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Ring polymers in dense solutions are among the most intriguing problems in

polymer physics. Thanks to its natural occurrence in circular form, DNA has

been extensively employed as a proxy to study the fundamental physics of ring

polymers in different topological states. Yet, torsionally constrained – such

as supercoiled – topologies have been largely neglected so far. The applicabil-

ity of existing theoretical models to dense supercoiled DNA is thus unknown.

Here we address this gap by coupling large-scale Molecular Dynamics simu-

lations with Differential Dynamic Microscopy of entangled supercoiled DNA

plasmids. We discover that, unexpectedly, larger supercoiling increases the

size of entangled plasmids and concomitantly induces an enhancement in DNA

mobility. These findings are reconciled as due to supercoiling-driven asym-
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metric and double-folded plasmid conformations which reduce inter-plasmids

entanglements and threadings. Our results suggest a way to topologically tune

DNA mobility via supercoiling, thus enabling topological control over the (mi-

cro)rheology of DNA-based complex fluids.

Introduction

The deoxyribonucleic acid (DNA) is not only the central molecule of life but it is now increas-

ingly employed for bio-compatible and responsive materials – such as DNA hydrogels (1) and

origami (2) – with applications in medicine and nanotechnology (3). One feature that renders

DNA a unique polymer is its ability to encode information, and this is now extensively lever-

aged to make complex structures (3, 4) and even self-replicating materials (5); another feature

that distinguishes DNA from other synthetic polymers is its unique geometry, i.e. that of a

(right-handed) helix with a well-defined pitch, which entails that DNA can display both bend-

ing and torsional stiffness (6). Unlike DNA’s information-encoding capabilities, its geometrical

features are far less exploited to create synthetic materials. In fact, DNA is at present largely

employed to make up biopolymer complex fluids in its simplest geometrical forms, i.e. that of

a linear or relaxed circular (torsionally unconstrained) molecule (7–9). In spite of this, most

naturally occurring DNA is under torsional and topological constraints, either because it is cir-

cular and non-nicked, as in bacteria (10), or because of the binding of proteins that restrict

the relative rotation of base-pairs, as in eukaryotes (11–13). The torsional stress stored in a

closed DNA molecule cannot be mechanically relaxed (in absence of Topoisomerase proteins)

but only re-arranged or converted into bending in order to minimise the overall conformational

free energy (14, 15). This entails that supercoiling – the linking deficit between sister DNA

strands with respect to their relaxed state – can carry conformational information (16) which

can affect the static and dynamic properties of DNA plasmids (14) and even regulate gene tran-
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scription (17). Here, we propose that supercoiling may also be leveraged to tune the dynamics

of DNA plasmids in solution, thus potentially allowing for fine control over the rheology of

DNA-based complex fluids in a way that is orthogonal to varying DNA length (18), concen-

tration (19) or architecture (7, 20). Finally, entangled solutions of DNA plasmids are not only

interesting due to their potential applications in bio and nanotechnology, but also as they enable

us to study fundamental questions on the physics of ring polymers – one of the most active fields

of soft matter research (21–29) – thanks to the extremely precise control over DNA lengths and

topology (7–9) and access to sophisticated visualisation techniques (30).

To characterise the effect of DNA supercoiling on the rheology of entangled solutions of

plasmids, here we perform large scale Molecular Dynamics simulations of entangled DNA

plasmids (Fig. 1A-C), modelled as coarse-grained twistable chains (31). We discover that while

isolated DNA plasmids typically display a collapse with increasing levels of supercoiling (esti-

mated via simulations (32) or gel electrophoresis (33)), here we show that entangled DNA plas-

mids typically increase their average size with supercoiling. Importantly, we further discover

that in spite of this swelling, larger supercoiling is accompanied by an enhanced mobility of the

plasmids. This finding is counter-intuitive and in marked contrast with standard polymer sys-

tems (34) in which larger polymer sizes correlate with slower diffusion. This speed up is also

observed in Differential Dynamic Microscopy experiments performed on entangled plasmids

with different supercoiling degrees. Finally, we use sophisticated techniques involving minimal

surface construction and primitive path analysis to quantify the abundance of threadings and en-

tanglements between plasmids in solution and discover that larger supercoiling decreases both

of these topological constraints, in turn explaining the enhanced mobility.

We argue that our results will be key to enabling the design of complex fluids with rheol-

ogy that can be precisely tuned using a combination of DNA length, concentration, topology

and supercoiling. Beyond providing blueprints for realising the next-generation of biomimetic
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DNA-based materials, our results can also shed light into the dynamics of DNA in vivo.

Results

Computational Model for DNA plasmids

DNA is represented as a twistable elastic chain (31) made of beads of size �b = 2.5 nm = 7.35

bp connected by finitely-extensible springs and interacting via a purely repulsive Lennard-Jones

potential to avoid spontaneous chain-crossing (35) (see Fig. 1). In addition to these potentials,

a bending stiffness of lp = 50 nm (6) is set via a Kratky-Porod term and two torsional springs

(dihedrals) constrain the relative rotation of consecutive beads,  , at a user-defined value  0.

The torsional angle between consecutive beads  is determined by decorating each bead with

three patches which provides a reference frame running along the DNA backbone. We finally

impose a stiff harmonic spring to constrain the tilt angle ✓ = ⇡ so to align the frame with the

backbone, i.e. along its local tangent (see Fig. 1D). The simulations are performed at fixed

monomer density ⇢�3
b = 0.08 (corresponding to a volume fraction � = 4% and �/�⇤ ' 16 with

�⇤ = 0.26%) and by evolving the equation of motion for the beads coupled to a heat bath in

LAMMPS (36) (see Methods).

The user-defined angle  0 directly determines the thermodynamically preferred pitch of the

twistable chains as p = 2⇡/ 0 and, in turn, this fixes the preferred linking number to Lk =

M/p, where M is the number of beads in the plasmid. The twist is enforced by an harmonic

potential with stiffness t = 50�b = 125 nm comparable with the torsional persistence length of

DNA (6). In this model, the degree of supercoiling is defined as � ⌘ Lk/M = 1/p. The twist is

set by initialising the patchy-polymer as a flat ribbon and by subsequently slowly increasing the

stiffness of the potential associated with the twist degree of freedom. Ultimately, by imposing

the angle  0 one can achieve the desired � (which may be zero, if  0 = 0 or p = 1). It should

be noted that we will also consider non-torsionally constrained plasmids in which the torsional
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stiffness is set to t = 0 mimicking nicked circular plasmids. We recall that for supercoiled

circular DNA, the exchange of local torsion (twist Tw) into bending (writhe Wr) must obey

the White-Fuller-Călugăreanu (WFC) (37) theorem, i.e. Lk = Tw +Wr, thus conserving the

linking number Lk (and thus the supercoiling � = Lk/M ) between the two DNA single strands

(Fig. 1B-D). Notice that our polymer model is symmetric with respect to supercoiling; we will

thus refer to � without specifying its sign. Finally, by simulating an ensemble of linear DNA

molecules, we have computed the entanglement length for this model to be Me,linear = 54 ± 2

beads (about 400 bp) via standard primitive path analysis (see SI).

Supercoiling Increases the Average Size of DNA Plasmids in Entangled
Conditions

The conformational properties of polymers in solution are typically studied in terms of the

gyration tensor

R↵�
T =

1

2M2

MX

i,j=1

�
r↵i � r↵j

� ⇣
r�i � r�j

⌘
(1)

where r↵i denotes the coordinate ↵ of the position of bead i. The (square) radius of gyration is

then defined as the trace, R2
g ⌘ Tr[RT]. Interestingly, we find that the time and ensemble av-

erage of R2
g scales as hR2

gi ⇠ L2⌫ , with metric exponents ⌫ ' 3/5 for highly supercoiled plas-

mids (see Fig. 2A and Fig. S1 in SI). Instead, relaxed chains display a short chain regime with

⌫ ' 1/2 (M  200) and a crossover to smaller values of ⌫ ' 0.35 for larger chains (M � 400).

These exponents suggests that relaxed plasmids in entangled solutions assume conformations

similar to the ones of standard ring polymers (38), i.e. ⌫ = 1/2 for small M/Me,linear . 10

and ⌫ ' 1/3 for large M/Me,linear & 10 (note that for our longest plasmids M/Me,linear ' 16

hence we capture the crossover to the compact regime). On the other hand, supercoiling-driven

writhing induces stronger self-interactions which are no longer screened by the neighbours (see

Fig. 1B,C), in this case we thus observe a larger metric exponent ⌫ compatible with that of a
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Tilt Twist

A B

C ED F

Figure 1: A Snapshot of simulation of entangled plasmids with length L = 200�b ' 1.47 kbp
and � = 0.04. B A single plasmid taken from A with an inset showing the patches in detail. C-E
Snapshots of plasmids with (C) � = 0, L = 100�b ' 750 bp, (D) � = 0.06, L = 100�b ' 750
bp and (E) � = 0.06, L = 400�b ' 3 kbp. Backbone beads are shown in grey, one set of
patches are shown in orange. The other patches are not shown for clarity. F Sketch of tilt ✓ and
twist  between consecutive beads (another angle  is set between blue patches, not shown).
The tilt angle ✓ is subject to a stiff potential with equilibrium ✓0 = ⇡ to maintain the frame
co-planar and aligned with the backbone.

self-avoiding walk. In the asymptotic limit M ! 1, we expect dense systems of supercoiled

plasmids to fall into the universality class of ideal (annealed) branched polymers (39, 40), for

which ⌫ = 1/3. This is the same exponent expected for very long flexible ring polymers,

although the precise folding structure will be different.

The effect of supercoiling on the average size of plasmids can be better appreciated in

Fig. 2B where we show the (squared) radius of gyration rescaled by its value for relaxed plas-

mids and plotted against supercoiling. Importantly, it is readily apparent that for long plasmids
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Figure 2: Supercoiling Increases Plasmids Size in Entangled Conditions. A-B Radius of
gyrations Rg plotted against (A) contour length M and (B) supercoiling �. Notice that for short
lengths M = 100, increasing � induces a collapse of the plasmids whereas for longer lengths
it drives swelling. The scaling of Rg as a function of plasmid length M is compatible with that
of flexible rings (⌫ = 1/2 with crossover to ⌫ ' 1/3 (38)) and that of self-avoiding walks (⌫ =
3/5) for relaxed and highly supercoiled plasmids, respectively. C The distribution of Rg for
M = 100 is weakly bimodal showing that plasmids can be in either an “open” or a “collapsed”
state. Setting a supercoiling � = 0 stabilises the open state whereas � > 0 induces writhing and
collapse. D For longer plasmids (M = 400) larger supercoiling � broadens the distribution and
drives enlarges the average size. The unit of length is �b = 2.5 nm and entanglement length for
linear counterparts is Me,linear = 54 beads.

(e.g. M � 400 ' 3 kb) the greater the supercoiling the monotonically larger their typical

size. We highlight that this behaviour is highly counter-intuitive as one expects supercoiling to

induce a compaction of plasmids, as indeed is found computationally in dilute conditions (32).

At the same time, supercoiled plasmids travel faster than their relaxed counterparts in gel elec-
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trophoresis (33), due to their overall reduced size. Supercoiling is also often associated with

the packaging of the bacterial genome (10, 41) and with organisation into topological domains

in eukaryotes (12, 13, 42). On the contrary, here we observe a monotonic increase of Rg with

supercoiling that is in marked contrast with the overall shrinking in dilute conditions (32) (this

shrinking is recapitulated by our model when simulated in dilute conditions, see Fig. S1 in SI).

We argue that this stark difference is due to inter-chain effects and the global topological

invariance of the system. Indeed, while supercoiled plasmids may want to reduce their overall

size, they must also remain topologically unlinked from the neighbours. In turn, the competition

between this global topological constraint and the torsional and bending rigidities appears to

favour swelling of long molecules (L > 200� ' 1.5 kbp) but still drives the collapse of short

ones (Fig. 2B).

For the shortest plasmids considered here (M = 100 ' 730bp), we observe an interest-

ing exception to the behaviour described above whereby the typical size is non-monotonic for

increasing supercoiling levels. We attribute this peculiar behaviour to a buckling transition

(see below). More specifically, for � = 0 we find that the conformations are typically larger

than the relaxed ones, but they suddenly become more collapsed for � > 0 (Fig. 2B). [Notice

that with � = 0 we mean plasmids that are intact and torsionally constrained to have linking

number deficit equal to zero. These are different from relaxed (nicked) plasmids that are not

torsionally constrained as the latter do not need to obey the WFC theorem; we denote them

with ’R’ throughout]. We also examined the distributions of radius of gyration and noticed

that relaxed short plasmids display a weakly bimodal distribution that is not found in larger

plasmids (Fig. 2C,D). This bimodal distribution reflects the fact that they can be found in two

typical conformational states: either open (large Rg) or more collapsed (small Rg); imposing

a certain supercoiling level appears to lock the molecules in one of the two states. Since the

conformational space of non-nicked plasmids must satisfy the WFC topological conservation
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law, zero supercoiling (Lk = � = 0) hinders the writhing of the plasmid because it would be

energetically too costly for them to writhe multiple times with opposite sign to achieve a null

global writhe, given their short length (L/lp = 5). This entails that short plasmids with � = 0

are locked into open, not self-entangled conformations. On the contrary, for � > 0, the imposed

writhing induces a conformational collapse, akin to a sharp buckling transition (43).

We note that the stable open state at � = 0 for short plasmids is similar to the one compu-

tationally observed in dense solutions of semiflexible rings (44). These systems are expected to

give rise to exotic columnar phases which would be thus intriguing to investigate in the context

of dense solutions of short non-nicked plasmids with � = 0.

We finally stress once more that the monotonic increase observed for long plasmids of their

typical size with supercoiling is neither expected nor trivial and is in marked contrast with the

overall shrinking behaviour found in the literature for long dilute supercoiled plasmids (32).

Since the monomer concentration is constant for all of the systems studied, and the critical

overlap concentration scales as c⇤ = 3M/(4⇡R3
g), one finds that c/c⇤ increases with super-

coiling. Thus, one would naı̈vely expect solutions of supercoiled plasmids to be effectively

more entangled than their relaxed counterparts. As a consequence, we would also expect highly

supercoiled long plasmids to display reduced mobility with respect to relaxed ones.

Supercoiling Enhances DNA Mobility

We study the dynamics of entangled plasmids at different levels of supercoiling by computing

the time- and ensemble-averaged mean squared displacement (TAMSD) of the centre of mass

(CM) of the plasmids as g3(t) = hrCM,i(t+t0)�rCM,i(t0)ii,t0 (other gi quantities are reported in

Fig. S4 in SI). Curves for g3 are shown in Fig. 3A,B for different values of plasmid supercoiling

and length. Interestingly, and at odds with the findings of the previous section, we find that

higher values of � yield faster mobility especially for longer plasmids.
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The diffusion coefficient of the centre of mass computed as DCM = limt!1 g3(t)/6t allows

us to more precisely quantify how the mobility of the plasmids changes as a function of length

and supercoiling. We find that while DCM attains a plateau at small �, at larger supercoiling it

increases exponentially (see Fig. 3C) albeit more simulations are needed to confirm this conjec-

ture (see below for an argument supporting the exponentially faster mobility). Additionally, we

find that the diffusion coefficient as a function of plasmid length scales as DCM ⇠ M�2.2 and

M�2.45 for relaxed and highly supercoiled large plasmids, and are compatible with the scaling of

torsionally relaxed and flexible ring polymers (22) (Fig. 3D). The slightly stronger dependence

on plasmid length for larger supercoiling suggests that these plasmids may effectively undergo

a more traditional reptation-like relaxation and for which we expect D ⇠ M�2.4 (22, 35). As

we shall see below, this conjecture is confirmed by the fact that we find most of the plasmids

to display two plectonemic tips and thus preferentially assume linear-like rather than branched

structures (see also SI).

We finally note that the solutions with M = 800 ' 6 kbp are not displaying a freely diffusive

behaviour in spite of the fact that we ran them for more than 107 Brownian times (see Tab. S1

in SI); in turn, DCM is overestimated as its calculation assumes free diffusion. In spite of this,

values of DCM for M = 800 ' 6 kbp nicely follow the general trend of the other datasets (see

Fig. 3C,D).

Differential Dynamic Microscopy of DNA plasmids confirm simulations

In order to experimentally validate the prediction that supercoiling enhances the mobility of

plasmids in dense solutions we perform fluorescence microscopy experiments on 3 mg/ml so-

lutions (corresponding to a volume fraction 0.4%) made of 6-kb plasmids. We label 0.001% of

the molecules in solution and use Differential Dynamic Microscopy (DDM) to determine the

diffusion coefficient from videos recorded on a custom fluorescence light-sheet microscope (46)
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Figure 3: Supercoiling Enhances Plasmid Mobility. A-B Time-Averaged Mean Squared Dis-
placement (TAMSD = g3) of the plasmids for (A) M = 100 ' 730 bp and (B) M = 400 ' 3
kbp. Dotted lines are linear functions of lagtime as a guide for the eye. C-D Diffusion coeffi-
cient of the centre of mass DCM = limt!1 g3(t)/6t against (C) supercoiling � and (D) length
M . In C exponentials ⇠ exp (�/0.05) (solid) and ⇠ exp (�/0.02) (dashed) are drawn as guide
for the eye (see below for a justification of exponential speed up). In D the best fits to the
largest M for relaxed (nicked) and � = 0.06 yield M�2.2 and M�2.45, respectively. Error bars
are comparable to symbol size. R = “relaxed”.

(Fig. 4A). DDM, as compared to single-particle tracking, allows us the measure the dynamics

of the diffusing molecules without having to resolve and track individual molecules over time -

optimal for DNA of this size (Rg < 100 nm). To pinpoint the role of supercoiling, we compare

a solution of plasmids extracted from E. coli in the stationary phase against the same solution
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Figure 4: DDM of Entangled Plasmid DNA Confirms the Predictions from MD Simula-
tions. A Snapshot from light-sheet microscopy showing fluorescent 5.9 kbp DNA plasmids
(comparable with M = 800 is the MD simulations) at a concentration of 3 mg/ml concentration
(c⇤ ' 0.6 mg/ml (45) and c/c⇤ ' 5). B Intermediate scattering function (ISF) obtained from
DDM measurements. C Scaling of the ISF decay time with wave vector, showing that it scales
as q�2. The fitted diffusion coefficients are D = 0.34(1) µm2/s and D = 0.44(1) µm2/s for
relaxed and supercoiled plasmids respectively.

pretreated with Topoisomerase I to relax the excess supercoiling (47) (see Methods).

As one can notice (see Fig. 4B), the intermediate scattering function (ISF) shows a faster

decay for supercoiled DNA compared to relaxed circular DNA, indicating faster dynamics. We

fit each ISF with a stretched exponential f(q, t) = exp[�(t/⌧)�] using � ' 0.9�1 to determine

the decay time ⌧ as a function of q (Fig. 4C). As shown, the decay times are well fitted by a

power law ⇠ q�2 that we use to extract the diffusion coefficients via the relation ⌧ = (2Dq2)�1.

The resulting diffusion coefficients are D = 0.34(1) µm2/s and D = 0.44(1) µm2/s for relaxed

and supercoiled solutions, respectively.
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We should note that while our choice of plasmid length allows us to purify them without

introducing substantial nicks (⇠80% are without nicks and thus supercoiled), determining their

precise supercoiling level is not straightforward. In vivo, supercoiling for plasmids in the sta-

tionary phase of cell growth (the phase at which we extract our plasmids) is ⇠2% (48,49). Thus,

these results suggest that increasing supercoiling in solutions of entangled plasmids speeds them

up and are thus in qualitative agreement with the simulations.

We should mention that while the experiments are at lower volume fraction with respect

to simulations (when considering bare DNA), the buffering condition effectively thickens the

diameter of DNA (45) thus rendering the precise comparison of experimental and simulated

volume fractions difficult. We also note that due to the small size of the plasmids we are

unable to accurately measure their size using single-molecule imaging. In turn, this renders

the precise estimation of the overlap concentration also challenging (indirectly estimated to be

about c⇤ ' 0.6 mg/ml (18, 45)). We are currently investigating alternative approaches, such

as dynamic light scattering, so that in future work we can compare the intriguing predictions

regarding the different sizes of supercoiled and relaxed circular DNA in dense solutions.

Supercoiling Induces a Buckling Transition in Short Plasmids

The consequence of writhing on the plasmids conformations is not captured by Rg alone (50,

51). Instead, it is informative to study shape descriptors which can be computed via the eigen-

values of the gyration tensor RT (which we denote as a, b, c, with a > b > c and R2
g = a+b+c).

Typical shape descriptors are the asphericity (50–52) a = ((a� b)2 + (a� c)2 + (b� c)2)/2R4
g

which quantifies the deviation from a perfectly spherical arrangement and the nature of aspheric-

ity quantified by either the prolateness (see Fig. S2 in SI) or the anisotropy an = 3(a2 + b2 +

c2)/(2R4
g)� 1/2 (shown in Fig. 5A,B). These shape descriptors reveal that for M = 100 ' 730

bp and � = 0, plasmids are stabilised in an open, highly symmetric and oblate (M&M’s) state.
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Furthermore, they reveal that these short plasmids undergo a buckling transition to a closed,

asymmetric and prolate (rugby ball) shape for � > 0. The sharp first-order-like buckling transi-

tion (see Fig. 5A and SI) is weakened for larger contour lengths (see Fig. 5B), as self-writhing

is energetically allowed even for � = 0 (negative and positive self-crossings must cancel each

other to satisfy the WFC conservation law). At the same time, both short and long plasmids dis-

play a general increase in asphericity, prolateness and anisotropy with increasing supercoiling,

strongly suggesting that the plasmids assume elongated and double-folded conformations (see

Fig. S2 in SI).

Supercoiling Decreases the Spanning Minimal Surface

It is natural to associate the open-oblate/closed-prolate conformations assumed by DNA plas-

mids to a larger/smaller (minimal) spanning area, respectively (53). The size of this area may

be relevant for the dynamics because it could be “threaded” by neighbouring plasmids hence

hindering the dynamics (24, 54, 55). To quantify this in more detail we calculated the mini-

mal surface (53) using the algorithm in Refs. (55, 56) for flexible ring polymers. We found

that the minimal area grows approximately linearly with the plasmids’ contour, as expected for

⌫  1/2 (55) (Fig. 5C). Importantly, we also observed that it overall decreased with supercoil-

ing with the notable exception of short M  200 ' 1.5 kbp plasmids, for which there is a small

increase for � = 0 with respect to the relaxed case, again confirming the “topological locking”

of open conformations (Fig. 2A).

A crude way to estimate the decrease in “threadable” area of a plasmid ⌃ is via recursive

bisections of a perfect circle into several connected smaller circles joined at a vertex mimicking

writhe-induced self-crossing. Each time a circle is split into two smaller ones the new radii

are R0 ' R/2 and thus n circles (with n � 1 self-crossings) have radii R0 = R/n yielding

an overall spanning surface ⌃ ' n⇡(R/n)2 ⇠ 1/n ⇠ 1/�. The same scaling of the thread-
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Figure 5: Supercoiling Induces Buckling in Short Plasmids and Reduces the Threadable
Area. A The anisotropy shape descriptor (an, see text) for short plasmids M = 100 ' 730 bp
displays a sharp buckling transition between an open and roughly symmetric state for � = 0
and a collapsed and anisotropic one for � > 0. In inset, two examples of conformations are
shown. B For longer plasmids (M � 200 ' 1.5 kbp) supercoiling shifts the anistropy to
larger values indicating a smoother transition to more prolate conformations. C Scaling of the
average minimal surface size h⌃i as a function of plasmids length (solid line shows the linear
scaling). In inset, two examples of surfaces for M = 100 ' 730 bp are shown. D The size
of the minimal surface area monotonically decreases with supercoiling (with the exception of
short M  200 ' 1.5 kbp plasmids). The solid and dashed lines scale as 1/� and e��/0.035,
respectively, and are drawn as a guide for the eye. R = “relaxed”. The unit of length is �b = 2.5
nm. The error bars, typically smaller than the symbol size, represent the error of the mean area.

able area is obtained if one considers the supercoil as if wrapped around a cylinder of radius

r (57) and projected in 2D; in this case, one would find that the enclosed area in each of the
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n superhelix turns is about rLee/(n � 1), where Lee is the end-to-end length of the plasmid.

Given that r ⇠ 1/� (57) and that Lee is expected to be insensitive on � for large supercoiling

(see also Fig. 2B showing plateauing of Rg for M  400), one finds a total threadable area

scaling as ⌃ ' nrLee/(n � 1) ⇠ 1/�. The fact that our data is instead more compatible with

an exponential decrease of ⌃ as a function of supercoiling (Fig. 5D) suggests that the approxi-

mation of the supercoil wrapped around a cylinder may not be accurate. In fact, considering the

large persistence length of DNA, it may be thermodynamically preferred to flatten and shrink

the many inner openings at the expense of storing longer contour length at the fewer tips (see

also snapshots in Fig. 1B-E and inset of Fig. 5C). These estimations are in good agreement

with the scaling of the minimal surface, although we cannot rule out other functional forms (for

instance exponential, see Fig. 5D). [Note that the so-called magnetic moment and radius (58)

give similar results albeit different scaling (see Fig. S3 in SI)].

Supercoiling Reduces Threadings

Motivated by the observation that the minimal surface – or “threadable area” – sharply decreases

with supercoiling, we decided to quantify more precisely the number of threadings per plasmid

for different levels of supercoiling. To this end we identify a plasmid to be “passively threaded”

by another when the minimal surface of the former is intersected by the contour of the latter

(at least twice, as they are topologically unlinked) (55) (Fig. 6A). As shown in Fig. 6B, the

average number of threadings per plasmid hnti also appears to decrease exponentially with

supercoiling and to mirror the behaviour of the mean threadable area h⌃i. [As for the minimal

surface ⌃, a notable exception to this general trend is the case of short plasmids (M = 100) for

which we find that hnti is statistically larger for � = 0 than for relaxed plasmids because of the

“topological locking” that we explained above.]

Based on these findings, we can also advance an argument as for why the diffusion co-
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Figure 6: Supercoiling Reduces Threadings and Entanglements. A Snapshot of two thread-
ing plasmids (relaxed, M = 800 ' 6 kbp) with minimal surfaces drawn and intersections
highlighted by arrows. B Number of threadings per plasmid as a function of supercoiling
(dashed=exponential, solid=1/�). C Number of threadings per plasmid as a function of DNA
length (dashed=1/M , solid=M1/2). D,E Snapshots of the PPA analysis run on a system with
plasmids M = 800 ' 6 kbp and � = 0.06. F The effective entanglement length increases with
supercoiling as Me/Me,linear ⇠ �↵ with ↵ ' 0.5 for both PPA and IsoMP methods. Note that
Me,linear = 54 ± 2 (PPA) and Me,linear = 49 ± 2 (IsoMP). The effective persistence length
lp/lp,linear also shows a scaling compatible with �1/2 (lp,linear = 18± 1).

efficient of plasmids increases exponentially with supercoiling: Recent evidence suggest that

the dynamics of ring polymers with threadings slow down exponentially with the number of

threadings (e.g., entangled rings (55, 59, 60), melts of tadpole-shaped polymers (20, 61) or

compressed long plasmids (62)). We thus expect the dynamics of highly supercoiled (threading-

poor) plasmids to be exponentially faster than their relaxed (threading-rich) counterparts, as

seen in Fig. 3C.

Intriguingly, in the case of short plasmids in which setting � = 0 increases the threadable
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area and also the number of threadings, we also find a slower dynamics, in full agreement with

our argument (see Figs. 6B and 3C).

Supercoiling Reduces Entanglements

The shape descriptors studied above suggest that long plasmids assume prolate double-folded

conformations, but it remains unclear whether the conformations are simply plectonemic (linear-

like) or more branched into comb, star or tree-like structures (63). We thus computed the local

absolute writhe along the contour length, W (s), from which the number and location of plec-

tonemic tips can be identified as the local maxima of W (s) (64, 65) (see Methods and SI). This

calculation reveals that most of the conformations with � � 0.04 have 2 tips and so are mainly

linear-like plectonemic conformations (see Fig. S5 in SI). [For smaller supercoiling it is difficult

to unambiguously distinguish tips from other regions of large curvature.]

In light of this finding another apparent controversy arises. Indeed, arguably, linear chains

half the length as their ring counterparts are expected to diffuse slower than the rings due to

reptation relaxation induced by ordinary entanglements (assuming that the entanglement length

is the same for the two systems) (22); instead, we observe the opposite trend. To explain this

result we adapted the primitive path analysis (66) (PPA) and isoconfigurational mean path (67)

(IsoMP) methods to estimate the effective entanglement length of these systems (see Fig. 6C,D

and SI Fig. S10). For PPA, we determined an effective entanglement length Me by leveraging

the fact that the tips of linear-like or branched conformations represent effective termini that

can be pinned in space (see SI for more details on PPA and IsoMP methods). [Note that the

PPA method typically fails for standard flexible ring polymers because there are no well-defined

ends to pin].

We find that irrespective of the method chosen, the scaling of the effective entanglement

length is compatible with Me ⇠ �1/2 (Fig. 6F), suggesting that the larger the supercoiling
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the less entangled the plasmids. [The numerical difference of PPA and IsoMP is a known

feature for topologically constrained ring polymers (67, 68) with Me,PPA/Me,IsoMP ' 3/2

and is in agreement with our findings for plasmids.] We argue that this effective reduction in

entanglement (opposite to what one would naively expect considering c/c⇤ ⇠ R3
g/M or similar

packing length arguments as p = 1/(⇢chainL2
ee), Lee being the end-to-end distance) is due to

the fact that supercoiling (i) induces highly anisotropic conformations and (ii) it increases the

local concentration of intra-chain beads (69). Indeed, since the superhelix radius of plasmids

scales as r ⇠ 1/� (57) and most plasmids display only two tips (see SI Fig. S6), this entails that

the intra-chain density ⇢intra ⇠ M/V ⇠ �2, (with V = ⇡r2Lee the approximated cylindrical

volume of the supercoil) grows with sigma.

Notably, we also find that the effective persistence length, computed as the decay length

of the tangent-tangent correlation, ct = exp (�l/l⇤p), along the plasmid backbone (from tip to

tip) scales as l⇤p ⇠ �1/2, in turn yielding Me ⇠ l⇤p or Me ⇠ l⇤k (Fig. 6F). This is compatible

with the fact that our systems appear to be at the crossover between the semiflexible and stiff

regimes, based on the values of density, stiffness and chain diameter and as supported by the

typical values of Me extracted from both PPA and IsoMP, which are of the order of the effective

Kuhn length l⇤k ' 2l⇤p (Fig. 6F). In this crossover, both tube diameter and entanglement length

scale linearly with the Kuhn length lk (70). The stiffening of the supercoiled plasmids can be

naturally thought of as due to the self-writhing; in particular, one may argue that the shorter the

contour length between self-crossings, i.e. the smaller 1/�, the longer the effective persistence

length displayed by the plasmids. A Flory-type estimate of the interaction free energy of n

monomers Fint ⇠ kTvn2/r3, per superhelix turn (n ⇠ ��1 and r ⇠ ��1) gives Fint ⇠ �. This

can be viewed as if the excluded volume of the cylindrical Kuhn monomer v (composed of l⇤k/d

spherical beads in line) grew by a factor of �. Since v ⇠ (l⇤k)
2d (71), the effective length Kuhn

length l⇤k ⇠ �1/2.
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Then, in the stiff regime, the plasmids behave as if they were rigid chains of diameter

2r ⇠ 2/� confined within narrow tubes with diameter a; in analogy with the classical Odijk

problem (72) we can thus write Me = a2/3l1/3k . In turn, the value of the tube diameter can

be obtained from the estimate that in each area element aMe spanned by the plasmid, there is

about 1 transversal segments, i.e. ⇢saMe ' 1 with ⇢s = �/(2r)2 the arclength density and

� the polymer volume fraction (� = r3M(b/r)/V in terms of supercoil turns with r ⇠ b/�).

Combining these together (70) we expect Me ' lk��2/5 (d/lk)
4/5 ⇠ �0.1, to be attained at very

large values of �, for which the stiff regime (a ⌧ Me and lk ⌧ Me) is justified.

Finally, we note that for short plasmids the PPA method cannot identify an entanglement

length, confirming that these are very poorly entangled in the standard sense. As such, their

dynamics are mostly determined by threadings, which are abundant also in short plasmids (see

Fig. 6B,C).

Discussion

In this work we have studied the dynamics of entangled solutions of DNA plasmids to under-

stand how supercoiling can be leveraged to tune the rheology of dense DNA solutions orthogo-

nally to other traditional methods, such as varying length or concentration. We have discovered

that, contrary to what is typically assumed, the size of long plasmids increases with supercoiling

when in entangled solutions.

In dilute conditions, supercoiled plasmids are expected to fall into the universality class of

interacting annealed branched polymers for which a metric exponent ⌫ = 7/13 is expected

asymptotically (39, 63). In the melt phase, the self-interactions are screened and we thus ex-

pect supercoiled plasmids to behave as ideal annealed branched polymers or lattice animals for

which ⌫ = 1/4 (40); being unphysical in d = 3, we expect the size of very large supercoiled

plasmids in the melt to scale with a metric exponent ⌫ = 1/3. Although this is the same scaling
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expected for relaxed rings (23,73) the folded structures are expected to be different. Importantly,

the supercoiling-driven swelling can still be achieved through a non-universal prefactor in front

of a supercoiling independent universal scaling M1/3, for instance due to an effectively larger

persistence length (as we found in this work, Fig. 6F). The fact that we observe a metric expo-

nent that depends on � (Fig. 2A) thus suggests that our simulations are not in the asymptotic

limit, and yet still in a regime that is experimentally interesting.

Surprisingly, we find the swelling of supercoiled plasmids is mirrored by an enhanced mo-

bility. Our predictions are supported by experiments which show that the diffusion coefficient

of entangled intact and supercoiled (� ' 0.02) plasmids is larger than that of relaxed ones,

i.e. with � ' 0. We discovered that this enhanced mobility is due to severely asymmetric

conformations which greatly reduce the threadable area and number of threadings. In parallel,

entanglements are also reduced as supercoiling increases the effective entanglement length by

increasing the local concentration of intra-chain contacts. We note that threadings are abundant

also in short plasmids (Fig. 6B) that are poorly entangled in the standard sense; we observe that

in this case threadings play a major role in determining the dynamics of short plasmids (notably

for M = 100, the case with � = 0 is slower and displays more threadings than the relaxed one).

We have thus discovered that the unexpected enhanced diffusivity of entangled supercoiled

DNA is due to a combination of reduced entanglements and, in particular, threadings.

We conjecture that beyond the range of lengths studied in this work (0.7 � 6 kbp), su-

percoiled plasmids in entangled solutions may display branched and annealed conformations

(i.e. with non-fixed branching points), triggering the need of arm retraction or plectoneme

diffusion/hopping relaxation mechanisms. These processes are notoriously slow, on the order

of kbp2/s (74), and we thus predict a re-entrant slowing down of the diffusion of supercoiled

plasmids. Indeed, they ought to behave as quenched/annealed branched polymers on timescales

shorter/longer than plectoneme diffusion, respectively. Ultimately, in spite of the expected onset
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of (exponentially) slowly diffusive “branched-polymer-like” regime for supercoiled plasmids,

relaxed ones will still display many more threadings,which we argue will still (exponentially)

slow down their dynamics also in the large length limit. Dissecting the contribution of these

mechanisms will require longer simulations than currently possible.

In summary, our results suggest a route for the topological tuning of the rheology of DNA-

based complex fluids that employs supercoiling as a mean to control DNA mobility. We note

that the fact that supercoiling regulates the number of threadings per plasmids can also be lever-

aged in polydisperse systems or in blends of linear and supercoiled DNA or other biopolymer

composites, where threading of rings by the linear fraction is key to determine the stress relax-

ation of the fluids (20, 21, 61, 75).

In the future, it would be interesting to further investigate longer plasmids with selected

or varying levels of supercoiling. Albeit experimentally difficult, this may be feasible using

caesium chloride gradient separation techniques (76). Ultimately, understanding how DNA

topology and supercoiling affect the dynamics and conformational properties of plasmids in

entangled or crowded conditions may not only reveal novel pathways to finely tune the rheology

of complex biopolymer fluids but also shed light on the role of supercoiling on chromosome

dynamics in vivo (10, 77).

Material and Methods

Molecular Dynamics

Each bead in our simulation is evolved through the Langevin equation ma@tt~ra = �rUa �

�a@t~ra +
p
2kBT�a~⌘a(t), where ma and �a are the mass and the friction coefficient of bead a,

and ~⌘a is its stochastic noise vector satisfying the fluctuation-dissipation theorem. U is the sum

of the energy fields (see SI). The simulations are performed in LAMMPS (36) with m = � =

kB = T = 1 and using a velocity-Verlet algorithm with integration time step �t = 0.002 ⌧B,
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where ⌧B = ��2/kBT ' 0.03 µs is the Brownian time (� = 3⇡�⌘w with ⌘w = 1 cP the

viscosity of water).

Branching Analysis

Following Refs. (64,78), we compute the absolute writhe of a segment of a plasmid as W (s) =

(1/4⇡)
R s

s�l

R s+l

s |(r1�r2) ·(dr1⇥dr2)/|r1�r2|3| with window l = 50 beads. This calculation

yields a function W (s) whose maxima represent regions of high local writhe and can identify

tips of plectonemes. In addition to being a local maximum, we require that W (s) > 0.35 to

avoid false positives. See SI for more details.

Primitive Path Analysis

Following Ref. (66), we fix certain polymer segments in space, turn intra-chain repulsive inter-

actions off and keep inter-chain interactions on. We then run simulations at low temperature

0.01 to find a ground state. The resulting chain conformations (primitive paths) are made of

straight segments connected by sharp kinks due to entanglements. The entanglement length is

then given by Ne = r2ee/(Mb2pp), where ree is the mean endpoint distance, M is the number of

monomers between the fixed points and bpp is the mean bond-length of the primitive path. We

adapt the classical PPA for plasmids by fixing the tips of all detected plectonemes instead of the

end points of linear chains (see SI).

DNA preparation

Double-stranded 5.9 kbp DNA plasmids are replicated in E. coli, collected at the onset of sta-

tionary phase, before being extracted and purified using our previously described protocols (45).

Following purification the DNA solution is ⇠80% supercoiled and ⇠20% relaxed circular, as

determined from gel electrophoresis (see SI, Fig. S6). To produce concentrated solutions of

relaxed circular DNA, Topoisomerase I (New England Biolabs) is used to convert the DNA
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topology from supercoiled to relaxed circular (79) (see SI, Fig. S6). Both supercoiled and re-

laxed circular DNA solutions are concentrated to 3 mg/ml using an Eppendorf Vacufuge 5301.

Fluorescence Imaging

To visualize DNA diffusion in concentrated solutions, supercoiled or relaxed circular DNA is

labeled with YOYO-1 dye (Thermo Fisher Scientific) at a 4:1 base pair:dye ratio, and added

at a concentration of 0.045 µg/ml to 3 mg/ml solutions of supercoiled or relaxed circular DNA

described above. Glucose (0.9 mg/ml), glucose oxidase (0.86 mg/ml), and catalase (0.14 mg/ml)

are added to inhibit photobleaching (47, 80). The DNA solutions are pipetted into capillary

tubing that is index-matched to water and imaged using a custom-built light-sheet microscope

with a 488 nm excitation laser, an excitation objective of 10x 0.25 numerical aperture (NA),

an imaging objective of 20x 1.0 NA, and an Andor Zyla 4.2 CMOS camera. At least 4 sample

videos are recorded at 50 frames per second for 2000 frames. The video dimensions are 256 x

768 pixels, which are then analyzed by examining regions of interest (ROI) of 256 x 256 pixels

(50 x 50 µm).

DDM analysis

We follow methods previously described to investigate DNA diffusion using Differential Dy-

namic Microscopy (DDM) (46). Briefly, from each ROI we obtain the image structure func-

tion or DDM matrix D(q,�t), where q is the magnitude of the wave vector and �t is the lag

time. To extract the transport dynamics of the diffusing DNA molecules, we fit the structure

functions to D(q,�t) = A(q)[1 � f(q,�t)] + B(q), where B is a measure of the camera

noise, A depends on the optical properties of both the sample and microscope, and f(q,�t) is

the intermediate scattering function (ISF). Based on our previous studies of microspheres and

DNA diffusing in crowded environments, we fit the ISFs to stretched exponentials of the form
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f(q,�t) = exp�(�t/⌧(q))�(q), where ⌧ is the characteristic decay time and � is the stretching

exponent, both of which depend on q (47).

For normal free diffusion, one expects ISFs described by a simple exponential, i.e., � = 1,

while our scattering functions are better fitted with stretching exponents between 0.9�1. Having

extracted the decay times of density fluctuations ⌧ over a range of spatial frequencies q, we fit

the results to ⌧ = (2Dq2)�1 to determine the diffusion coefficient, D, for the DNA plasmids.
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MD simulations

DNA is represented as a twistable elastic chain (as detailed in Ref. (31)) whereby the backbone

is made of beads each decorated by three patches (please refer to Fig. 1 in the main text).The

backbone beads interact via a purely repulsive Lennard-Jones potential as

ULJ(r) =

(
4✏

h�
�b
r

�12 �
�
�b
r

�6
+ 1

4

i
r  rc

0 r > rc
, (1)

where r denotes the separation between the bead centers. The cutoff distance rc = 21/6� is

chosen so that only the repulsive part of the Lennard-Jones is used. The energy scale is set by

✏ = BT and the length scale by �b, both of which are set to unity in our simulations. Consistent

with that, in this work all quantities are reported in reduced LJ units. The size of each bead in
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real units should be considered as the thickness of DNA, i.e. � = 2.5 nm or = 2.5/0.34 ' 7.35

bp per bead. The patches have no steric interactions.

Nearest-neighbour beads along the backbone are connected by finitely extensible nonlinear

elastic (FENE) springs as

UFENE(r) =

⇢
�0.5kR2

0 ln (1� (r/R0)2) r  R0

1 r > R0
, (2)

where k = 40✏/�2
b is the spring constant and R0 = 1.6�b is the maximum extension of the

elastic FENE bond.

To model DNA’s stiffness (150 bp or 50 nm) we introduce an additional bending energy

penalty between consecutive triplets of neighbouring beads along the backbone in order to con-

trol polymer stiffness:

Ubend(✓b) = k✓ (1 + cos ✓b) . (3)

Here, ✓b is the angle formed between adjacent bonds, i.e. ti · ti+1/|ti||ti+1| with ti the tangent

at i, and k✓ = 20BT is the bending constant. With this choice lp = 20�b ' 50 nm is the

persistence length.

To model the torsional stiffness, two dihedral CHARMM springs constrain the relative rota-

tion of consecutive beads,  , at a user-defined value ( 0). The torsional angle  is determined

as the angle between planes defined by the triplets bead-bead-patch running along the DNA

backbone. The potential is

Utorsion( ) = k [1 + cos (n � d)] (4)

where k = 50kBT , n = 1 and d =  0. The angle  0 directly determines the thermody-

namically preferred pitch of the twisted ribbon as p = 2⇡/ 0 and, in turn, this determines the

preferred linking number as Lk = M/p, where M is the number of beads in the plasmid. In

this model, we define the supercoiling as � ⌘ Lk/M = 1/p, which is set by initialising the

2
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patchy-polymer as a flat ribbon and by subsequently imposing the angle  0 in order to achieve

the wanted � (which may be zero, if  0 = 0 or p = 1).

Finally, to maintain consecutive beads parallel to the backbone, we constrain the angle be-

tween the triplets bead-bead-patch to ⇡/2 so that the frames of reference formed by the triplets

are aligned to each other. This potential is written as

Ualign = ka (1 + cos ✓) . (5)

where ✓ is the tilt angle as shown in Fig. 1 in the main text and with ka = 200kBT .

The simulations are performed at fixed monomer density ⇢�3
b = 0.08 (equivalent to about

39 mg/ml of DNA), where �b = 2.5 nm= 7.35bp is the typical size of a bead, and by evolving

the equation of motion for the beads coupled to a heath bath which provides noise and friction.

The equation of motion for each Cartesian component is thus given by

ma@ttra = �rUa � �a@tra +
p
2kBT�a⌘a(t) , (6)

where ma and �a are the mass and the friction coefficient of bead a, and ⌘a is its stochastic

noise vector satisfying the fluctuation-dissipation theorem. U is the sum of the energy fields

described above. The simulations are performed in LAMMPS (36) with m = � = kB =

T = 1 and using a velocity-Verlet algorithm with integration time step �t = 0.002 ⌧B, where

⌧B = ��2/kBT ' 0.03 µs (using � = 3⇡⌘water� with ⌘water = 1 cP and � = 2.5 nm) is the

Brownian time. See also Table S1 for more details on the systems and Git repository https:

//git.ecdf.ed.ac.uk/dmichiel/supercoiledplasmids/ for sample codes to

reproduce these simulations.

Equilibration

Since we are simulating circular polymers (which are also torsionally constrained) we cannot

use bridge algorithms to relax the chains, instead we typically perform equilibrium simulations

3
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until key observables of the systems have reached a steady state. We monitor both, the gyration

radius and the displacement of the molecules, and deem the system equilibrated when each

molecule has travelled at least its own size in equilibrium. After that, we perform the production

run.

In total, we have performed 20 sets of simulations, 5 supercoiling levels (relaxed, � =

0, 0.02, 0.04, 0.06) per 4 choices of plasmid length (M = 100, 200, 400, 800). The number of

plasmids in each system is N = 160, 80, 40, 40 meaning that there are 64’000 atoms per each

system (and 128’000 for the one with M = 800, recall that each DNA bead is made by 4 atoms,

one backbone and 3 patches). Thanks to the European Soft Matter Infrastructure we were able

to run most of these simulations on the supercomputer JURECA and some on Vienna Scientific

Cluster, consuming together about 2M CPU-h.

Intermediate Scattering Function - Simulations

In Fig. S5 we report the Intermediate scattering function (ISF) for monomers and centre of mass

(COM) of the plasmids. We compute this as

ISF (q, t) = he�iq·(rj(t)�rj(0))ij (7)

and averaged over monomers (or COMs) j. In particular, we use the convention that if a =

q · (rj(t)� rj(0)) < 0.1 then e�ia = 1� a2/6 + a4/120 � a6/5040 and sin (a)/a otherwise.

Detections of Tips and Plectonemes

The detection of tips and plectonomes in plasmids is done following the method described in

Ref. (64). Briefly, we compute the absolute writhe of a segment s of a plasmid as

W (s) =
1

4⇡

Z s

s�l

Z s+l

s

����
(r1 � r2) · (dr1 ⇥ dr2)

|r1 � r2|3

���� (8)
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where l is set to 50 beads as about 2 persistence lengths (which was shown to be a reasonable

window size in Ref. (64)). This calculation yields a function W (s) whose maxima represent

regions of high local writhe and can identify tips of plectonemes. In addition to being a local

maximum, we require that W (s) > 0.35 to avoid false positives. We checked that while the

number of detected tips depends slightly on the threshold value and the tip length l, the primitive

path analysis is robust with respect to usage of a more stringent choice of threshold 0.5 and

l = 40. In Fig. S5 below we plot the average number of tips hntipsi per plasmid. One can readily

notice that for low supercoiling the dispersion is quite large, indicating that the plasmids assume

loose conformations with several tip-like segments along the contour. On the contrary, for large

supercoiling one can notice that they become narrowly dispersed around hntipsi = 2 indicating

that the plasmids assume linear-like (rather than branched) conformations. Additionally, it is

interesting to appreciate that hntipsi is very close to zero for short M = 100 plasmids with

� = 0 once again indicating locked swollen conformations, as shown in the main text.

Using the tip-detection algorithm we have also checked that there is no nematic order in our

system as follows: for each chain we identify its two tips and construct the tip-to-tip vector n.

We then compute the nematic order parameter S = h(3(cos ✓)2 � 1)/2i where ✓ is the angle

between a reference n and that of the other chains in the system; the average is then performed

over chains. We find values of S ' 0.005� 0.01 for all systems for which tips can be identified

unambiguously therefore indicating that there is no nematic order.

Primitive Path Analysis

The primitive path analysis for linear polymers (66) is based on fixing the chains’ endpoints

in space, switching off the intra-chain repulsive interaction, while keeping the inter-chain and

running Langevin simulations at low temperature 0.01 to find a ground state. The resulting

chain conformations (primitive paths) are composed of straight segments connected by sharp

5
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kinks due to inter-chain entanglements. The entanglement length of each chain is then given by

Me = hr2eei/((M � 1)hbppi2), where hr2eei is the mean squared endpoint distance, M � 1 is the

number of bonds between the fixed points and hbppi is the mean bond-length of the primitive

path averaged over a single chain. The final entanglement length is the average of Me over

many chains. We adapt the PPA for plasmids by fixing the tips of all detected plectonemes and

then by following the same protocol as for linear chains.

For example, in the most common case of two tips per plasmid, both segments between the

tips forming the plasmid contribute to Me and are considered as independent for that purpose.

In some cases the branch-detecting method fails to localize all tips and detects only one tip. In

that case, we fix also the monomer M/2 contour-wise apart from a detected tip. In most cases

this coincides with a tip detected with a lower detection threshold. If no tips are detected in

one or more plasmids, the snapshot is excluded from the calculation. This does not happen for

plasmids with � = 0.06, happens rarely (in about 5% of cases) in for � = 0.04 and frequently

(about 60%) for the lower supercoiling � = 0.02. This is natural as the less supercoiled plasmids

display looser conformations where the branches are less clearly definable. We analyze about

50 to 100 snapshots each separated by at least 2.105⌧B. We check the method is robust with

respect to the choice of the threshold value 0.35 � 0.5 and the detection length 40 � 50 beads,

and gives within errorbars the same value of Me. In contrast to equilibrium rings (22), we

find our results do not strongly depend on the plasmid length, which gives the confidence that

this method is reliable and highlights the role of linear-like entanglement present in systems of

supercoiled plasmids. The small deviations within the errorbars are attributed to the finite size

of the examined plasmids. For that reason we used only the longer systems with M = 800

and M = 400 to have at least 3� 5 statistically independent entanglement segments. Note that

the value of Me reported in the main text for the system M = 400 � = 0.02 has no error bars

because we analysed only one snapshot.
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Isoconfigurational Averaging

To double-check our conclusions obtained using the primitive path analysis (PPA) we here con-

sider the method of isoconfigurational averaging (67) as an alternative method to estimate the

entanglement length. This method is based on running a set of NVE simulations with different

initial velocities, but otherwise identical starting configuration. The resulting set of trajecto-

ries explore during sufficiently long averaging time tavg the entanglement tube of the polymer,

hence the mean over trajectories and over time tavg defines the primitive path (PP), see Fig. S10.

The Kuhn length of the PP, measured as full width at half-maximum of the tangent-tangent cor-

relation function C(s) defines the entanglement length. We slightly adapted the method, by

using NVT ensemble with Langevin thermostat with different seed for each simulation, which

allowed us to keep our original relatively high time step and not interfering with the method’s

idea. As the Langevin thermostat induces artificial random diffusion of the total center of mass,

we subtracted it when analyzing the trajectories. The original method introduced in Ref. (67)

was used on a system of rings linked through periodic boundary conditions, which allowed for

the study of the PP without the complications arising from contour length fluctuations, con-

straint release or reptation. In our case, the method is affected by all of these and hence needs

more testing to be used reliably in this context. Here we use it only as a tool to double check

our findings from PPA and the growth of Me with �.

At first we tested the method on the system M = 800 and � = 0.04, where the estimate

of Me from PPA is reasonably accurate (yielding Me ' 84), but at the same time the plasmids

exhibit non-trivial structure (some have more than two tips, some none). We ran 25 trajecto-

ries and used a range of different tavg. We analysed each plasmid in the system separately and

averaged over them to obtain C(s). Short simulation or short averaging times would result in in-

sufficient tube exploration, while long times would suffer from the changes in the primitive path

due to the dynamic effects mentioned above, i.e. contour length fluctuations, constraint release
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or reptation. Both of these problems tend to increase the measured Me, but considering their

different mechanism (tube exploration versus reptation, etc) we expect a different functional

form dictating the enlargement of the tube size in the two regimes. Hence, to determine the

appropriate averaging times we plotted Me as function of runtime for different averaging times

(Fig. S8). The estimations of Me collapse for all averaging times suggesting that the ensemble

of trajectories is large enough and there is no need for extensive time averaging. In log-log plot

we observe, as expected, two distinct regimes of Me(t) and thus define the appropriate averag-

ing time to be at the crossover of the two growth regimes, i.e. where tube exploration stops and

reptation and other relaxation mechanisms start to be important. In this particular case, we find

the crossover at about 104⌧B. The corresponding Me ' 54. Although this does not numerically

agree with the PPA method, as shown in (67), the values obtained from Isoconfigurational av-

eraging tend to agree with other chain shrinking method that agrees with PPA up to a factor of

about 3/2 (68). Using this we find Me = 81 in agreement with PPA. We repeated the analysis

for system of linear chains (see next section) and systems with M = 800 and lower � and as we

show in the main text (Fig. 6F) the scaling of Me/Me,linear appears to be the same as that found

by PPA.

Further qualitative support for the time scale 104⌧B is also evident from the snapshots of the

alternative trajectories where we observe a significant ring fluctuations, particularly around the

tips of the plasmid (Fig. S11).

Alternatively, one can quantify the tube radius rT as the root mean square of the two lower

eigenvalues of the gyration tensor of the alternative monomer positions see details in Ref. (67).

We verified the results with this method only on M = 800 and � = 0.04. Similarly to the

previous one, yields an increasing function of the time, with a slightly less transparent regime

boundary. Yet, if we use the same crossover time we get rT ' 23 (Fig. S9). In linear melts the

tube diameter is related to the entanglement length as dT = (lKLe)1/2, which, using effective
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Kuhn length lK = 40, for our values gives Me = Le/�b = (2rT )2/lK�b = 53, consistent with

the above value extracted using tangent-tangent correlation method on IsoMPs. Note that the

tube diameter 2rT is of the order of Kuhn length giving further confirmation that our system is

in the crossover from semidilute to stiff regime as detailed in (70).

Let us stress that the entanglement effects and the proper definition of the entanglement

length (or its equivalent) are not fully understood for ring polymers and even more so in case

of supercoiled plasmids. For relaxed rings it has been shown (81, 82) that the “tube” inflates

in a self-similar fashion. We highlight that the IsoMP method from Ref. (67) has the potential

to elucidate this tube inflation for supercoiled plasmids versus linear DNA. We leave this for a

future study.

Entanglement Length of Linear Twistable Chains

The PPA and IsoMP analysis was also performed on systems on linear twistable chains. They

were prepared by removing a single bead from M = 200 beads long plasmids (with � = 0)

and re-equilibrating the system until the radius of gyration was in steady state (we also set the

stiffness of the dihedral potential at 0). For PPA, we pinned the ends of the chains while for

IsoMP we did the simulations as described in the previous section. We obtained Me,linear = 54

with PPA and Me,linear = 49 with IsoMP.

Supplementary Table

Supplementary Figures
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Figure S2: Asphericity (50–52) a = ((a � b)2 + (a � c)2 + (b � c)2)/2R4
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Figure S3: A. Time trace of the ensemble-averaged square magnetic radius R2
m = |A2| /⇡ with

A = 1/2
PN

i=1 ri ⇥ ri+1 (58). B. Distributions of the square magnetic radius for fixed bin
width (�R2

m = 1). C. Same as B, this time plotted for a fixed total number of bins (=1000) and
different bin width to best compare the distributions (notice the bimodal distribution for relaxed
plasmids M = 100). From left to right M = 100, 200, 400, 800. D. Scaling of the square
magnetic radius with supercoiling. E. Same as D, normalised by the square magnetic radius of
the relaxed plasmids. Solid lines show an exponential decay, whereas dashed line a power law
1/�. Notice that the scaling of R2

m with sigma is more compatible with an exponential decay
than the power law. Instead the minimal surface (see main text) scales closely to 1/�.
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Figure S4: Plots of TAMSD, from top to bottom g1 = h[ri(t+ t0)� ri(t0)]
2i, g2 =

h[(ri(t+ t0)� rcm(t+ t0))� (ri(t0)� rcm(t0))]
2i, g3 = h[rcm(t+ t0)� rcm(t0)]

2i, where
ri(t) is the position of the monomer i at time t, rcm(t) is the position of the centre of mass
of the plasmid to which the monomer i belongs at time t and the averages are intended over
monomers (and over plasmids) and times t0. The arrows in the top right panel show that for
M = 800, the monomer self-displacement is slower at short times and faster at larger times for
increasing �; this is in agreement with the more detailed ISF shown in Fig. S5.
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Figure S5: Plots of Intermediate scattering function for monomers (left) and centre of mass of
plasmids (right). We chose to compare two values of q above and below the (inverse) plasmid
size. In particular we picked q1 = 2/Rg corresponding to a length scale l = 2⇡/q = ⇡Rg

above the diameter of the plasmids (2Rg, notice that Rg = hR2
gi1/2 depends on both length and

value of supercoiling � so it is slightly different for all the solid-line curves and we report the
precise value in the legends) and q2 = 0.3��1 corresponding to a lengthscale comparable to the
persistence length l = 2⇡/q = 20� (this is the same for all dashed-lines curves and so leave
it unspecified). The arrows highlight the trend for increasing �. In particular, for short chains
both short and long timescales display faster decay of the monomer ISFs; on the other hand,
for longer chains lengths (M � 400) one can see that systems with larger � display a slower
decay at short timescales and faster decay at longer timescales. This behaviour is similar at both
wavelengths q but does not appear in the ISF of the COM. See also g1 in Fig. S4.
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Figure S6: Plots of average number of tips for the different systems as a function of supercoiling.
A. M = 100 B. M = 200 C. M = 400 D. M = 800.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 20, 2021. ; https://doi.org/10.1101/2020.09.21.306092doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.21.306092
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S7: Analysis of DNA topology by agarose gel electrophoresis. From left to right: 5.9
kbp DNA after treatment with Topoisomerase I; �-DNA HindIII digest used as a molecular
weight standard (Thermo Fisher Scientific); 5.9 kbp DNA stock with no enzymatic treatment
(80% supercoiled and 20% relaxed circular). Samples were run on a 1% agarose gel in 1X TAE
buffer at 5 V/cm for 2.5 hours. Gel was post-stained (SYBR Safe DNA Gel Stain, Invitrogen).
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Figure S8: Entanglement length as function of time for different averaging times as ex-
tracted from the isoconfigurational averaging method. Top: log-log, two dashed lines (power-
laws) serve as a guide to the eye and represent the two regimes: tube exploration and repta-
tion/constraint release/etc (see text). Bottom: same as above but in linear-linear scale.
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Figure S9: Tube radius versus time for different averaging times.

Figure S10: Ten snapshots of a conformation of a randomly chosen ring in time increments of
104⌧B. Decreasing opacity marks increasing time.
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Figure S11: Snapshot of a randomly chosen ring (black) with its 24 alternative conformations
(red) at a given simulation time in the title.
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