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We study the motion of dispersed nanoprobes in entangled active-passive polymer mixtures. By
comparing the two architectures of linear vs. unconcatenated and unknotted circular polymers, we
demonstrate that novel, rich physics emerge. For both polymer architectures, nanoprobes of size
smaller than the entanglement threshold of the solution move faster as activity is increased and more
energy is pumped in the system. For larger nanoprobes, a surprising phenomenon occurs: while
in linear solutions they move qualitatively as before, in active-passive ring solutions nanoprobes
decelerate with respect to the purely passive conditions. We rationalize this effect in terms of the
non-equilibrium, topology-dependent association (clustering) of nanoprobes to the cold component
of the ring mixture reminiscent of the recently discovered [Weber et al., Phys. Rev. Lett. 116,
058301 (2016)] phase separation in scalar active-passive mixtures. We conclude with a potential
connection to the microrheology of the chromatin in the nuclei of the cells.

Introduction – In recent years, micro- and nanorhe-
ology have emerged as promising tools to probe, non-
invasively, the viscoelastic properties of complex colloidal
systems, polymer materials and polymer solutions [1, 2],
even the interior of the cells [3], through monitoring
the time dependence of the mean-square displacement
of tagged nanoprobes. In fact, as confirmed by recent
numerical work as well as theoretical considerations [4–
7], the motion of nanoprobes, especially in polymer so-
lutions, results from the interplay between the chemo-
physical properties of the chains (density and flexibil-
ity) and the “unavoidable” topological constraints (TC’s).
Rooted in the mutual uncrossability between nearby
chains TC’s (a.k.a. entanglements) force polymers to
slide past each other and determine [8–11] the charac-
teristic slow viscoelastic relaxation of the compound.

Recently, a lot of effort has been dedicated to inves-
tigate systems of so called active polymers [12], namely
polymers which are maintained in a stationary, out-of-
equilibrium state owing to the constant influx of some
form of external energy into the system [12–19]. As
in more general active systems [20, 21], in active poly-
mers non-trivial physical phenomena arise from activity-
induced shift to otherwise inaccessible “corners” of the
phase space, hence the applicability of traditional notions
from equilibrium thermodynamics is neither expected nor
it proves to be adequate [20].

Biological polymers are probably the best examples
in this regard: for instance, the protein-DNA chromatin
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fiber in the nucleus of any living cell is systematically sub-
ject to processes like transcription, remodelling, repairing
or loop extrusion [22–24] which require free energy con-
sumption and dissipation at the fiber level and induce
stronger-than-thermal velocity fluctuations [13, 25]. Of
course, all these effects act synergistically with all the
afore-mentioned polymer features, especially the built-in
long lasting TC’s which are held [26–31] responsible for
spontaneous chromatin segregation into loopy, compact
(i.e., “territorial” [32]) conformations.

Despite being a highly promising tool to probe prop-
erties of emerging active polymeric materials, no system-
atic study of nanoprobe motion in this context has been
attempted.

Motivated by these considerations, in this work we em-
ploy extensive molecular dynamics computer simulations
of the two-diffusivities dynamic particle model first in-
troduced in Refs. [13, 33] and monitor the kinetic prop-
erties of nanoprobes dispersed in polymer solutions at
high polymer concentrations and in non-equilibrium con-
ditions. In particular, we concentrate on three main
aspects of the problem which, at present, remain com-
pletely unexplored: (i) the role of nanoprobe size, (ii)
the role of monomer diffusivities and (iii) most impor-
tantly, the role of chain topology. With regard to the
latter, for (a) their “historical” relevance [8–11] as well as
(b) their connection [26–31] to the physics of DNA inside
the cells, we restrict our discussion here to the simplest
chain topologies, namely: entangled linear chains and
unknotted and unconcatenated ring polymers in concen-
trated solutions. Similarly to recent work [4–7] where
nanoprobes move is purely passive polymer media, we
show that nanoprobe diffusivity depends in quite a non-
trivial way on chain architecture, but in the present non-
equilibrium situation the physics is way more subtle and
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richer: in particular, probing the active-passive polymer
mixtures with nanoprobes of different sizes can not only
inform on the polymer topology, but also on the level of
activity, local architecture and demixing tendencies.

Model and methods – Polymers in solution are
modeled according to the generalized Kremer-Grest-
like [34] bead-spring polymer model considered in pre-
vious works [27, 29, 35], and the solutions are accompa-
nied by nanoprobes of different diameters. Nanoprobe-
nanoprobe and nanoprobe-polymer purely repulsive in-
teractions are modeled by the phenomenological expres-
sions introduced by Everaers and Ejtehadi [36] and em-
ployed in previous works [5, 37–39]. A more complete
account of these potentials is presented in the Supple-
mental Material (SM).

We have simulated polymer solutions consisting of
M = 80 linear chains or rings, where each polymer is
made of N = 500 monomers of diameter σ. Each solution
is complemented by the additional presence of Nnp = 100
nanoprobes of variable diameters d/σ = 2.5, 5.0 and 7.5,
as specified in Sec. S1 A in SM. As explained in detail
in Ref. [38], these values produce an efficient exploration
across the relevant length and time scales of the poly-
mer solutions (see Table S1 in SM), from ≈ ξ (the so
called correlation length [10], marking the transition from
solvent- to polymer-dominated physics) to ≈ 2dT (the so
called tube diameter [9], marking the next transition to
topology-dominated physics).

We study the static and kinetic properties of poly-
mer chains and nanoprobes using fixed-volume molecu-
lar dynamics simulations with implicit solvent and peri-
odic boundary conditions. By defining V the volume of
the simulation box accessible to the polymers, the overall
monomer density of the system ρ ≡ (NM)/V is fixed
to 0.3/σ3. This set-up is consistent with the one stud-
ied in Ref. [38] and we refer the reader to that publi-
cation and to SM for additional details. MD simula-
tions were performed using the LAMMPS package [40]
using a velocity Verlet algorithm, in which all beads
and nanoprobes are weakly coupled to a Langevin heat
bath with a local damping constant Γ = 0.5τ−1

MD where

τMD = σ(m/ε)1/2 is the MD Lennard-Jones time unit, ε is
the energy unit and m is the conventional mass unit for
both monomers and nanoprobes. The integration time
step is τint = 0.006 τMD. The systems were run long
enough for the chains static properties to reach a steady
state and to move more than their own size (see Fig. S1
in SM).

Similarly to the protocol by Smrek and Kremer [13],
M/2 = 40 chains of our systems are driven out-of-
equilibrium by coupling their monomers to a “hotter”
thermostat with temperature Th > Tc = ε/kB (see
Sec. S1 A in SM for the definition of energy scales) where
Tc is the temperature of the thermostat coupled to the re-
maining chains: we name the polymers in the first group
“hot” or “active” and the ones in the second “cold” or
“passive”.

By defining the “reduced” temperature gap ∆t ≡
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FIG. 1. Nanoprobe mean-square displacement (Eq. (1)) per
unit time, 〈∆r2

np(τ)〉/τ . Results for increasing nanoprobe di-
ameters d (from top to bottom) and for linear chains (l.h.s.
panels) vs. rings (r.h.s. panels). Different colors are for dif-
ferent reduced temperature gaps ∆t (see caption), whose in-
creasing in magnitude is indicated by the corresponding ar-
row direction. All systems have reached the proper diffusive
regime as manifested by corresponding plateaus.

Th−Tc

Tc
= Th

Tc
− 1, we simulate systems with Th/Tc =

1.5, 2.0 or ∆t = 0.5, 1.0. To gain physical insight, we
compare the physical properties of these systems to the
purely passive counterparts with homogeneous tempera-
ture Th = Tc = T = ε/kB or ∆t = 0.
Results – We characterize the stochastic motion of the

ensemble of Nnp nanoprobes in each polymer solution by
introducing the mean-square displacement as a function
of the lag-time τ ,

〈∆r2
np(τ)〉 ≡ 1

Nnp

Nnp∑

i=1

∆r2
np,i(τ) (1)

where

∆r2
np,i(τ) ≡ ∆r2

np,i(T , τ)
∣∣
T→∞

=
1

T − τ

∫ T −τ

0

(~ri(t+ τ)− ~ri(t))2
dt

∣∣∣∣∣
T→∞

(2)
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is the time average mean-square displacement for the i-
th nanoprobe of spatial coordinates ~ri(t) at time t (see
Sec. S1 C in SM for additional details on these quanti-
ties).

The behaviors of 〈∆r2
np(τ)〉 in solutions of linear chains

and ring polymers, for different reduced temperatures ∆t
and different nanoprobe diameters d are summarized in
Fig. 1. By comparing d to the tube diameter dT ≈ 4.3σ
of the fully passive solutions (see Table S1 in SM), we
may clearly identify two regimes:

(i) d . dT , Fig. 1, top and middle row. Here the two
thermostats produce similar effects regardless of the poly-
mer architecture, simply the nanoprobes display a higher
effective temperature with respect to the fully passive
case (Table S2 in SM) and hence diffuse faster. At the
same time nanoprobe diffusion in ring solutions is always
faster than in linear ones, similarly to previous [5, 6, 38]
reports for passive systems. As a marginal yet less in-
tuitive effect, after subtracting the effect of the ther-
mal speed-up (see Fig. S2 in SM for ratios of nanoprobe
mean-square displacements in ring vs. linear solutions at
fixed ∆t) we isolate a slow-down of the nanoprobes at
increasing ∆t: without going into the details of it, we
are tempted to ascribe this effect to the dependence of
entanglements on chain flexibility (see our comment in
the caption of Fig. S2 in SM).

(ii) d & dT , Fig. 1, bottom row. The situation for the
largest nanoprobes is quite different: while still agreeing
with the reported [5, 6, 38] observation that in passive
(∆t = 0) systems nanoprobes move faster in ring solu-
tions than in solutions of linear chains (here ≈ 100 times
faster in the free diffusion regime), this discrepancy is
significantly reduced upon driving the corresponding sys-
tems out of equilibrium (orange and red symbols). The
diffusion in ring solutions drops more than one order of
magnitude while increasing of ≈ 5 times in solutions of
linear chains with increasing temperature gap. We dis-
cuss these results in terms of the density fluctuations
around the large nanoprobes and consider separately the
three radial pair correlation functions, gnn(r), gcnm(r) and
ghnm(r), for nanoprobe vs. nanoprobe and nanoprobes
vs. (cold/hot) monomers. In linear solutions (Fig. 2,
l.h.s. panels) large nanoprobes cluster at any tempera-
ture difference (including the equilibrium case ∆t = 0)
in contrast to rings. This entropic effect, consequent on
the different chain architecture and whose details will be
explored elsewhere, naturally slows down the diffusion
owing to steric effects. However, as the ∆t increases,
the effective temperature of the nanoprobes grows due
to the heat transfer in the system, opposing clustering
and letting nanoprobes to ‘fluidize’ (as manifested by
the progressive levelling of the secondary peaks of gnn(r)
with increasing ∆t and the corresponding increasing of
gcnm(r)). These effects are also visible in the two config-
urations for ∆t = 0.0 and ∆t = 1.0 shown in the bottom
l.h.s. panel in Fig. 2. In contrast (Fig. 2, r.h.s. panels)
to the linear case, nanoprobes are well interspersed in
passive (∆t = 0) ring solutions while they exhibit clus-
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FIG. 2. Nanoprobe-nanoprobe (gnn(r)) and nanoprobe-
monomer (gc

nm(r) and gh
nm(r)) pair correlation functions for

nanoprobes of diameter d/σ = 7.5. The superscripts indi-
cate that the functions have been evaluated by separating
the contributions of monomers coupled to the cold (c) or
the hot (h) thermostat. Color code is as in Fig. 1. The in-
sets in the bottom-row panels show typical configurations for
∆t = 0.0 and ∆t = 1.0 with cold/hot chains in blue/red and
nanoprobes in yellow.

tering at ∆t > 0. This clustering (evident in the two
conformations for ∆t = 0.0 and ∆t = 1.0 in the bot-
tom r.h.s. panel in Fig. 2) is driven by non-equilibrium
phase separation [13, 14, 33, 41] between the hot rings
and the nanoprobes (see the corresponding depletion hole
in ghnm(r)) and is confirmed (see Table S2 in SM) by the
nanoprobe lower effective temperature in rings in com-
parison to linear polymers. As argued recently in [14],
in non-equilibrium phase separation the unlike species
minimize contact interface in order to decrease the to-
tal entropy production rate in the system. Notice that,
consistently with the other results for smaller nanoprobes
(Fig. 1), such non-equilibrium effects are considerably re-
duced (if not absent at all) when d . dT (see Fig. S5 in
SM for a detailed comparison).

These two points explain the contrasting trends in
nanoprobe diffusion suspended in rings in comparison to
linear chains. However, as seen in Figs. S3 and S4 in SM,
the two populations of linear chains and rings react to
non-equilibrium conditions quite differently: compared
to their passive counterparts, linear chains (both cold
and hot) shrink while only hot rings do that and cold
ones swell. The shrinking arises from effectively higher
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FIG. 3. Mean-square displacement (Eq. (1)) of large
nanoprobes (d = 7.5σ) in ring solutions and per unit time,
〈∆r2

np(τ)〉/τ : comparison of results for active-passive mix-
tures (∆t > 0, orange and red symbols), fully passive solu-
tions with homogeneous polymer stiffness (∆t = 0, blue sym-
bols) and fully passive solutions with two polymer stiffnesses
(gray symbols). (Inset) Corresponding ratios, 〈R2

g〉c/〈R2
g〉h,

of mean-square gyration radii (see Sec. S1 C in SM for defini-
tions) of ring polymers coupled to cold/hot thermostats, error
bars are for standard deviations of the mean. The grey strip
corresponds to the ratio calculated for “stiffer vs. less stiff”
polymers in the fully passive model with two chain flexibilities
(see main text and Sec. S1 B in SM for details).

temperature and hence flexibility. In linear chains, where
no permanent TC’s exist this leads to shrinking of all
chains as also cold ones have higher effective temperature
than in equilibrium. The contrasting behavior of rings re-
sults from the permanent TC’s: unknotted rings oppose
shrinking as that would lead to increase of knotted states
prohibited by the TC’s. As shown below on equivalent
equilibrium systems, the competition of the entropy loss
from TC and the entropy gain from shrinking of more
flexible chains yields the contrasting behavior of rings. It
is legitimate to suspect then that this “asymmetry” of
the single-chain size in the two populations might trigger
the nanoprobe dynamic behavior seen in Fig. 1.

That this is not sufficient, i.e. that genuine non-
equilibrium conditions are at the basis of the reported
nanoprobe dynamics, can be demonstrated by the follow-
ing argument. We perform an additional simulation for
polymer solutions with large (d/σ = 7.5) nanoprobes and
under purely passive conditions and by fixing the stiffness
of 50% of the ring population to half of the original value
(see Sec. S1 B in SM for details). Under these conditions,
the average single-chain size is different for the two popu-
lations and matches the observed swelling of cold vs. hot
rings in active-passive mixtures for ∆t = 1.0 (see inset
in Fig. 3, showing the ratios of the steady-state polymer
mean-square gyration radii, 〈R2

g〉, for the two polymer
populations). By comparing the nanoprobe mean-square
displacement per unit time, 〈∆r2

np(τ)〉/τ , between this
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FIG. 4. Probability distribution functions, P (τ ; θ) (Eq. (3)),
of the angle θ between oriented spatial displacements of
nanoprobes of diameter d/σ = 7.5 and lag-time τ/τMD =
6 · 105. Color code is as in the rest of the paper, with dif-
ferent colors corresponding to reduced temperatures ∆t =
0.0, 0.5, 1.0. The black solid line is the function P (τ ; θ) =
1
2

sin θ for randomly oriented vectors.

case and the former set-up’s (see Fig. 3, main panel) we
see that the swelling observed in half of the chain popu-
lation does not account for the nanoprobe slowdown seen
in active-passive mixtures.

Dynamic correlations in the motion of single
nanoprobes can be characterized by introducing the
correlation function of the angle θ between oriented
nanoprobe spatial displacements separated by lag-time
τ [37–39]:

P (τ ; θ) =
〈
θ − cos−1(~u(t+ τ) · ~u(t))

〉
(3)

where ~u(t) = (~r(t + τ) − ~r(t))/|~r(t + τ) − ~r(t)| is the
(normalized) vector spatial displacement of the generic
nanoprobe from time t to t+τ and the brackets mean the
same ensemble average defined for Eq. (1). For randomly
oriented displacements P (τ ; θ) = 1

2 sin θ, any deviation
from the null distribution being indicative of spatial cor-
relations. The distributions P (τ ; θ) at a large lag-time
τ (i.e., when the nanoprobes are already diffusive, see
Fig. 3) are shown in Fig. 4 for large nanoprobes. In both
linear and ring solutions, nanoprobes exhibit correlations
favoring backward displacements [5], but with contrast-
ing dependence on the temperature gap. While in linear
solutions the nanoprobes become more and more unbi-
ased at increasing ∆t, the nanoprobes in ring solutions
are unbiased in passive melts [5] while displaying direc-
tional correlations at high ∆t, consistent with the pro-
posed explanation of the diffusive data shown in Fig. 1.
Instead, smaller nanoprobes display always unbiased dis-
tributions at large lag-times (see Fig. S6 in SM showing
examples of distributions for all nanoprobe diameters and
shorter lag-times). Consistent with a recent study [38]
on nanoprobe dynamics in entangled passive polymer
melts, the presence of such correlations implies (i) that
the motion of nanoprobes is spatially heterogeneous with
(see Eqs. (1) and (2) for definitions) limT→∞∆r2

np(T ; τ)
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not converging, in general, to 〈∆r2
np(τ)〉 (see Fig. S7

in SM) and (ii) that the (so called [42–44] van-Hove,
see Sec. S1 C 2 in SM) distribution functions, P (τ ; ∆x),
of the Cartesian components of generic nanoprobes dis-
placements ~r(τ + t) − ~r(t) from time t to t + ∆t exhibit
characteristic non-Gaussian heavy tails (see Fig. S8 in
SM).

Discussion and conclusions – Active matter [21] and, in
particular, active polymers [12] are an emergent research
field in modern soft matter. By employing the two-
diffusivities dynamic model introduced and studied in the
recent works [13, 33, 41, 45], we have shown that the way
nanoprobes diffuse in active-passive polymer mixtures
depend on the architecture of the chains. In linear solu-
tions activity disrupts the clustering of nanoprobes seen
under purely passive conditions, while in ring solutions
the tendency is quite the opposite with nanoprobes sepa-
rating away from the active polymer component (Fig. 2).
Overall, this leads to the “counterintuitive” effect that
activity accelerates nanoprobes in linear solutions but de-
celerates them in ring ones.

Following works [13, 14], we calculate the “temperature
asymmetry” order parameters (see Table S2 in SM) of the
hot chains with respect to the nanoprobes (χhnp) and the

cold chains (χhc ). We find that χhnp(ring) > χcnp(linear)
which is indeed consistent [13] with nanoprobe clustering
and separating from the active ring polymer component.
At the same time, in spite of the fact that χhnp < χhc ,
we report that we do not find evidence for phase sepa-
ration of polymer chains as reported in [13, 14, 17]: this
may be due, in primis, to the fact that the polymer sys-
tems used here are more dilute than the ones employed
in those previous work. Nonetheless, we see that activity

has still some non trivial effect on the chains based, once
again, on architecture: both linear chain populations re-
duce their size as a consequence of the activity, while hot
rings crumple and cold ones swell (Fig. S3 in SM).

We conclude with a possible connection to the bio-
physics of interphase chromosomes. It has been hy-
pothesized [27, 31] that the microscopic topological state
of chromatin (the linear fiber made of DNA and pro-
teins which constitute the primary component of eu-
karyotic chromosomes [46]) in the cell nucleus is akin
to a melt of rings. Differently from standard polymer
melts and because of undergoing energy-consuming pro-
cesses like, for instance, loop extrusion [23, 24] or tran-
scription [47], a certain fraction of the chromatin in-
side the cell is constantly maintained out of equilib-
rium [48]. Our results demonstrate that the motion of
nanoprobes of diameter of the order of the chromatin
mesh size (≈ 300nm [27, 37]) or larger is deeply in-
fluenced by the thermal state of the chromatin fiber:
in a typical [3] microrheology experiment performed in
the nucleus, nanoprobes are expected to separate from
the more active chromatin regions by forming clusters
within the inactive ones. Last but not least our results
suggest that chromatin activity, and not only chromatin
conformation as usually [49–51] pointed out, is arguably
controlling the dynamics of DNA-regulatory proteins to-
wards their target sequences in the cell nucleus.
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S1. MODEL AND METHODS: DETAILS

In this Section, we give additional details related to the
polymer/nanoprobe model used in this work (Sec. S1 A)
and the computational effort required for the simulations
(Sec. S1 B). Then, we conclude (Sec. S1 C) by describing
the mathematical details beyond the calculation of some
observables considered in this work.

A. Computational model for polymers and
nanoprobes

Polymer-polymer interactions consist of the following
three terms:

(i) The potential energy term accounting for
monomer-monomer excluded volume interac-
tions, which is expressed by the shifted and
truncated Lennard-Jones (LJ) function:

ULJ(r) =

{
4ε
[(
σ
r

)12 −
(
σ
r

)6
+ 1

4

]
r ≤ rc

0 r > rc
. (S1)

Here, r is the spatial distance between monomers
and the chosen cut-off distance rc/σ = 21/6 ensures
that only purely repulsive monomer-monomer in-
teractions are effectively taken into account. The
parameters ε and σ fix the energy and length scales
units, respectively.

(ii) The bond potential between monomers which are
nearest-neighbours along the same polymer chain,
which is expressed by the so called finitely extensi-
ble non-linear elastic potential (FENE):

UFENE(r) =

{
− 1

2 κFENER
2
0 log

(
1− (r/R0)

2
)

r ≤ R0

∞ r > R0

.

(S2)
Here, κFENE σ

2/ε = 30 is the spring constant and
R0/σ = 1.5 is the maximum extension of the elastic
FENE bond.

(iii) The bending energy term controlling polymer stiff-
ness, which is expressed by the following function:

Ubend(θ) = κbend

(
1− (~ri+1 − ~ri) · (~ri − ~ri−1)

|~ri+1 − ~ri| |~ri − ~ri−1|

)
. (S3)

Here, ~ri is the coordinate of the i-th monomer along
each given chain, numbered from one of the ter-
mini (for linear chains) or from an arbitrarily cho-
sen monomer (for rings). In the latter case, peri-
odic boundary conditions along the ring are tacitly
assumed. The bending constant κbend/ε = 5, corre-
sponding to a Kuhn [9, 10] segment `K/σ = 10 [27].

The polymer solutions are accompanied by the pres-
ence of nanoprobes of different diameters. In order to
model the nanoprobe-nanoprobe and nanoprobe-polymer
interactions, we have resorted to the phenomenological
expressions introduced by Everaers and Ejtehadi [36] and
employed in previous works [5, 37–39]. In particular:

(iv) Nanoprobe-nanoprobe (nn) interactions are de-
scribed by the expression:

{
Unn(r) = UAnn(r) + URnn(r) r ≤ rnn

0 r > rnn
. (S4)

UAnn(r) is the attractive contribution given by

UAnn(r) = −Ann

6

[
2a2

r2 − 4a2
+

2a2

r2
+ ln

(
r2 − 4a2

r2

)]
,

(S5)
while UBnn(r) is the repulsive term

UBnn(r) =
Ann

37800

σ6

r

[
r2 − 14ar + 54a2

(r − 2a)
7 +

r2 + 14ar + 54a2

(r + 2a)
7 − 2

r2 − 30a2

r7

]
. (S6)

Here, Ann/ε = 39.478 and we consider non-sticky,
athermal probe particles with diameters d/σ ≡
2a/σ = 2.5, 5.0, 7.5 corresponding to fix rnn/σ =
3.08, 5.60, 8.08. As explained in great detail in
Ref. [38] these nanoprobe diameters have been cho-
sen because (a) they are larger than the correlation
length [10] ξ/σ ≈ 1.4 of the polymer solution while,
at the same time, (b) they are able to span the en-
tire range from below to above the estimated value
dT /σ ≈ 4.3 of the tube diameter (see Table S1 for an
overview of the physical property of the polymer so-
lutions employed here). In this way, (a) polymer ef-
fects on nanoprobe displacement dominate [6] over
thermal effects caused by the solvent and (b) the
role of entanglements on nanoprobe motion can be
explored more systematically.
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Quantity Value

Correlation length, ξ/σ 1.4
Entanglement length, Le/σ 11.0

Tube diameter, dT /σ 4.3
Entanglement time, τe/τMD 490.0

TABLE S1. List of relevant length and time scales describing
the microscopic properties of the polymer solution: (i) The
correlation length, ξ, is defined as the average spatial dis-
tance from a monomer on one chain to the nearest monomer
on another chain [10] and it is a measure of the packing of
the solution; (ii) The entanglement length, Le, can be defined
as the contour length along a single chain which spans be-
tween close-by entanglement points in the solution [52, 53];
(iii) The tube diameter, dT ≈

√
`KLe, measures the average

span in length between close entanglement points along the
same chain [52, 53]; (iv) The entanglement time, τe, is the
average time for a monomer to explore by random motion a
portion of the solution of linear size = dT [52, 53].

(v) Finally, the monomer-nanoprobe (mn) interaction
is accounted for by:

{
Umn(r) = 2a3σ3Amn

9(a2−r2)3

[
1− 5a6+45a4r2+63a2r4+15r6

15(a−r)6(a+r)6

]
r ≤ rmn

0 r > rmn

(S7)
where Amn/ε = 75.358 and rmn/σ =
2.11, 3.36, 4.61.

B. Molecular dynamics runs

As explained in the main text, we have performed
Langevin molecular dynamics for a polymer system made
of M = 80 chains of N = 500 beads each and Nnp = 100
nanoprobes dispersed in the solution. Simulations were
performed by using the LAMMPS package [40]. Half of
the chains are coupled to a thermostat with “room” tem-
perature Tc = T ≡ ε/kB (kB being the Boltzmann con-
stant) and the other half are coupled to a “hotter” ther-
mostat with temperature Th/Tc > 1. The nanoprobes
are always coupled to the cold thermostat. By defining
the “reduced” temperature gap ∆t ≡ Th/Tc− 1, we have
considered systems with Th/Tc = 1.5 or ∆t = 0.5 and
Th/Th = 2.0 or ∆t = 1.0. Then, we have compared the
properties of these systems to those for “purely passive”
solutions with Th/Tc = 1.0 or ∆t = 0.0.

Polymers/nanoprobes mixtures are prepared and then
let equilibrate under purely passive conditions according
to the protocol described in detail in Ref. [38]. Start-
ing from these equilibrated systems, half of the chains
are then driven out of equilibrium by the coupling to
the hot thermostat. The total length of each MD run
is ≈ 4 · 109 integration time steps τint (with our choice
τint/τMD = 0.006, this is equivalent to about ≈ 2.4 · 107

MD Lennard-Jones time units). System configurations

are sampled each 105 τint = 600 τMD: in order to remove
possible artifacts due to the initial preparation of the
samples, all the analyses reported in this work have been
performed after discarding the first 5·107 τint = 3·105 τMD

of each trajectory. For completeness and in order to in-
vestigate smaller time scales, we have also performed ad-
ditional runs of total length ≈ 2 · 106 τint = 1.2 · 104 τMD

with reduced sampling time of 100 τint = 0.6 τMD.
As shown in Fig. S1, the runs are long enough for the

mean-square displacement to be above the squared gyra-
tion radius. This is typically long enough to achieve the
complete relaxation of polymer systems, see Ref. [54].
Table S2 summarizes the average temperature of the
nanoprobes, 〈Tnp〉, and the average temperatures of the
monomers of cold and hot chains, 〈Tch〉c,h, after the com-
plete relaxation of the corresponding systems. It reports
also the corresponding values for the “temperature asym-
metry” order parameters (see Ref. [13]) for hot chains

with respect to nanoprobes (χhnp ≡ 〈Tch〉h
〈Tnp〉 − 1) and for

hot chains w.r.t. cold chains (χhc ≡ 〈Tch〉h
〈Tch〉c − 1).

In addition, we have performed a different run (of total
length = 1.2 · 107 τMD) for a fully passive systems of ring
polymers and large nanoprobe with diameter d/σ = 7.5.
The system and numerical details are as before: the only
exception is that now the bending stiffness of 50% of the
chain population is as before (κbend/ε = 5.0, see Sec. S1 A
here) while the remaining 50% of rings are twice more
flexible with κbend/ε = 2.5. By this protocol, the average
chain sizes of the two populations of rings “fit” the sizes
found for passive/active mixtures at ∆t = 1.0 (see inset
in Fig. 3 in the main paper).

C. Observables and measured properties:
definitions

1. Single-chain structure

Let us define Om(t), the value of the generic observ-
able O referring to the m-th chain in the solution and
evaluated at time step t of a given MD run. Its mean
value, 〈O〉c,h, is defined by the formula:

〈O〉c,h ≡ 1

M/2

M/2∑

m=1

c,h 1

t∗

∫ T

T−t∗
Om(t) dt , (S8)

where: (a) t∗ corresponds to the time scale above which
chains, having diffused more than their own size, have
reached the steady state (see Fig. S1); (b) the subscripts
on the brackets 〈·〉c,h mean that separate averages have
been taken for the two chain populations coupled to the
two thermostats. In analogous manner, distinct averages
have been considered in the case of chains with different
flexibilities (Sec. S1 B).

In this work, we have considered the following single-
chain observables for which we have computed corre-
sponding mean values according to the definition (S8):
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Linear Polymers Ring Polymers

d/σ ∆t 〈Tnp〉 〈Tch〉c 〈Tch〉h χhnp χhc 〈Tnp〉 〈Tch〉c 〈Tch〉h χhnp χhc

0.0 1.005± 0.073 1.000± 0.005 1.000± 0.005 ≈ 5 · 10−2 . 10−3 1.030± 0.082 1.000± 0.005 1.000± 0.005 ≈ 3 · 10−2 . 10−3

2.5 0.5 1.200± 0.100 1.067± 0.006 1.432± 0.007 0.19± 0.02 0.342± 0.004 1.199± 0.094 1.059± 0.006 1.438± 0.008 0.20± 0.02 0.358± 0.004

1.0 1.376± 0.119 1.127± 0.007 1.870± 0.011 0.36± 0.03 0.658± 0.008 1.359± 0.112 1.122± 0.007 1.877± 0.010 0.38± 0.03 0.672± 0.008

0.0 1.009± 0.087 1.000± 0.006 1.000± 0.006 ≈ 1 · 10−2 . 10−3 1.020± 0.083 1.000± 0.006 1.000± 0.006 ≈ 2 · 10−2 . 10−3

5.0 0.5 1.191± 0.105 1.069± 0.006 1.431± 0.008 0.20± 0.02 0.339± 0.004 1.183± 0.104 1.060± 0.006 1.441± 0.009 0.22± 0.02 0.360± 0.004

1.0 1.348± 0.100 1.138± 0.007 1.860± 0.012 0.38± 0.03 0.635± 0.008 1.323± 0.087 1.124± 0.007 1.877± 0.011 0.42± 0.03 0.669± 0.008

0.0 1.004± 0.076 0.999± 0.005 0.999± 0.005 ≈ 4 · 10−3 . 10−3 1.000± 0.077 1.000± 0.005 1.000± 0.005 . 10−3 . 10−3

7.5 0.5 1.172± 0.093 1.075± 0.006 1.424± 0.008 0.21± 0.02 0.324± 0.004 1.120± 0.090 1.064± 0.007 1.436± 0.008 0.28± 0.02 0.349± 0.004

1.0 1.292± 0.107 1.144± 0.007 1.856± 0.011 0.44± 0.04 0.623± 0.007 1.163± 0.095 1.125± 0.007 1.875± 0.011 0.61± 0.05 0.667± 0.008

TABLE S2. Summary of average temperatures for nanoprobes (〈Tnp〉) and for individual monomers of cold and hot chains
(〈Tch〉c,h), and corresponding “temperature asymmetry” order parameters for hot chains with respect to nanoprobes (χhnp ≡
〈Tch〉h
〈Tnp〉 − 1) and for hot chains w.r.t. cold chains (χhc ≡ 〈Tch〉h

〈Tch〉c − 1). Temperatures are measured in the course of the simulations

by the LAMMPS [40] numerical engine used for this work (see Sec. S1 B). d is the nanoprobe diameter and ∆t is the reduced
temperature gap introduced in the system (see the main text and Sec. S1 B for details).

Linear Polymers Ring Polymers

d/σ ∆t 〈R2
g〉h 〈R2

g〉c 〈R2
g〉h 〈R2

g〉c

0.0 700.5± 62.7 167.7± 9.2
2.5 0.5 488.2± 32.5 615.2± 44.9 139.2± 7.5 170.4± 10.5

1.0 391.7± 31.4 574.8± 47.8 128.7± 6.3 181.5± 10.0

0.0 690.9± 52.1 169.1± 9.4
5.0 0.5 486.8± 36.1 583.5± 41.4 138.1± 7.6 177.4± 10.0

1.0 386.9± 28.5 576.6± 43.0 132.2± 7.6 189.0± 11.5

0.0 653.0± 39.7 174.7± 10.4
7.5 0.5 451.6± 33.2 577.7± 44.0 137.3± 7.5 193.6± 12.6

1.0 368.6± 30.3 581.8± 43.8 129.6± 6.6 248.5± 9.4

TABLE S3. Mean-square gyration radii corresponding to
the different chain population considered in this work. The
superscript “c” (respectively, “h”) is for “cold” (resp. “hot”)
chains in the melt. d is the nanoprobe diameter and ∆t is the
reduced temperature gap introduced in the system (see the
main text and Sec. S1 B for details). ∆t = 0 is for classical
passive melts and one single value is reported.

(i) The gyration radius of a polymer chain made of N
monomers, defined by:

R2
g(t) ≡

1

N

N∑

i=1

(~ri(t)− ~rcm(t))2 , (S9)

where: (a) ~ri(t) is the spatial position of the i-th

monomer of the chain at time t; (b) ~rcm(t) ≡ 1
N

∑N
i=1 ~ri

is the position of the center of mass of the chain. The
mean-square gyration radii for the different chain popu-
lations are reproduced in Table S3.

(ii) The average square end-to-end distance between two
monomers at given contour length separation ` ∈ [σ, (N−
1)σ] along the chain, defined by:

R2(` ≡ nσ; t) ≡ 1

N − n
N−n∑

i=1

(~ri+n(t)− ~ri(t))2 , (S10)

where σ is the average bond length (see Sec. S1 A). Def-
inition (S10) works for linear chains, the generalization
to rings (where ` ∈ [σ,Nσ/2]) is obtained by taking into
account the obvious periodicity along the contour length
of the chain.

2. Nanoprobe dynamics

To quantify the dynamics of single nanoprobes im-
mersed in polymer solutions, we introduce the mean-
square displacement, ∆r2

np,i(T ; τ), for the i-th nanoprobe
(i = 1, ..., Nnp = 100) as a function of the lag-time τ and
the measurement time T [38, 39, 44]:

∆r2
np,i(T ; τ) ≡ 1

T − τ

∫ T −τ

0

(~ri(t+ τ)− ~ri(t))2
dt ,

(S11)
with ~ri(t) being the spatial position of the i-th nanoprobe
at time t. By tacitly assuming that the simulated trajec-
tories are long enough such that the “T → ∞” limit
is effectively reached, the time average mean-square dis-
placement is formally given by:

∆r2
np,i(τ) ≡ lim

T→∞
∆r2

np,i(T ; τ) . (S12)
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The average over the ensemble of Nnp nanoprobes is then
given by:

〈∆r2
np(τ)〉 ≡ 1

Nnp

Nnp∑

i=1

∆r2
np,i(τ) . (S13)

In ergodic systems, Eq. (S12) should of course be in-
dependent from i. This, however, might not be the case
whenever dynamics is affected by long-range spatial cor-
relations as in glassy entangled polymer systems [18, 44]
or polymer nanocomposites [38, 39]. To detect such ef-
fects, we have measured the following ratios:

∆r2
np,i(T ; τ) / 〈∆r2

np(τ)〉 (i = 1, ..., Nnp) . (S14)

Plots of the quantity Eq. (S14) are shown in Fig. S7.
Finally, motivated by the biased displacement orienta-

tion and following previous work [38, 39], we measure
also the so called van-Hove [42] distribution function,
P (τ ; ∆x), of the Cartesian components (α = x, y, z) of
nanoprobe spatial displacements for given lag-time τ :

P (τ ; ∆x) ≡ 〈δ[(rα(t+ τ)− rα(t))−∆x]〉 , (S15)

where δ is the Dirac’s δ-function. For ordinary diffusion

processes P (τ ; ∆x) = 1√
2π〈∆x2〉

exp
(
− ∆x2

2〈∆x2〉

)
is Gaus-

sian, while correlated motion (i.e., the one arising most
typically in glassy and complex fluids [42, 44]) displays
distributions with heavy tails. Results for P (τ ; ∆x) are
shown in Fig. S8.

3. Single-chain dynamics

Similarly to Eqs. (S11) and (S12), we have considered
the mean-square displacement, g3,m(τ) [9, 34], of the cen-
tre of mass of the m-th chain in the solution:

g3,m(τ) = lim
T→∞

1

T − τ

∫ T −τ

0

(~rcm,m(t+ τ)− ~rcm,m(t))
2
dt ,

(S16)
where ~rcm,m(t) is the coordinate of the centre of mass of
the m-th chain. As in static quantities (Sec. S1 C 1), we
take distinct averages of Eq. (S16) for the two polymer
populations with the cold/hot thermostat (see Fig. S1):

gc,h
3 (τ) =

1

M/2

M/2∑

m=1

c,h
g3,m(τ) . (S17)
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FIG. S1. Parametric plot of the time evolution of the chain mean-square gyration radius, 〈R2
g(τ)〉 (average of Eq. (S9) on the

ensemble of chains coupled to the same temperature T for the single MD snapshot at time τ), as a function of the mean-square
displacement, g3(τ) (Eq. (S17)), of the chain center of mass. The black dashed lines mark the positions where g3 = 〈R2

g〉,
hence points to the right of the line demonstrate that the systems were run long enough to reach polymer displacements larger
than the chain average gyration radius. Color code is as in the main paper, with different colors corresponding to reduced
temperatures ∆t = 0.0, 0.5, 1.0. Open/full symbols correspond to chains coupled to the cold/hot thermostat in passive/active
mixtures (see legend).
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FIG. S2. 〈∆r2
np(τ)〉ring/〈∆r2

np(τ)〉lin, ratios of nanoprobe mean-square displacements (Eq. (S13)) in rings vs. linear polymer
solutions. Results for increasing nanoprobe diameters d (from top to bottom). Color code is as in the rest of the paper.
Although diffusion in ring solutions is always larger than diffusion in linear solutions, for d = 2.5σ and d = 5.0σ we notice
a small yet clearly visible slow-down of the nanoprobes at increasing ∆t. Since the measured average temperatures of the
nanoprobes are the same for the same ∆t (i.e., they do not depend on polymer architecture, see Table S2), we are tempted to
ascribe this effect to the dependence of entanglements on chain flexibility [53, 55]. In fact, in active-passive mixtures hot and
cold chains of linear solutions are both more flexible than chains in fully passive counterparts (Figs. S3 and S4, l.h.s. panels)
while in ring solutions (Fig. S3 and S4, r.h.s. panels) only hot chains bend more: since more/less flexible chains are in general
associated to less/more entangled polymers [53, 55] this may finally account [6, 7] for the seen acceleration/deceleration of the
nanoprobes. On the other hand, this explanation sits on a definition of “entanglements” introduced and validated only for
equilibrium system: if it remains valid for out-of-equilibrium polymer solutions remains to be established, and more systematic
investigations ought to be pursued in the future in this respect.
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FIG. S3. 〈R2(`)〉/`, mean-square end-to-end distances (Eq. (S10)) of linear chains (l.h.s. panels) and rings (r.h.s. panels)
normalized to corresponding monomer-monomer contour distances `. Color code is as in the rest of the paper and choice of
the symbols is as in Fig. S1. For linear chains, the values of the plateaus at large `, `K ≡ lim`→∞〈R2(`)〉/`, correspond to the

Kuhn lengths of the respective chains [9]: the horizontal lines show results based on the formula `K(〈Tch〉c,h) ≡ `K(∆t=0)

κB〈Tch〉c,h/ε
,

where `K(∆t = 0) comes from best fits of the passive-chain plateaus (on the interval `/σ > 100) and 〈Tch〉c,h are the measured
temperatures of cold/hot chains (see Table S2).
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nm(r)) pair correlation functions for
nanoprobes of diameters d/σ = 2.5, 5.0, 7.5 (see legends). The superscripts indicate that the functions have been evaluated by
separating the contributions of monomers coupled to the cold (c) or the hot (h) thermostat. Color code is as in rest of the
paper.
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FIG. S7. Spatial heterogeneity, ∆r2
np,i(T ; τ)/〈∆r2(τ)〉 (Eq. (S14)), of nanoprobe mean-square displacements vs. the measure-

ment time T for lag-times τ/τMD = 6 · 10−1, 102, 103 and nanoprobe diameters d/σ = 2.5, 5.0, 7.5 (see legends). Each panel
here contains Nnp = 100 curves. Color code is as in the rest of the paper.
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FIG. S8. Probability distribution functions of one-dimensional nanoprobes displacements, P (τ ; ∆x) (Eq. (S15)), for the same
representative lag-times τ as in Fig. S6 and nanoprobe diameters d/σ = 2.5, 5.0, 7.5 (see legends). Color code is as in the rest of
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,

which is typical for ordinary diffusive processes.
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