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Abstract

Semiflexible polymer models are widely used as a paradigm to understand structural phases in biomolecules

including folding of proteins. Since stable knots are not so common in real proteins, the existence of stable

knots in semiflexible polymers has not been explored much. Here, via extensive replica exchange Monte Carlo

simulation we investigate the same for a bead-stick and a bead-spring homopolymer model that covers the whole

range from flexible to stiff. We establish the fact that the presence of stable knotted phases in the phase diagram

is dependent on the ratio rb/rmin where rb is the equilibrium bond length and rmin is the distance for the strongest

nonbonded contacts. Our results provide evidence for both models that if the ratio rb/rmin is outside a small

window around unity then depending on the bending stiffness one always encounters stable knotted phases

along with the usual frozen and bent-like structures at low temperatures. These findings prompt us to conclude

that knots are generic stable phases in semiflexible polymers.
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I. INTRODUCTION

Identification and prediction of macromolecular conformations via computer simulations have developed so much over the

years with current possibility of doing them at atomistic or even at quantum level. Those detail simulations are always limited

by their accessible time scales which often may be too small to provide meaningful insight or it may require enormous effort

to arrive at the same. On the other hand, computationally less expensive coarse-grained approaches (by integrating out certain

unimportant degrees of freedom) are more than sufficient to understand the generic behavior of macromolecules [1]. The very

simple idea of consideration of self-avoidance and introduction of attraction led to the exploration of theta polymers that are

characterized by collapse and freezing transitions [2]. In this regard, even simplest lattice models could provide a deep insight

[3–8]. The more generic off-lattice models come in two major variants, viz., the bead-stick model and the bead-spring model.

They have widely been used to investigate different structural phases of polymers, be it a single one [9–14] or in aggregates

[14–17] in bulk, and in some cases on surfaces [18–22] or under geometrical constraints [23, 24].

While dealing with these models one should always be aware of the effect of bending stiffness that is used as a parameter to

distinguish a flexible polymer from a semiflexible or a stiff one. In this context, a simple worm-like chain model is sufficient to

emulate bending-energy-dominated polymers or semiflexible polymers [25]. Such an approach nicely mimics several features of

complex biopolymers that includes DNA, RNA, and even some proteins. Since the worm-like chain model does not take the self-

avoidance or any nonbonded interactions into consideration, it fails to capture the structural transitions associated with a theta

polymer. Thus for a complete understanding combining the features of theta polymers with the bending stiffness is necessary.

From this point of view, using a bead-spring model, Seaton et al. [12] explored different phases (coiled, collapsed, frozen, bent,

hairpin and toroidal conformations) of a semiflexible polymer just by tuning the bending stiffness. Recently we have shown that

similar phases can also be realized if a bead-stick model is used instead [13]. Intriguingly, in addition to those phases there we

have discovered new pseudo phases characterized by thermodynamically stable knotted structures of the polymer.

Strictly, knots are topological properties of closed strings, and hence, knots found in open polymers are not mathematically

defined [26]. Nevertheless, by means of a special strategy for ring closure, the definition can be extended to open polymers as

well. Thus, the presence of knots in polymers has fascinated chemists and physicists for long [27–32]. Especial interest has

evolved around investigating knots in proteins which are best described by semiflexible polymer models. Those studies reveal

that only a small fraction of them form knots [33–36]. There have been attempts to understand this fact by arguing that knotted

proteins are evolutionary unfavorable [37].

In contrast to proteins, the chances of realizing a knot are higher in flexible polymers either in the swollen or globular phase

[30, 32, 38, 39]. The knots identified in most of these studies are formed by chance and cannot be considered to characterize true

thermodynamically stable phases. Only recently, in our simulations of a bead-stick semiflexible polymer model where almost

the whole range of possible bending stiffnesses was explored, we found stable knots [13]. However, as mentioned earlier in

their comprehensive study of the phase diagram of a semiflexible polymer using a bead-spring model, Seaton et al. [12] did not

mention any presence of knotted conformations. This poses the important question whether knots are generic phases only in

bead-stick polymers. In Ref. [13] it has been conjectured that the formation of knots is dependent on the ratio of the equilibrium

bond length rb and the distance rmin for which the energy due to nonbonded contacts attains its minimum. In this work we take

up this task and study how the ratio rb/rmin influences the presence of stable knot phases in the phase diagram using both a bead-

stick and a bead-spring model. Using the bead-spring model will be particularly helpful in explaining the missing knots in the

model used in Ref. [12]. Our results provide evidence that for both the bead-stick and the bead-spring model knotted structures

form a stable phase covering a range of bending stiffnesses if rb/rmin is away from a small region around unity. This can be

explained by analyzing the competition between the nonbonded energy minimization and the bending energy minimization.

The rest of the paper is organized as follows. Next in the Sec. II we explain the two different models we will be using, the

setup of the replica exchange simulation method and the data analysis procedure. The details of the bead-spring model employed

in Ref. [12] are relegated to the Appendix. The results are presented in Sec. III. Finally, we put forward our conclusions in Sec.

IV.

II. SIMULATION DETAILS

A. Models

As already outlined above we consider two semiflexible polymer models: (i) bead-stick and (ii) bead-spring. In both models

the monomers are considered to be spherical beads with diameter σ, and the nonbonded interaction energy is dependent on the

inter-particle distance ri j and is given as

Enb =

N−2
∑

i=1

N
∑

j=i+2

[

ELJ(min{ri j, rc}) − ELJ(rc)
]

(1)
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is the standard Lennard-Jones (LJ) potential which has a minimum at rmin = 21/6σ. In Eq. (1), N is the length of the polymer

measured as the total number of beads or monomers. In order to be consistent with our previous study [13] for the bead-stick

model we set σ = 1.0 and do not use any cut-off in Enb, whereas for the bead-spring model we choose σ = 2−1/6 in order

to be consistent with the choice of rmin = 1.0 in Ref. [12] and set rc = 2.5σ for faster computation of Enb. For both models

the nonbonded interaction strength ǫ is set to unity. In bead-stick models the monomers form a chain where the connectivity

between successive monomers are maintained via rigid bonds having fixed length rb. On the other hand, in a bead-spring

model the bonds between successive monomers are maintained via some kind of springs. Here we consider the standard finitely

extensible non-linear elastic (FENE) potential [40, 41]

EFENE = −
K

2
R2

N−1
∑

i=1

ln

[

1 −

(

rii+1 − rb

R

)2
]

(3)

where rb is the equilibrium bond distance for which EFENE is minimum. Unless otherwise mentioned in all the simulations we

have used R = 0.3 and K = 40.

In both models stiffness is introduced via the well-known discretized worm-like chain cosine potential given as

Ebend = κ

N−2
∑

i=1

(1 − cos θi) (4)

where θi is the angle between consecutive bonds and κ controls the effective bending stiffness of the polymer. In this work we

aim to perform simulations of the two models using different values of rb/rmin. For that we fix the value of rmin = 21/6 and 1.0,

respectively, for the bead-stick and the bead-spring model (by keeping the respective values of σ in all our simulations) and vary

only the equilibrium bond length rb.

B. Simulation method

It is known that the phase diagram of coarse-grained semiflexible polymers contains “strong” first-order phase transitions,

where “strong” means that the two coexisting phases are separated in phase space by a highly suppressed region [13, 42]. On

top of that, such systems obey very slow dynamics at low temperatures, even far away from these phase transitions. This

demands application of relatively complex Monte Carlo (MC) simulation methods to obtain well equilibrated results [13, 43].

Previously we have used a parallelized version of the multicanonical algorithm [44–46] along with replica exchange (RE) (also

known as parallel tempering) [47] and the two-dimensional replica exchange method (2D-RE) [13]. Both of them were shown to

produce the same results and hence here, we restrict ourselves to use only the 2D-RE algorithm. It is based on many individual

Metropolis MC simulations which run in parallel, each at a different parameter pair (T, κ), whose conformations are exchanged

every now and then. This substantially improves the quality of the canonical estimates near the phase transitions and also at low

temperatures.

For 2D-RE it is necessary to write down the system Hamiltonian in the following form

H = E0 + κE1 (5)

where E0 corresponds to the base energy coming from the nonbonded interaction defined in Eq. (1) and the bonded interaction

(if any) in Eq. (3), and E1 corresponds to the energy contribution coming from the bending stiffness term
∑N−2

i=1 (1−cos θi) defined

in Eq. (4). While interchanging replicas between two neighboring points µ and ν, in the simulation parameter space (T, κ), the

above splitting of the total energy is used to calculate the exchange probability as

p(µ↔ ν) = min
[

1, exp(∆β∆E0 + ∆(βκ)∆E1)
]

, (6)

where β = 1/kBT (kB = 1 being the Boltzmann constant). The two-dimensional parameter space has the advantage that it can

avoid topological barriers which would hinder the flux in a one-dimensional parallel tempering simulation. In one-dimensional

parallel tempering simulation it can happen that there are some temperatures T where almost no state exchange occurs which

can be avoided in 2D-RE via exchange along the other direction (κ) in the parameter space (T, κ).
Apart from the 2D-RE algorithm, it is also necessary to adapt different MC update moves to tackle the underlying problem.

The set of updates includes the usual crank-shaft, spherical-rotation, and pivot moves for both the bead-stick and the bead-spring

models [48]. For the bead-spring model we have also used the single monomer displacement moves. In addition to these standard

but simple moves we have also used the complex double-bridge and bridge-end moves [49, 50]. Note that for the bead-stick

model the bridge moves are adjusted accordingly to respect the fixed bond lengths.
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C. Analysis

Pursuing the 2D-RE simulations allows us to use the two-dimensional version of the weighted histogram analysis method

(2D-WHAM) for generating appropriate canonical estimates of quantities of interest [51, 52]. Here, one starts by measuring

two-dimensional histograms Hi(E0, E1) at m different parameter pairs (T, κ)i which gives the energy distribution

pi =
Hi(E0, E1)

Ni

(7)

where Ni is the number of measurements done at each individual parameter space-point (T, κ)i to generate Hi(E0, E1). Using this

one writes down the density of states as

Ω(E0, E1) =

∑m
k=1 gk

−1 pk(E0, E1)
∑m

k=1 Nkgk
−1Z−1
βk ,κk

exp[−βk(E0 + κE1)]
, (8)

where gk = 1 + 2τk accounts for the integrated autocorrelation time τk calculated via binning analysis from the time series

generated at each parameter point k. In Eq. (8), the partition function is given as

Zβi,κi =

∑

E0 ,E1

∑m
k=1 gk

−1 pk(E0, E1)
∑m

k=1 Nkgk
−1Z−1
βk ,κk

exp[−βk(E0 + κE1)]
exp[−βi(E0 + κE1)]. (9)

Note that a priori neither Ω(E0, E1) nor Zβi,κi is known. Assuming appropriate initial values of Zβi ,κi , the self-consistent Eqs. (8)

and (9) are solved to arrive at precise values of Ω(E0, E1) and Zβi,κi [53]. Once this is done the estimate of any observable O at

any parameter point (T, κ) can be calculated via

〈O〉β,κ =

∑

E0 ,E1
O(E0, E1)Ω(E0, E1) exp[−β(E0 + κE1)]

∑

E0 ,E1
Ω(E0, E1) exp[−β(E0 + κE1)]

. (10)

In our analyses, we will be dealing with derivatives of certain observables with respect to temperature T calculated as

d

dT
〈O〉 = kBβ

2 (〈OE〉 − 〈O〉〈E〉) (11)

where E = E0 + κE1 is the total energy. The statistical errors on all the observables are obtained via the Jackknife method [54].

Different observables that we measure during our simulations will be explained subsequently in the results section.

III. RESULTS

As already mentioned we aim to explore the effect of the ratio rb/rmin on the presence of stable knotted phases or in general

different phases in both models described above. Thus subsequently all the results are organized with respect to the choice of

rb/rmin. In the following we report results for polymers of length N = 14 and 28. This choice is motivated by the not too high

complexity of the pseudo-phase diagrams and at the same time will be sufficient to understand the effect of varying rb/rmin on

the existence of stable knots.

A. Phase behavior for rb/rmin = 0.891

We start our investigation with the choice of rb/rmin = 2−1/6 ≈ 0.891, as was used for the bead-stick model in Ref. [13].

Figures 1(a) and (b) show the complete phase diagram in the temperature T and bending stiffness κ plane, for both models with

a chain length N = 14. The surface plot to differentiate between the different phases is obtained by using the estimated squared

radius of gyration 〈R2
g〉 calculated as

R2
g =

1

2N2

N
∑

i, j=1

(~ri − ~r j)
2 (12)

where ~ri is the position vector of the i-th monomer. R2
g gives a measure of the spatial extension of the polymer. For both models,

a rich variety of phases can be observed. Elongated (E) and rod-like (R) conformations are obtained as the two major structures
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FIG. 1. Complete phase diagram for (a) the bead-stick model and (b) the bead-spring model with the usual choice of the ratio rb/rmin = 0.891

for N = 14. The surface plots are drawn with respect to the spatial extension of the polymer chain measured in terms of the squared radius of

gyration 〈R2
g〉. The labeled phases stand for the following: E for elongated; R for rod-like; G for globular; F for frozen; KCn for knotted phase

with the corresponding knot type Cn; Dn for bent phases with n number of segments.

in the noncondensed state, respectively at low and high κ. In the condensed phases, depending on the bending stiffness and

temperature one observes interesting conformations that range from usual frozen state (F) to bent phases (Dn). Most importantly,

like in the bead-stick model (already demonstrated in Ref. [13]), the bead-spring model, too, shows the existence of a knotted

phase in the range κ ∈ [3.2, 5.8] which is even wider than the corresponding range κ ∈ [2.6, 3.8] for the bead-stick model.

Before we proceed further with other values of the rb/rmin parameter it would be worth to limit ourselves to the quantities

which are relevant for identifying the knotted phase. For that in the present case following the custom we have estimated from

our simulation data the energy density 〈E/N〉 along with 〈R2
g〉. Both these quantities for a fixed κ do not show any signature

of pseudo-phase transition (strictly the term phase transition is used in the thermodynamic limit, i.e., in the large N limit), as

evident from the corresponding plots for both the bead-stick and bead-spring model presented, respectively in Figs. 2(a) and (b).

The cases for the higher value of κ = 3.0 and 4.0 (shown by the dashed lines in the figure), respectively, for the two models

correspond to values within the knotted phase. In fact, these parameters also do not provide a strong evidence even for freezing

or collapse transition as expected for the lower κ = 1.0 [shown by the continuous lines in Figs. 2(a) and (b)] for both models.

For this matter, one can also look at the corresponding derivatives using Eq. (11), i.e., the specific heat Cv =
d〈E〉

dT
and

d〈R2
g〉

dT
which

are presented for both the κ values in Figs. 2(c) and (d), respectively for the two models. The derivative
d〈R2

g〉

dT
seems to provide

a clear signature for the collapse transition for both models. For the bead-stick model the collapse transition temperatures for

κ = 1.0 and 3.0 can roughly be read off as 0.85 and 1.1, respectively which can also be appreciated with regards to the phase

diagram presented in Fig. 1(a). Similarly, in case of the bead-spring model, the data for
d〈R2

g〉

dT
provides a reasonable signature of

the collapse transition temperatures for both the κ values. The specific heat Cv for both models show peaks at some respective

temperatures that may be identified as the collapse transition temperature. However, they are located at values substantially

lower than the corresponding values obtained from
d〈R2

g〉

dT
. The low-temperature peaks for the

d〈R2
g〉

dT
data are prominent for the

lower κ values for both models which correspond to the transition to the frozen state F. On the other hand, at low temperature,

peaks for the higher κ values for both models are not so pronounced to mark the transition to the stable knotted phase.

In Ref. [13] using the bead-stick model it has been pointed out that the transition K31↔D3 is first order which is signaled by

a bimodal distribution in the two-dimensional space of energies E0 and E1. In view of that we estimate the variances

(∆E0)2
= 〈E2

0〉 − 〈E0〉
2 (13)

and

(∆E1)2
= 〈E2

1〉 − 〈E1〉
2, (14)

respectively, for the base energy and the bending energy separately. In Fig. 3 the corresponding plots are shown as a function of

temperature with the same choices of κ as in Fig. 2, for both the models. Clearly, the data do not provide any significant signature
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FIG. 2. Plots in (a) and (b) show the validity of the measured quantities, viz., energy density 〈E/N〉, the squared radius of gyration 〈R2
g〉, and the

knot parameter 〈D〉, to identify the expected transitions between different phases, respectively for the two models. The quantities are plotted as

a function of temperature T with two different choices of the bending stiffness κ as mentioned within (a) and (b). Plots in (c) and (d) show the

corresponding plots for indirectly measured quantities, viz., specific heat Cv = d〈E〉/dT and the derivative of the squared radius of gyration

d〈R2
g〉/dT , for the two models. All the data presented here are for the choice of rb/rmin = 0.891 and N = 14.

of the transition to a knotted phase. As it is intuitive that different phases in a semiflexible polymer result from the interplay of

the base energy and the bending energy, we also calculated the cross-correlation between them as

CE0 ,E1
= 〈E0E1〉 − 〈E0〉〈E1〉. (15)

As expected the results shown in Fig. 3 indicate that E0 and E1 are anti-correlated. It also provides a signature of the coil-globule

transition in both models, especially for the higher κ values. However, CE0 ,E1
also fails to capture any signature of the transition

FIG. 3. Variance of the base energy (∆E0)2 and the bending energy (∆E1)2, and their cross-correlation CE0 ,E1
as a function of temperature with

two different choices of κ for (a) the bead-stick and (b) the bead-spring model. As in Fig. 2, the data are for the choice of rb/rmin = 0.891 and

N = 14.
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FIG. 4. Illustration of the closure scheme to identify the knot type in a polymer. Left panel represents the 3D conformation of a knotted (31)

polymer. Central panel shows the 2D-projection of the same polymer on xy-plane. The right panel demonstrates the closure applied on the

2D-projection to make the open polymer a closed one.

to the knotted phase. Thus, we call for an analysis deployed specifically to knots in the polymer.

In a mathematical sense knots are only defined for closed curves as for the schematics shown in Table I. An open polymer

can satisfy the mathematical definition of a knot only when the termini are closed virtually. For that we follow Ref. [55] and

first project the polymer conformation on a 2D plane as illustrated in Fig. 4 for a conformation with a 31 knot. One can notice

that the mere 2D-projection (say on the xy-plane) yields only one crossing. A direct closure of the termini A and B would also

not yield any additional crossing. Therefore, one needs a special closure scheme as demonstrated in the right most panel of Fig.

4. There we connect the termini A and B by a straight line, which is then extended in both directions to get two new virtual

TABLE I. Expressions for Alexander polynomial ∆(t) and the corresponding unique knot parameter D = ∆p(−1.1) for some simple knots

which we encounter in this work.

schematic Alexander polynomial

∆(t)

∆p(−1.1)

unknotted 1 1.0

31 t + t−1 − 1 9.05462

41 −t − t−1
+ 3 25.09099

51 t2
+ t−2 − t − t−1

+ 1 25.45745

819 t3
+ t−3 − t2 − t−2

+ 1 9.72667
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FIG. 5. Variation of the energy density 〈E/N〉, the squared radius of gyration 〈R2
g〉, and the knot parameter 〈D〉 as a function of the bending

stiffness κ for a fixed temperature T = 0.01 for both models with the choice of the ratio rb/rmin = 0.891 and N = 14.

points C and D located far away from all the monomers. Following that we create another virtual point E, far away from all the

monomers, on the perpendicular bisector of the line AB. The polymer is now closed via straight lines connecting E to C and D,

respectively. The resulting closed curve now has two additional crossings making the total number of crossings to be three. The

closure is only applied during the measurement of the knot type and does not influence the simulation itself. The details of this

closure prescription can be found in Refs. [13, 32, 55, 56].

A knot type is denoted as Cn where the integer C counts the minimum number of crossings and the subscript n distinguishes

topologically different knots with the same number of crossings [26]. In our study, once the closure is applied the knot type of

the polygonal line describing the polymer is determined in the following way. First we identify the crossings and then determine

the corresponding Alexander polynomial [26]. In order to avoid unwanted prefactors of the Alexander polynomial ∆(t), we

calculate a variant of it given as

∆p(t) = |∆(t) × ∆(1/t)|, (16)

evaluated at t = −1.1. Thus we define the knot parameter as D ≡ ∆p(−1.1). D is also a knot invariant which implies that

different polygonal lines with the same knot type correspond to the same D. However, it is not unique as the underlying

Alexander polynomial is not unique [e.g., D(51) = D(10132)]. Nevertheless, it is sufficient to distinguish between the simple

knots observed in this work. Once the knot parameter D is found for a polymer conformation one can assign the knot type Cn

from a list of possible values of D for simple knots, as presented in Table I.

The estimated average of the knot parameter 〈D〉 for the two models is shown in Figs. 2(a) and (b), respectively. For the

bead-stick and the bead-spring polymer with κ = 3.0 and 4.0, respectively, one can clearly see that at low temperature 〈D〉

coincides with the value of D = 9.05462 that specifies a trefoil knot (31) and at higher T , it drops down to 1 that corresponds

to an unknotted polymer. Thus, undoubtedly the knot parameter is the distinguishing parameter we should be exploring in this

work. This can also be appreciated from the plots in Fig. 5 showing comparative variation of 〈E/N〉, 〈R2
g〉, and 〈D〉 as a function

of κ for the temperature fixed to our lowest value of T = 0.01. There also indeed 〈D〉 provides the most convincing picture for

the transition to the knotted phase K31 for both models.

Observation of knotted structure is not really new, however, in the past the knotted structures found were by chance and

hence were mostly observed in the coiled and globular states. Here, the full phase diagrams in Fig. 1 indicate that the knotted

structures are the stable phases for intermediate values of bending stiffness, especially at low temperatures. This fact raises

the question whether there are any entropic contributions to these stable knotted phases. We investigate this in the following

empirical approach. We pick up typical conformations (F, K31, D3, D2, and R) at the lowest temperature T = 0.01 which can

be identified from Fig. 1 for both the bead-stick and the bead-spring model. Now keeping their morphology intact we calculate

the total energy Fps of each of them just by varying the bending stiffness κ using the Hamiltonian in Eq. (5). Since this is done

at T = 0.01 and assuming that the entropic contributions are negligible, it can be considered that one calculates virtually the

free energies of the respective conformation while changing κ. Hence, Fps could be termed as the pseudo free energy of those

conformations.

In Figs. 6(a) and (b) we present the variation of Fps with κ at T = 0.01 for a set of typical conformations, respectively for the

bead-stick and bead-spring model. From the plot one can easily identify which conformation has the minimal Fps at a particular

value of the stiffness κ. For example, when κ = 2.0 for both models the frozen conformation (F) has the lowest Fps. Similarly,

for κ > 7 the rod-like (R) conformation has the minimal Fps. This observation is in concurrence with the full phase diagrams
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FIG. 6. Variation of the calculated pseudo free energy Fps as a function of the bending stiffness κ at a fixed temperature T = 0.01. Results for

typical conformations identified from the phase diagrams presented in Fig. 1 for (a) bead-stick model and (b) bead-spring model are presented.

The arrows there mark the position where the conformation with the minimum energy switches from one structure to the other.

presented in Fig. 1 for both models. If one starts at κ = 0 and moves on with increasing κ, at some value of κ the K31 knot takes

over the frozen conformation as the conformation with minimum Fps. This crossover or switching (marked by the arrows in the

plots) to different conformations having the minimum Fps happens four times along the κ axis for both models. Interestingly,

these crossover points along κ match quite well with the phase boundaries one observes in the full phase diagrams in Fig. 1. This

confirms that for all these conformations at low temperature the entropic contribution is indeed negligible.

FIG. 7. Probability density of the base energy E0 in the knotted phase for different values of the bending stiffness κ for (a) bead-stick model

and (b) bead-spring model at a temperature T = 0.01. Plots in (c) and (d) show the corresponding probability densities of the energy E1

(= Ebend/κ) for the two models. All the results are for the ratio rb/rmin = 0.891 and N = 14.
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The variations of the mean energy in Fig. 5 for both models are consistently overlapping with each other and are almost

indistinguishable. Thus the wider range for stable knotted conformations in the bead-spring model should be attributed to the

interplay of the base energy E0 and the bending energy κE1. To have an idea about this interplay, we show in Figs. 7(a) and

(c) for the bead-stick model, the probability density of E0 and E1, respectively, for four different values of κ within the knotted

phase at T = 0.01. The corresponding plots for the bead-spring model are presented in Figs. 7(b) and (d). E0 for the bead-stick

model is the nonbonded energy Enb described in Eq. (1). For the bead-spring model, E0 also consists of the bond energy EFENE

[as in Eq. (3)], in addition to Enb. E1 in both models correspond to Ebend/κ. Thus E1 accounts for the relative orientation of the

bonds along the length of the polymer, i.e., the factor
∑N−2

i=1 (1 − cos θi) in Eq. (4). From Figs. 7 (a) and (b) it can be observed

that the peak of the distribution of E0 shifts to the right with increase of κ for both models. On the other hand, from Figs. 7 (c)

and (d) it is observed that this trend is opposite for E1, albeit the Ebend anyway increases as κ increases. Thus for both models it

is apparent that a decrease in E1 is paid off by the increase in E0. For the bead-spring model the increase in E0 per unit change

in κ is ≈ 0.5, which is smaller than the corresponding variation ≈ 0.83 for the bead-stick model. Similarly, the corresponding

decrease in E1 per unit change in κ within the knotted phase is smaller in the bead-spring model (≈ 0.125) than in the bead-stick

model (≈ 0.25). This difference comes from the fact that in the bead-spring model since the bond length is not fixed a variation

in the bond lengths may also give rise to an overall better orientation of the bonds such that E1 is decreased. At very large κ
as the overall Ebend becomes large and thereby mild bond orientation is not enough to stabilize the structures, and hence bent

structures appear and the knotted phase vanishes. For the bead-stick model the allowed range of κ is potentially small since the

change in bond orientation, i.e., decrease in E1 is only possible due to a pure bond rotation. This provides an intuitive argument

why the knotted phase is much wider in the bead-spring model than in the bead-stick model.

B. Existence of knots while varying rb/rmin

From the results obtained in the previous subsection with the ratio rb/rmin = 0.891 in both models we conclude that the

formation of a stable knotted phase at low temperatures is guided by the interplay of the base energy E0 (where ELJ is the sole

respectively major contribution for the bead-stick or bead-spring model) and the bending energy Ebend. Thus for rb/rmin = 0.891

one obtains frozen conformations F where the energy minimization due to the nonbonded contacts can easily overcome the

required bending energy penalty (for F there are a number of bends along the chain that have a bending angle θ ≈ π/2) for such

conformations. As the stiffness κ increases, naturally the number of bends along the chain shall decrease which may give rise

to bent conformations like D3 and D2. However, for this specific choice of rb/rmin = 0.891 it is observed that for intermediate

values of the stiffness (for both models) knotted conformations are observed. A knotted conformation, like 31 has much less

number of severe bends (bending angle θ ≪ π/2) than a frozen conformation, but has sufficient nonbonded contacts courtesy to

the crossing or overpassing of the chain onto itself to fulfill the topology of a knot. At even larger values of κ the nonbonded

LJ interaction due to the knot topology is not enough to overcome the bending penalty, and thus bent structures like D3 or D2

becomes the stable ones. In such a conformation an energy gain is achieved via the nonbonded LJ contacts of the opposite

strands. Now, it is easy to perceive that this strength of the LJ contact is maximum when the distance rLJ between the strands

coincides with rmin of the model (see Fig. 8 for the definition of rLJ in this context). On the other hand, the possible value of this

rLJ is correlated with the equilibrium bond length rb of the conformation (again see Fig. 8 to correlate rb with rLJ). This leads

to the inference that the stability of the bent conformations is dependent on the ratio rb/rmin. Since, the existence of the knotted

phases is dependent on its energetic competition with the bent phases, thus in turn the very existence of the knotted phases is

practically dependent on this ratio rb/rmin.

FIG. 8. Schematic diagram showing the possible perfectly bent structures one can observe in a semiflexible polymer model with 4 different

choices of the ratio rb/rmin as mentioned. Here 0 < ∆1 < ∆2.
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Before we move on to explore the existence of knots in both models for various choices of the ratio rb/rmin, in Figs. 8(a)-(d)

we illustrate our speculation about the stability of a bent conformation with D2 as an example. The schematic diagram shows

the possible two-dimensional projection of a stable D2 conformation for four different typical choices of rb/rmin. In (a) we have

drawn such a schematic for rb/rmin < 1. For a short chain of length N = 14, in this case, since rb < rmin, to have the maximum

nonbonded LJ interaction, i.e., to have rLJ = rmin the bending tip must include several monomers which in turn leave only few

monomers to have a real gain in energy due to LJ contact with the opposite strands. Thus, for intermediate values of the bending

stiffness the bent conformations are unstable compared to a trefoil knotted (31) conformation (see the typical conformations in

Figs. 9 and 10 for rb/rmin = 0.891). For the case of rb/rmin = 1 and rb/rmin = 1 + ∆1 drawn respectively in Figs. 8(b) and (c),

the minimum number of monomers involved in the bending to form two strands are respectively two and three (in general, they

must be fewer than in the case of rb/rmin < 1). Thus, more monomers can stay on the strands which can now lie easily at a

distance rLJ = rmin thus minimizing the energies at even intermediate values of the bending stiffness κ. Hence, it seems that for

such cases the bent conformations are always favorable over the simple knotted structure 31, possible for relatively short chain

length N. However, this is restricted by the value ∆1. Now let us compare the cases in (b) and (c). In (b) the full turning of the

polymer involves two bendings (with θi = π/2) which accounts for a bending energy 2κ. In this case for a polymer of length

N the total number of nonbonded contacts will be (N − 2)/2 which accounts for an energy gain of −(N − 2)ǫ/2. For the case

in (c) the gain in energy due to nonbonded contacts would be the same as in (b), i.e., −(N − 2)ǫ/2. However, in this case there

are three bends for the full turning of the polymer. Thus in this case the relative orientations of these three bonds involved in

the turning would decide the total bending energy penalty. Now, if
∑

i(1 − cos θi) < 2 then the conformation in (c) will be even

more stable than the corresponding structure in (b). This is dependent on the value of ∆1. For smaller values of ∆1, the condition
∑

i(1− cos θi) < 2 is satisfied, and thus the bent structures are even stabler and one would not expect to observe a simple knotted

phase in the phase diagram. However, if ∆1 is very large then
∑

i(1 − cos θi) > 2 and the bent structure in (c) gradually becomes

less stable compared to (b) and eventually compared to even a trefoil (31) knotted structure (see the typical conformations in

Figs. 9 and 10 for rb/rmin = 1.26 and 1.587). Schematic for such a case, i.e., with rb/rmin = 1 + ∆2 (where ∆2 > ∆1, rb ≫ rmin)

is shown in (d). There one can easily notice that the apex angle θ approaches π, thus making the overall bending energy larger

again. In such a situation thus we speculate that at lower or intermediate values of κ simple knotted structure like 31 would be

again favorable. From the above heuristic arguments, we conjecture that for polymers of short length except for a small window

of the ratio rb/rmin ∈ [1, 1 + ∆1] one would expect to observe a knotted phase at lower or intermediate values of the bending

stiffness.

To check the validity of the above arguments and how the existence of the knotted phase gets affected by the ratio rb/rmin,

we perform simulations with both the bead-stick and bead-spring model for four other choices of rb/rmin = 1.0, 21/6 (≈

1.122), 22/6 (≈ 1.26), and 24/6 (≈ 1.587). Note that this ratio has a lower bound decided by the fact that rb cannot be less

than the diameter σ of the monomer beads. This puts the lower limit to the ratio rb/rmin = 2−1/6 ≈ 0.891 below which we do

not perform any simulations. There is no strict upper bound on rb/rmin but we go up to the value 1.587 beyond that both models

show no condensed structure at all for a polymer of length N = 14.

Figure 9 shows the results for the bead-stick model which illustrate how the existence of a stable knotted phase gets influenced

by the ratio rb/rmin. The phase diagram in the (T, κ) plane is constructed as a surface plot using the knot parameter 〈D〉. There

one clearly sees a knotted phase at low temperatures and intermediate bending stiffness κ for all ratios except rb/rmin = 1.122.

For the case rb/rmin = 1.0 the region of knotted phase is very narrow. This is in concurrence with our speculation that the bent

structures are favorable over the knotted ones for the cases presented in Figs. 8(b) and (c). We have checked that for rb/rmin = 1

and 1.122 alternative structures which appear are D3 and D2. The slightly higher values of 〈D〉 marked by the blue spot in the

phase diagram for rb/rmin = 1.122 is due to the presence of few knotted structures mixed with the simple globule. These knots

are not stable knots but are formed by chance and are hence of the kind of knotted structures which were reported in the past.

Note that since the chain length is relatively short it is impossible to observe a wide variety of knotted structures. In fact in all

the cases the observed knots correspond mostly to the trefoil knot 31 characterized by the D = 9.05462 (see Table I). This can be

identified by the red colored region in Fig. 9. For rb/rmin = 1.587 one also notices an orange region at very low κ up to relatively

high T . We caution the reader that this does not correspond to the 819 knot with D = 9.72667, since a knot with 8 crossings is

impossible for a chain length of N = 14. Rather this region corresponds to a mixed phase of 41 knots (having D = 25.09099) and

unknotted conformations. These knots are qualitatively different. They originate in the frozen amorphous (or glass-like) state of

the polymer and are highly unstable. Thus a small perturbation is sufficient to unknot them. The other knot 31 is a toroidal knot

which reduces the bending energy and is thus stable.

Similar observation can be made from the results of the bead-spring model presented in Fig. 10 for the same choices of

the ratio rb/rmin. In addition one can notice that for all the ratios the width of the knotted phase in the bead-spring model

is larger compared to the corresponding width in the bead-stick model. Here, also the orange region for rb/rmin = 1.587 at

low κ and covering even relatively higher T corresponds to the mixed phase comprising unknotted and 41 knotted structures.

Another observation which is in place for both the models is that in contrast to the generic “spherical” knot that one obeserves

for rb/rmin = 0.891, for the highest value of rb/rmin = 1.587 the knotted conformation looks similar to a bent structure. A

careful look in comparison with the bent conformations observed with rb/rmin = 0.891 in Fig. 1 would reveal that the internal

structures are different. In case of rb/rmin = 1.587 the strands penetrate each other giving rise to a “flat” knotted structure thereby



12

FIG. 9. Phase diagram in (T, κ) plane with the knot parameter 〈D〉 as the order parameter for a semiflexible polymer with different choices of

the ratio rb/rmin using a bead-stick model. The snapshots represent typical polymer conformations in the stable knotted phase having trefoil

knots (31) for the respective choices of rb/rmin. All the results are for a chain length N = 14.

costing bending energy but gaining energy due to additional LJ contacts. In contrast, for rb/rmin = 0.891, the strands in the bent

structures are almost parallel to each other.

The observed realization of knotted phases in the bead-spring model raises the question why they were not noticed by Seaton

et al. [12] with their bead-spring model. The details of this model are discussed in the Appendix. The main difference between

their bead-spring model and the model we used is the consideration of the bond energy Eb. In their case the bonded monomers

in addition to a FENE potential also interact via a LJ kind of potential. This makes the effective spring constant that takes care
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FIG. 10. Same as Fig. 9 but for the bead-spring model with N = 14.

of the elasticity of the bonds much larger, as is shown via the harmonic approximation in the Appendix. Instead of simulating

exactly the model of Seaton et al. [12] we choose to simulate our bead-spring model with a spring constant K = 297.5 in Eq. (3)

to be equal to the effective spring constant of the bonds Keff given in Eq. (A.10).

The results for the bead-spring model with K = 297.5 in the FENE bonds for different choices of the ratio rb/rmin = 0.891,

1.0, and 1.26 are presented in Fig. 11. In this case also, one can clearly see that for rb/rmin = 1.0 the knotted phase region is

very narrow on the (T, κ) plane and that it is significantly wider for the cases when rb/rmin = 0.891 and 1.26. This again is in

accordance with our speculations. Thus they are qualitatively similar to the results presented in Fig. 10 where K = 40. However,

closer inspection reveals that the ranges of κ over which one sees the knotted phase are [2.4, 3.8] and [1.2, 2.4], respectively,
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FIG. 11. Phase diagram in (T, κ) plane with the knot parameter 〈D〉 as the order parameter for a semiflexible polymer with different choices of

the ratio rb/rmin using a bead-spring model with the spring constant K = 297.5. The results are for a chain length N = 14.

for rb/rmin = 0.891 and 1.26, which are smaller than the corresponding ranges for the bead-spring model with K = 40. On

the contrary, these ranges almost coincide with those we found for the respective values of rb/rmin using the bead-stick model

presented in Fig. 9. Such a good match with the bead-stick model shows that using a high value K = 297.5 makes the FENE

bonds in the bead-spring model almost as rigid as in the bead-stick case. The realization of a knotted phase in Fig. 11 points to the

fact that one would have also observed a knotted phase in the model used by Seaton et al. had they used the ratio rb/rmin = 0.891

and 1.26. In their study [12] they used rb/rmin = 1.0 for which anyway we expect the knotted region to be very narrow. Also,

the lowest temperature down to which they simulated was T = 0.03, for which the chance of detecting the stable knotted phase

is really poor. To substantiate our finding, as a step further we simulated even a longer chain (N = 28) using our bead-spring

model with K = 297.5 and rb/rmin = 1.0 (see the Appendix) which in principle is equivalent to the bead-spring model of Ref.

[12]. There also we do not find any stable knotted phase.

C. Richer knotted phase behavior for longer polymers

So far all the results we have presented are for a polymer of length N = 14. There we essentially found the presence of a

specific knot type 31, the trefoil knot with D = 9.05462. This observation of a single knot type is due to the short length which

does not allow too many crossings. As expected if the length increases the possibility of having many crossings increases which

should give rise to a rich variety of knotted structures. It is also quite intuitive that as the length of the polymer increases the

chances of forming knots will be higher. This can be compared with the ease with which one can tie a knot if the given thread is

longer. This could explain the formation of the knots which are formed by chance in the globular or coiled phase. Nevertheless,
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FIG. 12. Phase diagram in (T, κ) plane with the knot parameter 〈D〉 as the order parameter for a semiflexible polymer of length N = 28 using

(a) the bead-stick model and (b) the bead-spring model. For both models results for two choices of the ratio rb/rmin = 0.891 and 1.0 are

presented.

we expect that the likelihood of finding low-temperature stable knotted phases will also increase.

To investigate the existence of knots in longer chains we now simulate a polymer of length N = 28 for both models. This

choice of N can be compared with some recent experimental and numerical studies of synthetic polymers adsorbed on a surface

in vacuum [57, 58]. For each case we pick two different values of rb/rmin = 0.891 and 1.0, for which we speculated to have

respectively presence and absence (or a very narrow range) of stable knotted phases. The corresponding phase diagram for the

existence of knots are shown in Figs. 12(a) and (b), respectively, for the bead-stick and the bead-spring model. As expected for

the ratio rb/rmin = 0.891 both models exhibit a stable knotted phase over a wide range of low to intermediate bending stiffnesses

κ. For the case with rb/rmin = 1.0, however, both models show a much smaller window for the knotted phase as observed for the

N = 14 case.

From the range over which the estimated knot parameter 〈D〉 varies for both models it is clear that there exist different knot

types indicating a much richer knotted phase behavior compared to the N = 14 case. However, it is not possible to have an

idea about the different types from these phase diagrams. Hence, we have calculated the probability of occurrence of specific

knot types within the knotted phase for the case of rb/rmin = 0.891. We have examined the knotted structures for both models

and found that the maximum number of crossing observed was 8. Thus, at first we made a list of D values of all the possible

knots which have 8 or less crossings. Using this list (see Table I) we now measure the probability of occurrence of specific

knot types from our time series data of the knot parameter D. These probabilities for a fixed temperature T = 0.01 and for

six different κ within the knotted phase in both models are plotted in Figs. 13(a) and (b), respectively for the two models. For

the bead-stick model it shows that for lower values of κ < 4 different knotted structures 31, 41, 51, and 819 are mixed with the

unknotted structures. For relatively larger values, viz., κ = 4 − 8 the unknotted structures vanish and 819 and 51 emerge as the

stable structures, respectively. These plots not only confirm the presence of a rich variety of knots for the bead-stick model with

N = 28 but also indicate that the stable knotted phase lies between κ = 4 and κ = 8.

The corresponding plots for the bead-spring model in Fig. 13(b) also show a somewhat similar picture. Noticeable again is

the fact that the unknotted phase vanishes at a much lower κ = 2 compared to the bead-stick model and continues to remain

so until κ = 10 indicating a much wider range of stable knotted phases, a fact also encountered for the N = 14 polymer. The

other noticeable feature is that for the bead-spring model the stable knotted structure is 51 which has less crossing than the

corresponding 819 knot for the bead-stick model. This again could be attributed to the presence of EFENE in the nonbonded

energy. The presence of the FENE bonds allows the polymers to orient its bonds appropriately and thereby lowering the energy.

However, for bead-stick polymers since this is not possible they achieve it by making additional crossings which gives rise to

more knotted structures like 819.
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FIG. 13. Probabilities of occurrence of different knot types at T = 0.01 and at different bending stiffness κ for the two models. The results are

for a polymer of length N = 28 with the ratio rb/rmin = 0.891.

IV. CONCLUSION

We have presented results on the existence of stable knotted phases in semiflexible polymers via extensive replica exchange

Monte Carlo simulations of a bead-stick and a bead-spring homopolymer model covering the full range of the bending stiffness

κ via which one can tune the polymer from a completely flexible to a stiff one. We speculate that the existence of a knotted phase

is dependent on the choice of the ratio rb/rmin between the equilibrium bond length rb and the distance rmin for the maximum

nonbonded contact. Via simple qualitative arguments based on the interplay of the energy gain due to nonbonded contacts and

the bending energy penalty, it can be understood that for cases where rb/rmin , 1 the knotted structures are more favorable than

the alternative bent structures. This was strongly supported by our simulation results for different choices of rb/rmin for both

models.

When the results of the two models are compared, the knotted phase in the bead-spring model is much wider than the corre-

sponding range in the bead-stick model. In this regard our results for the bead-spring model can be compared with the results of

Seaton et al. [12] where they do not mention any existence of knotted structures. This could be due to the use of rb/rmin = 1.0
coupled with the fact they did not perform their simulation at low enough temperature compared to ours. Similarly, in a study

of semiflexible polymer adsorbed on surface no knots were found [20]. This could also be attributed to the fact there also

rb/rmin = 1.0 and the lowest simulation temperature (T = 0.1) was much higher than the one where we found the knotted phase

in this work. Thus, it would be worth revisiting this issue on the existence of stable knotted structures in polymers adsorbed on

surfaces by tuning rb/rmin in the model used. This we take as future endevour.

In conclusion, our results point out that knots are generic phases for semiflexible homopolymers except for a very narrow

range of choice of the ratio rb/rmin close to unity. This is in contrast with the corresponding results on the existence of knots

in proteins which are typically modeled as semiflexible heteropolymer. A deeper insight into heteropolymers reveal that this

can be plausible due to the following fact. Hompolymers can have substantial energy gain via nonbonded contacts happening

due to several crossings or under passing present in a knotted structure. However, for a heteropolymer such energy gain is not

guaranteed due to the presence of specific hydrophobic and polar sequences. From this point of view it would also be worth

exploring the sequence dependent formation of knotted structures in semiflexible heteropolymer which in turn will throw some

light on the existence of knots in proteins.

ACKNOWLEDGMENTS

We thank Stefan Schnabel for useful discussion. This project was funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) under Grant Nos. JA 483/33-1 and 189 853 844–SFB/TRR 102 (project B04), and the Deutsch-

Französische Hochschule (DFH-UFA) through the Doctoral College “L4” under Grant No. CDFA-02-07. It was further supported

by the EU COST programme “EUTOPIA” under Grant No. CA17139.



17

Appendix: Harmonic approximation of the potentials used in Ref. [12]

The semiflexible polymer model used by Seaton et al. [11, 12] is a bead-spring model where the nonbonded interaction is

given by a Lennard-Jones (LJ) potential and the bending energy penalty was constructed in the same fashion as we did. The

main difference is the bond energy. Following we describe the form of potentials they used and subsequently do the harmonic

approximation of their bond energy. The nonbonded potential among the monomers is given by

Enb(r) =















ELJ(r) − ELJ(rc) r < rc ,

0 otherwise .
(A.1)

where

ELJ(r) = ǫ

[

(

σ

r

)12

− 2

(

σ

r

)6
]

(A.2)

and rc = 3σ [11]. Here, they choose σ = 1 and ǫ = 1 such that rmin = 1 with ELJ(rmin) = −ǫ = −1 and ELJ(r) in (A.1) agrees

exactly with our form for ELJ(r) in (2) with σ = 2−1/6 albeit the cut-off distance rc = 3 is different from our rc = 2.5σ ≈ 2.23.

The bonded interaction between two monomers consists of a combination of a finitely extensible nonlinear elastic (FENE)

and the LJ potential described above,

Eb(r) =















EFENE(r) + ELJ(r) 0 < r ≤ R0,

0 otherwise.
(A.3)

The LJ potential in (A.3) has the same form as in (A.1) but the values of the parameters are different which will be discussed

below. Here, the FENE potential has the form [59]

EFENE(r) = −
K

2
R2

0ln















1 −

(

r

R0

)2














, (A.4)

where R0 is the finite extensibility and K is the stiffness constant. In dimensionless units, the values were taken as R0 = 1.2 and

K = 2 by Seaton et al.. Note that their choice of EFENE is different from EFENE we have chosen for our simulations as given in

Eq. (3).

They determined the parameters of ELJ in such a way that Eb is minimum at bond length r = rb = 1. Thus, setting the first

derivative of this bonded potential
(

dEb

dr

)

= 0 gives

12ǫ

rb















(

σ

rb

)12

−

(

σ

rb

)6














=
Krb

1 − (rb/R0)2
. (A.5)

Now solving this equation with rb = 1 gives us a dependence of σ on ǫ as (using R0 = 1.2 and K = 2),

σ6
=

1

2















1 +

√

1 +
24

11ǫ















. (A.6)

By setting ǫ = 2 [60] in this equation, one gets σ ≈ 1.03412.

In order to obtain the effective spring constant for the bonded potential, we need to do a Taylor series expansion of Eb(r)

around its minimum (rb) and keep the terms up to the second order derivative. The expansion gives

Eb(r) = Eb(rb) + (r − rb)
dEb

dr

∣

∣

∣

∣

∣

r=rb

+
(r − rb)2

2

d2Eb

dr2

∣

∣

∣

∣

∣

∣

r=rb

+ . . . . (A.7)

Keeping up to the harmonic approximation (i.e., up to the second derivative) and shifting Eb(r) by Eb(rb) we get,

Eb(r) =
Keff

2
(r − rb)2, (A.8)

where

Keff =
d2ELJ

dr2

∣

∣

∣

∣

∣

∣

r=rb

+
d2EFENE

dr2

∣

∣

∣

∣

∣

∣

r=rb

. (A.9)



18

FIG. 14. Comparison of the different bond potential employed by Seaton et al. [11, 12], a simple harmonic potential with spring constant

Keff = 297.5, and the FENE potential used by us as in Eq. (3) with K = Keff .

Now using the second-order derivatives of both the terms for the bonded potential, we get Keff (for rb = 1) as,

Keff = 12ǫ
[

13σ12 − 7σ6
]

+
KR2

0

(R2
0
− 1)2

(R2
0 + 1). (A.10)

Inserting the values of the parameters (ǫ = 2, σ = 1.03412, R0 = 1.2 and K = 2) in the above equation gives the effective

value of the spring constant as Keff ≈ 297.5. As can be seen in Fig. 14, for small variations of the bond length the agreement is

excellent.

Using K = Keff in our bead-spring model with rb/rmin = 1.0 we now perform replica exchange simulations. The results are

FIG. 15. (a) Complete phase diagram for a semiflexible polymer of length N = 28 using the bead-spring model with rb/rmin = 1.0 and

K = Keff = 297.5. The surface plot is generated using the estimated squared radius of gyration 〈R2
g〉. The labeled phases stand for the

following: E for elongated; R for rodlike; F for frozen; Dn for bent phases with n number of segments; EL for elongated loop; EH for hairpin.

(b) The corresponding phase diagram using the knot parameter 〈D〉 as the order parameter.
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summarized in Fig. 15 for a polymer with a choice of N = 28, consistent with the largest choice we made in the main text.

Nevertheless, N = 28 is almost as long as in Ref. [12] where N = 30 was chosen. The phase diagram in Fig. 15(a) shows that

we also observe the same variety of conformations as was obtained in Ref. [12], that includes frozen (F), extended coil (E), bent

structures (D5, D4, D3), elongated loop (EL), hairpin (EH), and rod-like (R) structures. On the other hand, the phase diagram

with the estimated knot parameter 〈D〉 as the order parameter in Fig. 15(b) shows no stable knotted phase. The blue region in

there is only an indication of mixed phases that constitute unknotted frozen structures and knotted structures which we confirmed

from the corresponding time series of D.
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