ± 0.007 0.826 ± 0.019 SmA

7.07 0.528 ± 0.002 0.989 ± 0.001 0.451 ± 0.014 0.868 ± 0.023 SmA

7.85 0.548 ± 0.002 0.991 ± 0.001 0.509 ± 0.014 0.879 ± 0.014 SmA

8.64 0.570 ± 0.002 0.993 ± 0.001 0.543 ± 0.010 0.901 ± 0.018 SmA

9.42 0.611 ± 0.001 0.998 ± 0.001 0.619 ± 0.007 0.880 ± 0.004 X

10.21 0.628 ± 0.002 0.998 ± 0.001 0.670 ± 0.004 0.900 ± 0.014 X

11.00 0.642 ± 0.001 0.998 ± 0.001 0.704 ± 0.007 0.905 ± 0.017 X

11.78 0.652 ± 0.003 0.999 ± 0.001 0.710 ± 0.011 0.912 ± 0.011 X
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