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Abstract

Using the Landau-Ginzburg-Devonshire phenomenological approach along with electrostatic equations
and eladticity theory, we perform finite element modeling of the electric polarization, electric field, and
elastic stresses and strainsin a core-shell nanoparticle, where the ferroel ectric core has a shape of prolate
cylinder. The nanoparticle is placed is a very soft elastic medium. We impose an electrical open-circuit
conditions at the cylinder ends to make the vortex-type polarization energetically favorable. Caculations,
performed for the sharp and rounded ends of a cylindrical BaTiOs core, reveal that the distribution of the
polarization components depends critically on the curvature radius of the ends and is highly sensitive to
the values of polarization gradient coefficients.

Calculations reveal the quadrupolar-type diffuse domain structure consisting of two oppositely
oriented diffuse axial domains located near the cylinder ends, which are separated by aregion with azero-
axial polarization; we have termed this “flexon” to underline the flexoelectric nature of its axial
polarization. Analytical calculations and FEM results have proven that a change of the flexoelectric
coefficient sign leads to a reorientation of the flexon axia polarization; as well as an anisotropy of the
flexoelectric coupling critically influences the flexon formation and related domain morphology. The
flexon polarization forms a drop-shaped region near the ends of the cylinder, with a distinct chira
structure that is determined by the sign of the flexoelectric coupling constant F;;. Its rounded shape,
combined with itsdistinct chiral properties and the localization nature near the surface are reminiscent of
athose of Chira Bobber structures in magnetism [Rybakov et al., Phys. Rev.Lett.115, 117201 (2015)].
In the azimuthal plane, the flexon displays the polarization state of a meron. We show that this new type
of chiral polarization structureis stabilized by an anisotropic flexoel ectric coupling. It isimportant to note
that the Lifshitz invariant describing the flexoel ectric effect, which couples the electric polarization and
elagtic strain gradients, plays adetermining rolein the stabilization of these chiral states [Bogdanov, JETP
Lett. 68, 137 (1998)]. It thereby provides an energetic interaction that, similar to the recently predicted
ferroelectric Dyzaloshinskii-Moryia interaction [Erb& Hlinka PRB 102, 024110 (2020), Zhao €t a, Nat.
Mater. 20, 341 (2021)], can lead to the formation of chiral polarization states, and, by extension,
ferroelectric skyrmions.

We predict that the flexon-type polarization distribution exists in the temperature range 260 K <
T < 360 K. The relatively wide temperature range (about 100 K) gives us the hope that the flexons can
be observed experimentally. However, the analysis of the hysteresis loops leads to the conclusion that
flexons and other domain configurations cannot be resolved from macroscopic measurements of the
average polarization in a homogeneous electric field. Flexons can be observed by local methods using a
strong gradient of an electric field, such as scanning piezoel ectric response force microscopy, which give
us the information about the local distribution of polarization with nanoscale resolution. Such chiral

nanostructures could also be detected by means of resonant soft X-ray dichroism.



. INTRODUCTION

Research on ferroelectric materials has received growing interest over the past years, driven in
part by the potential of these material systems for low-power technological applications in a
broad spectrum of domains [1, 2], ranging from high-density data storage to optical nano-
devices. A central aspect of this field of research is the formation of ferroelectric domain
structures [3], and more generally the micro- and nanoscal e structure of the polarization field [4].
Although the foundations for the theoretical description of these material systems have been
established decades ago [5], understanding the complex physical properties of ferroelectrics
remains a challenge for fundamental research. Recent progress in this field, achieved to alarge
extent through advanced imaging techniques [6] and by employing modern numerical
simulations [7], includes the discovery of highly complex polarization structures, such as flux
closure [8, 9, 10, 11] and bubble domains [12], meandering [13, 14] and/or labyrinthine [15, 16]
structures, non-Ising type chiral domain walls [17], polarization vortices [18, 19, 20], or polar
skyrmions [21, 22]. The latter belong to a particular category of ferroic structures which are
characterized by the spontaneous formation of helicoidal patterns. The mechanism that underpins
the formation of skyrmion structures in ferroelectrics is not fully understood. A possible
explanation isthat these types of structures are stabilized by a Dyzal oshinskii-MoryiaInteraction
(DM1) type energy term. An antisymmetric coupling term of thistype, previously known to exist
in certain categories of ferromagnets [23, 24], has recently been predicted aso for ferroelectric
materials[25].

Traditionally, research on ferroel ectrics is centered on the study of bulk material and thin
films [9-14], but recently ferroelectric nanoparticles have also attracted increasing interest [15,
26]. The transition from bulk to nanostructured ferroel ectrics is comparable to the development
that was made in the past decades in the neighboring scientific community of ferromagnets,
where it was found that the particle shape and size can have a decisive impact on their physical
properties [27]. In ferroelectric thin films and nanoparticles, the polarization structureis strongly
affected by electrostatic (depolarizing) fields [28, 29], as well as by strain and strain gradients
[30, 31, 32, 33, 34] viathe flexoelectric effect [35, 36, 37].

The thermodynamic description of the flexoelectric effect is given by the Lifshitz
invariant in the free energy expansion [36]. It is known that, in magnetic materias, the
occurrence of similar Lifshitz invariants converts directly into an antisymmetric coupling known
asthe DMI [38, 39], which favors the formation of helicoidal structures with a specific chiraity.
The existence of aferroelectric counterpart of the DMI was recently predicted by first-principles

simulations [25]. Similarly, in the context of Lifshitz invariants, the ferroel ectric analogue of the
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DMI was discussed by Strukov and Levanyuk [40], and more recently by Erb and Hlinka [41]
who argued that a ferroelectric DMI can exist which could stabilize polar skyrmion structures.
While the ferroelectric DMI could be at the origin of such structures, Erb and Hlinka showed
that only very few and rather exotic material systems possess symmetry properties that are
compatible with such an interaction. In addition to the remarkabl e similarity in the mathematical
form of flexoelectric Lifshitz invariant and DMI, the flexoel ectric term appears to have asimilar
impact as the DMI in terms of the formation of chiral structures.

By means of the finite element modeling (FEM) based on the Landau-Ginzburg-
Devonshire (L GD) theory, we show that an anisotropic flexoel ectric effect can give riseto anew
type of polarization states with distinct chiral properties, which we have termed a “flexon”. In
particular, we observe the formation of particle-like drop shaped polarization structures at
opposite ends of ferroelectric nanocylinders. These polarization states possess homochiral
propertieswhich are not induced by aDMI term. Thisfinding suggeststhat the recently discussed
DMI in ferroelectrics is not the only possible mechanism for the formation of homochiral
polarization states, and that anisotropic flexoelectric effects offer an alternative pathway to
stabilize such structuresin ferroel ectric nanostructures. We discuss common aspects of the DM
and the flexoelectric effect, which are both derived from Lifshitz invariants in the framework of

the Landau theory of second-order phase transitions.

[1. CONSIDERED PROBLEM AND SIMULATION DETAILS
A. Considered Problem and Material Parameters
Using a LGD phenomenological approach along with electrostatic equations and
elasticity theory, we model the polarization, theinternal electric field, and the el astic stresses and
strains in a core-shell nanoparticle using FEM, where the ferroelectric core is made of BaTiOs
and has a cylindrical shape. The aspect ratio of the nanocylinder radius R to its length h is
significantly higher than unity. The z-axis is parallel to the cylinder axis (see Fig. 1). The core-

shell nanoparticleis placed is a very soft elastic medium (e.g., liquid).
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FIGURE 1. A cylindrical ferroelectric nanoparticle (core) of radius R, covered with a paragl ectric shell

with ascreening length of 1 nm, placed in an isotropic elastically soft effective medium. The direction of

axial polarization P; is shown by the straight orange arrow, and lateral componentsP; , are shown by the

curled red-blue arrow to highlight their vortex-type structure.

The LGD free energy functional G of the nanoparticle core includes a Landau energy —

an expansion on powers of 2-4-6 of the polarization (P;), G;gnaqu; @polarization gradient energy,

Ggraa; N electrostatic energy, G,;; an elastic, electrostriction contribution G, a flexoelectric

contribution, Gr.,; and a surface energy, Gs. It has the form [42]:
G = GLandau + Ggrad + Gel + Gflexo + Gflexo + GS!
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Here V. is the core volume. The coefficient a; linearly depends on temperature T, a;(T) =
ar[T — T¢], where a; is the inverse Curie-Weiss constant and T, is the ferroelectric Curie
temperature renormalized by electrostriction and surface tension [43]. Tensor components a;;
are regarded as temperature-independent. The tensor a;; is positively defined if the ferroelectric
material undergoes a second order transition to the paraglectric phase and negative otherwise.
The higher nonlinear tensor a;; and the gradient coefficients tensor g, are positively defined
and regarded as temperature-independent. In Eq.(1€), o;; is the stress tensor, s is the elastic
compliancestensor, and Q; j; isthe electrostriction tensor. Inthe Lifshitz invariant, EqQ.(1f), F;jx,
is the flexoel ectric tensor.

Euler-Lagrange equations obtained from the variation of the free energy (1),
mathematical formulation of the electrostatic and el astic sub-problem, and FEM detailsare given
in Appendix A of Supplementary Materials. Theferroelectric, dielectric, and elastic properties

of the BaTiOs corearegivenin Tablel.

Tablel. LGD coefficients and other material parameters of BaTiO3z nanocylinders

Coefficient Numerical value
£p, e gp = 7 (core background), g = 10 (surrounding)
a (inmJC? a; = 3.34(T-381)-10°, ar = 3.34-10° (a1=-2.94-10" at 298 K)
aj (inmJC? ai1 = 4.69(T-393)-106-2.02-10°, az» = 3.230-105,

(a1 = —6.71-10° a 298 K)

dijk (in ng/CG)

aun = —5.52(T-393)-10"+2.76-10°%, ay12 = 4.47-10°, aup3 = 4.91-10°
(at 298 K aji1 = 82.8'108, 112 = 44.7-108, Aoz = 491108)

Qj (m%C?)

Q1:=0.11, Q2= -0.043, Q4=0.059

sj (in10%? Pal)

$11=8.3, s1o= —2.7, S14=9.24

Oij (in 109m3y C2)

011=5.0, g1o= -0.2, gus= 0.2

Fij (in 10'11m3/C)
fi (inV)

Fin=2.4, F12= 0.5, F41= 0.06 (these values are recal culated from the values
f11 = 5.1, f12 = 3.3, f44: 0.065V caculated in [44]

0 (sinceits characteristic values are unknown for BaTiO3 and other

Vijm perovskites)

a® 0 (that corresponds to the so-called natural boundary conditions)
B (in 10K ) 9.8 (thermal expansion coefficient)

a9 (inA) 4.035 A lattice constant at 1000 °C

Rand h (in nm) R =10 (vary from 2 to 20 nm), h = 80 (vary from 8 to 160 nm)

Electrical boundary conditions. We consider the case when the surface of the core is

B. Simulation Details

covered by an elastically soft ultrathin semiconductor shell with ascreening length A~1 nm. The




coverage can be artificial or natural, where in the latter case it would originate from the
polarization screening by surrounding media. Note that a screening length larger than 0.1 nm
weakly effects the core domain structure, in this case the screening acts as an electrical open-
circuit condition. Thus, we impose an electrical open-circuit condition at the cylinder ends to
make the vortex-type polarization energetically favorable.

Initial conditions, shape, and gradient effects variability. We use afour 90-degree domain

configuration in the XY -plane with superimposed small random noise as an initial distribution
of polarization. These four domains determine the direction of the lateral polarization vorticity.
When we used a purely random noise as the initia distribution of polarization, it relaxed to a
domain structure resembling 180-degree domains in thin c*/c” films, since the depolarization
field favors a polarization orientation along the z-axis of the elongated cylinder; however, the
vorticity of polarization components appears near the cylinder ends (an anal og of the flux-closure
a-domains in thin films).

FEM, performed for the sharp and rounded ends of a cylindrical core reveas that the
distribution of the polarization components depends critically on the curvature radius of the ends
(see Fig. S2 in Suppl. Mat.). The increase of the curvature leads to the strong increase of P;
value and to the simultaneous appearance of ¢*/c” bidomain configuration, which contains flux-
closure domains near the spherical ends. Note the dependence of P; on the flexoelectric
coefficients F;; virtually disappears with the curvature increase.

FEM performed for different values of F;; reveals ahigh sensitivity of the P;-distribution
to the values of polarization gradient coefficients g;; (see Fig. S3in Suppl. Mat.). Specificaly,
the reduction of g;; by afactor of ten leads to the appearance of quasi-stable periodic spot-like
P;-domains. These spot-like domains are insensitive to the value and sign of F;;, if its absolute
value is less than 4 - 10~*m?/C. The sharp transformation of the spot-like P;-domains into a
stable bidomain configuration with flux-closure domains at the cylinder ends appears at
unredistically high values of F;;. The results presented below are obtained from conducting an
FEM analysis on a cylindrical core with sharp ends using the values of g;; listed in Table I,
because this particular case is the most realistic and has the greatest impact of the flexoelectric

coupling.



[11.RESULTSOF FINITE ELEMENT MODELING
A. FEM Resultsat Room Temperature

Images in Figs. 2a and 3a are calculated without electrostriction (Q;; = 0) and
flexoelectric (F;; = 0) couplings between the electric polarization and elastic stresses. For the
case avery prolate dipolar kernel oriented along z-axis appears inside the cylindrical core. The
kernel has relatively thin 180-degree domain walls, which are mostly uncharged because they
are parallel to the kernel axis and cylinder lateral surface. The bound charges appear at the walls
only in a small spatial region near the kerndl that is contact with the cylinder ends, where the
180-degree walls become counter head-to-head walls. The axial polarization P; inside the kernel
is high, P;~— (20 — 26) uClem? (this is very close to the bulk polarization of BaTiOs
~26 uClem?), and the surrounding core has relatively small axial polarization of the opposite
sign, P;~(0 — 5) uC/cm?. The lateral components of polarization, P; and P,, form a two-
dimensional (2D) vortex without a central empty core, because a dipolar kernel evolves instead.
The polarization magnitude inside the vortex part of the core is much smaller than the bulk
polarization of BaTiOs. Thetwo symmetrical Bloch pointswith P = 0 arelocated at the junction
of the dipolar kernel with the cylinder ends. The “up” or “down” orientation of polarization
component P; inside the kernel is determined by random noisein theinitial conditions.

The direction of the polarization vorticity (see Fig. 2, top row) is determined by the initial
conditions for the polarization vector (e.g., taken in the form random noise). Imagesin Figs. 2b-
d and 3b-e are calculated for a nonzero electrostriction coupling (Q;; # 0) and either negative,
zero, or positive values of the flexoelectric coefficients F;;. In the presence of electrostriction
coupling the dipolar kernel disappears completely (see Figs. 2c and 3c). The flexoel ectric effect
induces an axial component of polarization with a quadrupolar structure consisting of two
oppositely oriented diffuse P;-domains located near the cylinder ends and separated by a region
with P; = 0, but it does not change the direction of polarization vorticity in the radial plane (see
Figs. 2b, 2d and 3b, 3d). The diffuseness of the P;-domain walls is dictated by the need to
decrease the depolarization field produced by the bound charges of the head-to-head domain
walls. The P;-domains are located near the cylinder ends, and their length (about 10 nm) and
lateral size (about 5 nm) are amost independent on the cylinder length if A > 5 nm. The
component Py isvery small (|P;| < 0.4 uC/cm?) in comparison with the components P, ,, but it
increases up to 1.2 uC/cm? with the flexoelectric coupling increase (see Figs. 3e) and then
saturates (see Figs. 3f). The axia P;-domains, which have the opposite direction of polarization,

change the direction under the transformation F;; — —F;; (compare the position of red and blue



diffuse spots of the P; distributions in Fig. 3b and 3d), while the distribution of the lateral
components P, , isvirtually independent on F;; sign and magnitude (see the top row in Figs. 2b-
2d).

From now on we will cal the reveaded quadrupolar-type diffuse domain structure
“flexon” for the sake of brevity and to underline the flexoelectric nature of its axial polarization.
The main effect of the flexoelectric coefficients sign change is the reorientation of the flexon
axial polarization. The flexoel ectric coupling changes the structure of the pol arization orientation
(see the bottom row in Figs. 2b-2e), but practically has no effect on the polarization magnitude
intheflexon (seethemiddlerow in Figs. 3b-3€). Asamatter of fact, the direction of polarization
vector rotation in the XY -plane is independent on the F;; sign.

The polarization structures at the wire ends shown in Fig. 2b-2d and Fig. 2b-2d display
localized chiral structures, which have different chirality on opposite ends of the wire and change
their chirality upon reversal of the sign of the flexoelectric coupling constant.

To understand the chirality change, in Appendix C we derived an approximate analytical
expression for the polarization distribution inside the flexon:

P, (p,9,z) = p(p,z)sing, Py(p,p,z) = —p(p,z)cosy, (29)
Py, 0, 2) ~ f::p(p 2)[u13(p,9,2)sing—uz3(p,@.z)cose] % u33(p,.2) (2b)
o [(11 —211321122 2(p,2)— Zﬁ 31122u33+[g11+(F11—F44—F12)Sﬁ fllzz]l'c"' 4LC]

where {p, ¢, z} are cylindrical coordinates, the function p(p, z)~tanh< ) LY. and L7 arelateral

and axial correlation lengths. The functions u;;(p, ,z) are elagtic strains, s;; are elastic
compliances, Q;; are electrostriction tensor components, g;; are polarization gradient
coefficients written in Voight notations. From Eq.(2b), the axial part of the flexon polarization

F11—Fy4 —F12

is proportional to — 33(p @, z), and this proportionality along with Fig. S6

S11—512
qualitatively describes the curves’ behavior in Fig. 3f.

In order to quantify the chirality of the polarization structure and its variation along the

cylinder axis, in Appendix D we calculate the topological index n = —f [6p X ap] dxdy [45]

of the unit polarization orientationp = Sfor theintegration over the cylinder cross-section {x, y}.

For the case of P;(p = R, z) — 0, z-dependence of the topological index is

_ _ P(p=0z) _ sign[f]z
n(z) = 2P(p=0,2) —  2J1+(z2/B) (3)

Here sign[f] is the sign of the flexoelectric coefficients F;j,

B is a positive constant, which
depends on the absolute value of |F;;|. n(z) is a normalized profile of P;(p = 0,z), and so
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n(z) = 0 for F;; = 0, and its sign is defined by the sign of F;;. The dependence n(z) is shown
in Fig. 3g and Fig. S7a for zero, positive, and negative F;;. Sincethe value P(0, z) isvery close
to the P;(0, z) near the cylinder ends (see Fig. S7a and S7b), and P;(0, z) vanishesin the central
part of a nanoparticle, the topological index continuously changes from -4 to +% with a z-
coordinate change from one cylinder end to the other. The result clearly shows the localization
of the chiral structures — the flexons — at the ends of the wires. The topological index, which can
be interpreted as the degree to which astructureis chiral, changes sign from one and to the other,

and changes sign upon reversal of the sign of F;;. It also increases in magnitude with increasing
absolute value of |Fi]-|. These properties make obvious the clear correlation between the

flexoelectric effect and the formation of chiral polarization structures.

In contrast to the topological index, the toroidal moment, M= % fv[ﬁ X ?]d3r, appears

almost the same for zero, positive, and negative flexoelectric tensor coefficients. The reason M
is, for the most part, unaffected by the flexoelectric effect is that M is equal to the integral of
polarization magnitude p(p, z), namely M = @% ) OR p(p, z)pdp, where the magnitude p(p, z)

is nearly independent on the flexoelectric coupling (see e.g., Fig. $4, the middle row).

The new type of isolated chira polarization structures, which we call flexons, display
features of athree-dimensional meron. In this sense, the polarization vortex in the XY -plane can
be interpreted as the Bloch-like transition region of a meron connecting polarization directions

of opposite Pz sign in the core region and in the outer cylindrical shell (see Fig. 2). The flexon

polarization P develops a characteristic drop-shape with a chiral structure localized near the
surfaces of the cylinder that is reminiscent of the chiral-bobber state found in non-
centrosymmetric magnetic films [46] and nanoparticles [47]. It is worth noting that similar,
skyrmion-like configurations at the ends of cylindrical nanowires have aso been predicted
anaytically [48] and numerically [49] in the case of non-chiral ferromagnetic materials, but only
in the form of transient configurations appearing during the dynamic magnetization reversa
process. Here, the skyrmion-like polarization structures appear as stable states in the
ferroelectrics, owing to a chiral-symmetry breaking effect of the flexoelectric coupling. In
contrast to previousfindings[50, 51, 52], the flexon structureis chiral [53] and almost uncharged

because divP = 0 (see Fig. S6b in Appendix C).
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FIGURE 2. Distribution of the polarization vector P (the top row), its component P; (the middlerow),
and the isosurfaces of polarization components (the bottom row) inside a cylindrical nanoparticle. The
images are calculated without electrostriction (Q;; = 0) and flexoelectric (F;; = 0) couplings (a); with
electrostriction coupling (Q;; # 0) and negative (b), or zero (c), or positive (d) values of flexoelectric
coefficients F;;. The top row: arrows show the distribution of polarization vector P. The arrow color
corresponds to the value of P; (in red-blue scale). The middle row: distribution of P; in three different
cross-sections of the nanoparticle core. The bottom row shows a magnified view on the flexon structure.
Thevaluesof Fj; and al other parameters are givenin Table !, T = 300 K.

The maximal (P,q,) and minimal (P,;,) values of P; occur at F;; = 0 (see the red and

blue curvesin Fig. 3f). Thevalues B,,,, and P,,,;,, are even functions of the flexoel ectric coupling
11



strength f, where F;; = f Fl-‘} and the reference values of Fi‘} aregivenin Tablel. The extremal
(maximal or minimal) value P, in the center of the diffuse axial Ps-domain is an odd function of
f,whichiszeroat F;; = 0 (seethe green curvein Fig. 3f).

Note that the P, value frequently differs from B,,,, and P,,;,, vaues due to the presence
of the small sixteen P;-domains|ocalized near the top and bottom junction of cylindrical sidewall
with the cylinder ends. The polarization direction alternates in these 180-degree domains: four
“up” domains alter with four “down” domains at each junction. These alternating P;-domains
are not the part of flexon, because they are induced by the electrostriction coupling. Their
structure depends weakly on the flexoelectric coupling strength f, if f is small. However, the
shape of each domain significantly changes and the size of each domain moderately increases as
|F;;| increases (compare Fig. 3d and Fig. 3€). The change of polarization direction occurs in

each of the 16 dternating P;-domains at F;; — —F;;.
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FIGURE 3. Distribution of the polarization component P (the top row), polarization magnitude in the

XZ cross-section of the nanoparticle, and isosurfaces of polarization components P, = 0 (gray), P, = 0

(green), P; =+0.1uC/cm? (red), and P; =—0.1uC/cm? (blue) (the middle row). Images are calculated

without electrostriction (Q;; = 0) and flexoelectric (F;;
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(Q;; # 0) and negative (b), zero (c), positive (d), or high positive (€) values of flexoelectric coefficients
F;;. The bottom part (f) is the dependence of the maximal (red curve, B;,,,) and minimal (blue curve,
Pin) values of P; on the relative amplitude of the flexoel ectric coupling strength f. The green curve is
the extremal (maximal or minimal) value P, in the center of thetop axia P;-domain. Here F;; = f Fi‘}, the
values of Fi(]’- and all other parametersare givenin Tablel, T = 300 K. The Z-profile of the polarization
topological index n(z) is shown in the inset (g) for zero (black line), positive (red curve), and negative

(blue curve) F;.

Asarule, theflexoelectric tensor component F,, iseither poorly known from experiments
or ill-defined from ab initio calculations; therefore, we can vary it over a wide range to see
whether the flexoelectric coupling anisotropy has any influence on the domain morphology.
FEM results are shown in Fig. 4. The top and middle rows illustrate that the P; distribution
changes very strongly when F,, varies from high negative to high positive values, while the
other components of the flexoelectric tensor are fixed and equal to the tabulated values F;; =
2.4-10"m%Cand F;, = 0.5 - 10"m®/C.

The flexon contains two pronounced axial domains located near the cylinder ends, which
have thick diffuse domain walls and opposite polarization directions, and exist at high negative
(Fig. 4a) and high positive (Fig. 4e) F,, vaues. The P;-domains become smaller and more
diffuse with a decrease of |F,,|; but they are till visible and practically do not change their
shape, size, or polarization distribution for small |F,,| values over the range |F,,| < 0.06
(Fig. 4b). Theflexon becomes faint and almost disappears when F,, approachesthevaue F,, =
F;1 — Fi; = 1.9 - 10" m%C corresponding to the isotropic symmetry of F;; (Fig. 4c). Thevalue
will be referred to as “isotropic” below. The “anisotropic” positive values 0.06 < F,, < 3-10°
1 m3/C induce amore visible flexon with two diffuse axial domains (Fig. 4d).

The dependence of the maximal (red curve, B,,,,) and minimal (blue curve, P,,;,,) values
of the polarization component P; on the relative amplitude f of the flexoelectric coefficient F,,
is shown in Fig. 4f, where F,, = fF2, and F2, = 0.06 - 10** m%C. The values P,,4,, ad Ppin
reach a very diffuse plateau-like minimum and maximum, respectively, at the isotropic value
F,, = F;; — F;,. Thegreen curvein Fig. 4f isthe extremal (maximal or minimal) value P, in the
center of the bottom axial P;-domain. The extremal value P, in the center of the diffuse P;-
domain changes its sign in the immediate vicinity of the isotropic value F,, = F;; — F;,. The
values P, ., Pmin, @nd P, have no definite parity, because they are neither odd nor even functions
of the flexoel ectric coefficient F,, amplitude f. From Fig. 4f we can conclude that the anisotropy

of the flexoelectric coupling has a critically influence on the domain morphology in the flexon.
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Actuadly, the axial part of the flexon polarization is proportional to —

F11—Fy4—F;5 OU33

[see

S511—S12 0z

Eq.(2b)], this proportionality along with Fig. S7 qualitatively describes the curves’ behavior in

Fig. 4f.
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FIGURE 4. Distribution of the polarization component P; in three different cross-sections of the
nanoparticle core (thetop row), and in the XZ cross-section of cylindrical core (the middle row). Images
are calculated for the fixed values F;; = 2.4 10" m%C and F;, = 0.5 - 10 m*/C, while the value of
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F,, variesfrom -6to 6 (in 10*m?*/C) asindicated in the legends. The bottom part (f) is the dependence
of the maximal (red curve, B,,,) and minimal (blue curve, P,,;,,) values of P; on the relative amplitude
f of the flexoelectric coefficient F,, in the core. The green curve is the extremal (maximal or minimal)
value P, in the center of the bottom axia P;-domain. Here F,, = fF2, and F2, = 0.06 - 10** m%C. The
electrostriction coupling coefficients Q;; and al other parameters arelisted in Tablel, T = 300 K.

Therevealed flexon presentsanew type of localized, chira polarization structureinduced
by a flexoelectric coupling. As we mentioned in the introduction, homochiral interactions in
ferroelectrics are not yet firmly established, even though chiral polarization structures, such as
ferroelectric skyrmions, have been predicted theoretically [ 16] and later observed experimentally
[21]. Recent theoretical studies have predicted the existence of aferroelectric DMI analogous to
the magnetic interaction that favors the formation of homochiral helicoidal structures in non-
centrosymmetric magnetic materials [25, 41]. Our results show that a flexoelectric coupling
provides a possible alternative mechanism for the stabilization of chiral polarization structures.
We wish to underline the close conceptual similarity between the derivation of the ferroelectric
DMI through Lifshitz invariants [40, 41] and that of the flexoelastic effect, which is described
by the Lifshitz invariant in Eq. (1f). Thisinteraction, which couples the electric polarization and
elastic strain gradients, is ubiquitous in ferroelectrics. Unlike the ferroelectric DMI, it does not
require specific and unusual symmetry properties of the underlying crystal in order to be
compatible with the Landau theory of phase transitions. Our findings demonstrate that the
flexoelastic effect can provide an energetic interaction resulting in the formation of chiral
polarization structures [50, 51].

To verify this analogy, we attempt to convert the Lifshitz invariants into chiral

interactions of DMI type. Using divP = 0 for the uncharged domain structures and making

straightforward analytic manipulations for a cubic m3m point symmetry group of the BaTiO3

Fi1—F44—Fy ( 0Py
2 u 0x;

Q

parent phase, the explicit form of the Lifshitz invariant (1f) is Gfexo

P; %), where a summation over “i” is performed [see Eqs.(C.8) in Appendix C]. The elastic
stress o;; contains a contribution proportional to Q;jx,PxPx, Which originates from the
electrostriction coupling. For the P;-component we determine that the term

01 ((P1 +PHI P, p, 2PitEs )> i present in the Lifshitz invariant (1f). A similar

Fi1— F44 Fia
ox

invariant has been discussed in Ref. [40] in the context of incommensurate phases with adefined

chirality. Thisisconsistent with our finding of the formation of aflexon induced by theinvariant.
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B. Temperature Behavior of the Flexon-Type Polarization Distribution

To define the temperature interval, where flexons exist being stable or meta-stable, we
performed FEM in the temperature range from 50 K to 400 K using different initial distribution
of polarizationinacylindrical core. Typical FEM resultsare shown in Fig. 5, where the columns
(a)-(e) correspond to the temperature increase from 240 K to 370 K.

A bidomain configuration of P; is stable at temperatures lower than 250 K (see Figs. 5a).
The bidomain structure has a relatively thin uncharged 180-degree domain wall inside the
cylinder, which transforms into a flux-closure domain near the electrically-open cylinder ends
(see the top and middle images in Figs. 5a). The origin of the flux-closure domain is the core
tendency to minimize its electrostatic energy, because a flux-closure domain wall creates much
a weaker depolarization field (in fact negligibly small) compared to the field the charged 180-
degree domain wall would create. The structure of the P-vector is vertex-like and changes
moderately when approaching thesurfaceat T < 240 K (seethedirection of arrowsin the bottom
image of Figs. 5a).

We revealed that an initial four-domain polarization distribution relaxes to a flexon-like
domain structure in the temperature range 260 K < T < 360 K (see the middle row in Figs. 5b-
d). The structure of the P-vector is vortex-like, which weakly changes when approaching the
surface in the same temperature range (see the direction of arrows at the bottom image of
Figs. 5b-d). A relatively small domain wall broadening exists near the cylinder ends, which can
be seen from the polarization magnitude distribution at 260 K < T < 360 K (see the top images
of Figs. 5b-d).

The flexon gradually disappears a T > 370 K (see the middle image in Figs. 5e). The
ferroelectric polarization inside the core significantly decreases at T > 370 K and completely
disappears at T~400 K (see the top image in Figs. 5€). The latera components P; and P, form
avortex-like structure, and their distribution is nearly independent of the coordinate z along the
cylinder axis. Hence, the vortex-like structure of the P-vector is insensitive to the surface
presence. The structure becomes faint with a temperature increase above 370 K (see how the
arrows length decreases in the bottom image of Figs. 5e). The flexon-type polarization
distribution existsin arelatively wide temperature range 260 K < T < 360 K. The axial counter
domains inherent to flexons are the most pronounced feature over the narrower range 290 K <
T < 340 K. The relatively wide temperature range (about 100 K) corresponding to the stability
or meta-stability of the flexon-type polarization distribution gives us the hope that the domain

morphology can be observed experimentally.
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C. Influence of an External Electric Field on the Flexon Dynamics

The orientation of P; can be readily changed by the application of an external electric field.
Typical quasistatic hysteresis loops of P;(U) are shown in Figs. 6a-d, where the black loops
correspond to the average polarization P;(U); blue and red loops correspond to the minimal
(Pin (U)) and maximal (P4, (U)) vaues of P;(U) at agiven voltage U. Theloopsof P;(U) are
very slim, voltage-symmetric (sincetheir shapeis symmetrical with respect to the transformation
U — —U), and belong to the antiferroel ectric type (since they are double loops with P;(U) = 0).
The loops of P,,;,(U) and B, (U) are strongly voltage-asymmetric and contain two single
loops of different shape and size, which we refer to as “major” and “minor” loops. The loop
Ppin (U) is strongly shifted downward, and the loop B, (U) is strongly shifted upward.

Theloopsin Figs. 6a-6¢ are calculated for nonzero e ectrostriction coupling coefficients
and negative, zero, or positive flexoelectric coupling coefficients F;;. The main difference
between the loops shown in Figs. 6a, 6b, and 6¢, appear in a horizontal shift (imprint) of the
asymmetric loops Py,;,, (U) and B,,,,(U), originating from the virtual “flexoelectric” field. The

field is proportional to the combination of F;;, and so its direction is defined by the sign of F;j,

j1
and it isabsent for F;; = 0. In the linear approximation, the flexoelectric field is proportional to

(Fi1 — Fyy — F13) a;ﬁ, where us5 isthe component of elastic strain tensor (see Appendix C for

zZ

details). The proportionality partially explains the right shift (U;,,; > 0) of the intersection point
between major and minor loops calculated for F;; < 0 (shownin Figs. 6a-b) and the |eft shift of
the intersection point calculated for F;; > 0 (shown in Fig. 6¢).

The loops in Fig. 6d are calculated without electrostriction (Q;; = 0) and flexoelectric
coupling (F;; = 0). Here the loop of P;(U) is amost indistinguishable from the loops P;(U)
shown in Figs. 6a-6¢ for Q;; # 0. The subtle difference is an ultra-small coercivity at U = 0,

which is absent for the loops in Figs. 6a-c. The minor loops of P,,;,,(U) and B,,,,(U) are very
small in comparison with the major loops, and they are also significantly smaller than the minor
loops shown in Figs. 6a-6¢. The intersection point of mgjor and minor loops corresponds to
Upne = 0.
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0) coupling. Temperature T = 300 K, the distance between the e ectrodesis 60 nm. All other parameters
are listed in Table |. The bottom row shows P; distributions for different voltages U. Different
distributions corresponding to the same U illustrate arather small hysteresis effect.

The bottom row in Fig. 6 shows P; distributions for different voltages, from which it
follows that different P; distributions averaged over the core volume correspond to the same
average value, P;(U). Thus, the analysis of the hysteresis loops leads to the conclusion that
flexons cannot be distinguished from macroscopic (e.g., capacitance) measurements of the
average polarization in ahomogeneous electric field, they can only beregistered by local probing
methods using the strong gradient of electric field with a nanoscale resolution, such as
piezoresponse force microscopy (PFM).

Specificaly, the measurements of local vertical displacement by PFM visualize the
distribution of P;(#) at distances ~ 10 nm from the ends of a nanoparticle, but the resolution
procedure for the local piezoresponse of diffuse domains under the surface is far not
straightforward [54, 55]. This is because PFM is a near-field method. A complementary tool is
the far-field nonlinear optical microscopy (NOM) method [17], which has a comparatively much
lower resolution than PFM, yet optimum focusing methods and the experimental geometry allow
for overcoming the diffraction limit in NOM. For example, second-harmonic generation (SHG)
microscopy with a focused beam was successfully used by the community to precisely study
semiconductor nanowires [56]. SHG microscopy should also be capable of providing
complementary information on the 3D ferroelectric domain structure (being sensitive to P; , and

P;) by using polarimetry analysis (see, e.g., [57]).

V. DISCUSSION
Evolving from a four 90-degree domain configuration the flexon-type polarization
distribution is metastable, because the antiparallel bidomain-type polarization distribution
(evolving from arandom noise) has the lowest free energy in a BaTiOs cylindrical nanoparticle.
Corresponding energies are Gy =—3.6-107'%J and Gpy = —4.0-10"'J a room
temperature. The energy difference between the states, AG = 4 - 1071 Jis much higher (about

100 kgT) than the thermal energy barrier kzT at room temperature. However, the ratio kA—GT
B

strongly decreases with as the temperature increases. The linear relative dielectric permittivity
in both states is about 110 at room temperature and strongly increases with temperature.
Our numerical simulations show that a spontaneous off-field transition from the flexon

to the bidomain polarization state does not occur. The in-field transition is possible, and its
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mechanism is discussed in the previous section. Thus, the bidomain and flexon states of aprolate
core-shell ferroelectric nanoparticle can be considered as the exited and ground state of a two-

level system suitable for information recording. The two-level system can imitate qubits

operating in the temperature range where 1 < kA—GT < 5. Furthermore, the bidomain polarization
B

state corresponds to an antiferroelectric-like state of the nanoparticle polarization, which can be
represented as two antiparallel nanoscopic dipoles. The flexon is a much more complex achira
vortex-like configuration containing two counter dipole nanodomains with very diffuse relaxor-
like polar properties. Thus an ensemble of prolate core-shell ferroelectric nanoparticles, where a
given nanoparticle can be either in aflexon or a bidomain state, can be an alternative media for
information processing. The media may exhibit unusual properties including antiferroelectric
and/or relaxor-like polarization states, which can lead to additional functionalities. Note, that the
appearance of the antiferroelectric and relaxor-like glass states, as well as a newly discovered
liquid glass state [58] with additional (anti)ferroelectric ordering and other cross-talk effects, are

possible in a suspension of the prolate core-shell ferroel ectric nanoparticles.

V.CONCLUSIONS

Using a LGD phenomenological approach along with electrostatic equations and elasticity
theory, we perform FEM of the electric polarization, the internal electric field, and the elastic
stresses and strains in a core-shell cylindrical ferroelectric nanoparticle placed is a very soft
elastic medium. FEM, performed for the sharp and rounded ends of a cylindrical BaTiOz core
reveals that the distribution of the polarization components depends critically on the curvature
radius of the cylinder ends and is highly sensitive to the values of polarization gradient
coefficients.

FEM results, based on room temperature conditions, reveal the quadrupolar-type diffuse
domain structure consisting of two oppositely oriented diffuse axial domains located near the
cylinder ends and separated by aregion with zero axial polarization, which we named “flexon”
to underline the flexoelectric nature of its axial polarization. Analytical calculations and FEM
prove that the change of flexoelectric coefficients sign leads to areorientation of the flexon axial
polarization. We a'so reveal that an anisotropy of the flexoelectric coupling critically influences
the flexon formation and related domain morphology.

The flexon polarization forms a localized chira structure resembling a meron. The
structure is localized near the cylindrical surface, and its chirality is determined by the sign of

the flexoel ectric coupling constant. In contrast to previous findings [50, 51], the flexon structure
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is amost uncharged. While similar chiral structures have been reported in magnets with strong
DMI [46], the polarization state discussed here is formed without any ferroelectric counterpart
of the DMI [25, 41], but is stabilized by the flexoelectric coupling. It is worth recalling that the
flexoelectric coupling — likethe DMI — isderived as a Lifshitz invariant (1f) in the context of the
Landau theory of phase transitions. The fact that, like the DMI, the flexoelectric coupling
stabilizes structures with a specific chirality demonstrates a close analogy between these two
interactions [39]. One important difference is that the flexoelectric coupling is ubiquitous in
ferroelectrics, whereas the ferroelectric DMI is forbidden by symmetry in most materia types
[41]. The coupling of the electric polarization and elastic strain gradients could thus be an
aternative, and a much more commonly accessible interaction, for the formation of chiral and
achiral structures [50, 51].

We find that, in close analogy to the chiral magnetic structures that are stabilized by the
DMI in ferromagnets, chiral polarization structures can form as a result of the flexoelectric
interaction in strained nanoparticles. Therefore, the comparison of the impact on chirality of the
flexoelectric interaction in strained ferroelectrics with the DMI is relevant.

We predict that the flexon-type polarization distribution exists in the temperature range
260 K < T < 360 K. The axia counter domains inherent to flexon are the most pronounced in
the narrower temperature range 290 K < T < 340 K. The relatively wide temperature range
(about 50 K) corresponding to the stability or meta-stability of the flexon-type polarization
distribution give us the hope that the flexons can be observed experimentally.

However, the analysis of the hysteresis loops leads to the conclusion that flexons and
other domain configurations cannot be resolved from macroscopic measurements of the average
polarization in a homogeneous electric field. Flexons can be reliably observed by the local
methods using a strong gradient of electric field, such as PFM, which gives us the information
about the distribution of polarization with a nanoscal e resolution. Another promising method is
resonant elastic soft X-ray scattering, a synchrotron-based method sensitive to chiral polar
arrangements through dichroism effects [59, 60]. This method was successfully applied to detect
different topologica structures, including vortices [59], skyrmions[21], and chiral domain walls
[61].
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Supplementary Materialsto

“Introducing the Flexon - a New Chiral Polarization Statein Ferroelectrics”

APPENDI X A. Mathematical Formulation of the Problem and FEM Details

A. Mathematical Formulation of the Problem

We use the Landau-Ginzburg-Devonshire (LGD) approach combined with electrostatic equations,
because this method has proven to be successful in establishing the physical origin of anomaliesin
phase diagrams, determining polar and dielectric properties of ferroelectric nanoparticles[1, 2], and
calculating the changes of their domain structure morphology with size reduction [3, 4]. The LGD
approach allows for the consideration of various size and surface effects, such as correlation effects
and depolarization fields arising in the case of incomplete polarization screening [5], surface bond

contraction [6, 7], and intrinsic surface stresses and strains [8, 9, 10].

The LGD free energy functional G additively includes a Landau expansion on powers of 2-4-
6 of the polarization (P;), GLanaay; @ polarization gradient energy contribution, G444 an electrostatic
contribution, G,,; the elastic, electrostriction, flexoelectric contributions, G riexo; and a surface

energy, Gs. It hastheform [11, 12, 13]:

G = GLandau + Ggrad + Gel + Ges+flexo + GS’ (A-la)

Grandau = [, @°r la;P? + aiiP?P? + aijkPiZszPlg]' (A.1b)
_ 9gijkl OP; 0P

Ggraa = fVc d3r#6_xj6_xl’ (A.1c)

6Pk aO'ij

St
Gestflexo = = [, A°r (%O—ijo'kl + Qijk10ijPrPr + Fijia (Uija_xl — P axl)> (A.le)

Gs = [;d*ra) PP, (A.1f)
Here V. and V; are the core and shell volume, respectively. The coefficient a; linearly depends on
temperature T, a;(T) = a;[T — T¢], where a; is the inverse Curie-Weiss constant and T, is the
ferroelectric Curie temperature renormalized by electrostriction and surface tension. Tensor
components a;; are regarded as temperature-independent. The tensor a;; is positively defined if the
ferroelectric material undergoes a second order transition to the paraglectric phase and negative
otherwise. The higher nonlinear tensor a;;;, and the gradient coefficients tensor g;j; are positively

defined and regarded as temperature-independent. The following designations are used in Eq.(A.1e):



o;; isthe stress tensor, s, isthe elastic compliances tensor, Q;; is the electrostriction tensor, and

Fjy, isthe flexoelectric tensor.

For cubic (m3m) point symmetry group of the parent phase the explicit form of the “half”
Lifshitz invariant for the flexoeffect is

aP P
AGfiexo = [011F11 + (022 + G33)F12]a_x1 + [022F11 + (011 + 033)F12] a_xz + [033F;1 +
9P [ (ﬂ ﬂ) (& %) (ﬂ %)]
(011 t+ 022)F12] s + Fy4 | 012 ox, + ox, + 013 o + o, + 023 9% + o, (A.2)

Allowing for the Khalatnikov mechanism of polarization relaxation [14], minimization of the
free energy (A.1) with respect to polarization leads to three coupled time-dependent Euler-Lagrange

equations for polarization components inside the core, LA i

5P, — Where i = 1,2,3. The explicit

form of the equations for a ferroelectric crystal with m3m parent symmetry is:

dP.
I"a—tl + 2Py (ag — Q12(023 + 033) — Q11011) — Quq(012P; + 013P3) + 4ay, PP + 2a,,P, (PF +

92P
P32)+6a111P15+2a112P1(P24+2P12P22+P34+2P12P32)+2(1123P1P22P32_911?%1_

92 92 a 0 ) ) 0
944( Py + Pl) = —Fy, a2111 _ FlZ( 922 4 033) _ F4_4( %1z 4 013) +E,

x32 dx2 0xq x4 x5 x5
(A.33)
dP
I"a—tz + 2P, (a; — Qq2(011 + 033) — Q11023) — Qu4(012P) + 023P3) + 4a11P; + 2a,,P, (P +
d2P,
P32) + 6‘1111P25 + 2‘1112P2(P14 + 2P22P12 +P:§ +2P22P32) + 2a123p2p12P32 _911?%2_
62P2 62P2 - m _ 60'11 60'33 _ 60'12 i:)crﬁ
Gaa (W + 6x§) =—Fu x5 Fi, (Oxz + 6x2) Faa (6x1 + 6x3) +E;
(A.3b)
P
Fa_: + 2P3(a; — Q12(011 + 022) — Q11033) — Qu4(013P; + 023P;) + 46111P33 + 25112133(1312 +
d2P
PZ) + 6a111P5 + 2ay1,P3(Py + 2P2PZ + P§ + 2PFP%) + 2a,,3P3PEPZ — 11?; —
62P3 62P3 _ % _ 60'11 60'22 _ 60'13 6()'&
g44(ax§ + axg) = —Fu dx3 F12(6x3 + 6x3) F44(ax1 + 6x2)+E3
(A.30)

The temperature-dependent Khalatnikov coefficient I' [15] determines the relaxation time of
the polarization 7, = I' /|a|. Consequently, T typicaly varies in the range (10° — 10) seconds for
temperatures far from Tc. Asargued by Hlinkaet al. [16], we assumed that g4, = —g1, iN EQs.(A.4).
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The boundary condition for polarization at the core-shell interfface »r = R accounts for the
flexoelectric effect:

(8 op _
a;; Py + (gijkla_x,; - Fklijfsz)"jL:R =0 (A.4)

where n is the outer normal to the surface, i = 1, 2, 3. In our FEM studies, we use the so-called

“natural” boundary conditions corresponding to ai(f) = 0.

The electric field components E; in Eqg.(A.3) are derived from the electric potential ¢ in a
conventional way, E; = —d¢/dx;. The potentia ¢ satisfies the Poisson equation in the ferroelectric
cylinder (subscript "f*):

2 9%z 92 ) aP;

— 2 2
i (Gt ot o) =y MM SRNO0SK<h, (A5

The electric potential ¢, in the external region outside the core-shell nanoparticle satisfies the

L aplace equation (subscript "€e"):

es(a—2+i+a—2)gﬂ=0 x2+x2>R U x3<0U x3>h (A.5h)
Oce % 6x§ 6x§ e , 1 2 3 3 ' .

Equations (A.6) are supplemented with the continuity conditions for electric potential and
linear screening conditions for the normal components of the electric displacements at the cylinder
surface S[17, 18]:

(‘/’e - ‘pf)l =0, n(De - Df)l =% (A.69)
S S A

The boundary condition (A.6a) corresponds to the surface of the core covered by an ultrathin
semiconductor shell with an effective screening length A >1 nm [19, 20, 21]. Note that a screening
length greater than 0.1 nm leads to the domain formation in the core. The case A — oo corresponds to
an electrical open-circuit condition. We impose an electrical open-circuit condition at the cylinder
ends to make the vortex-type polarization energetically favorable. Either charges are absent or the

applied voltageis fixed at the boundaries of the computation region:

0 i)
Pe n O, Pe

L=, (A.6b)

n =0 =0
9 Xy l x=+£ aXl l y=+£ ) (pelzz_'_g ) (pelzz
-2

Elastic equations of state follow from the variation of the energy (A.2€) with respect to elastic
stress, % = —u;;. Inthe oversimplified case
ij

) d]
axk

SijklOkl + QijklPkPl + Fijkl = Ugj, 0<r<R, 0<z<h , (A7a)



aP
O-ij :Cijklukl_ql'jklPkPl_fijkla_x;' O<T‘SR, 0<ZSh., (A?b)

where u;; isthe strain tensor components related to the displacement components U; in the following
way: u;; = (0U;/dx; + dU;/dx;) /2. For cubic (m3m) point symmetry group of the parent phase the

strain components are:

aP; apP,  P;

+F12( +22) (A8d)

8x3

Uy = S11011 + S12(095 + 033) + Q11 PE + Q1,(PZ + P2) + F11

P oP. 0P
Upy = 11022 + S12(011 + 033) + Q11P22 + Q12(P12 ) + F11 . + Fi; (_1 + 3) (A.8b)

U3z = $11033 + S12(011 + 022) + QiP5 + Q12(PF + PY) + F11 aP3 + Fiz (apl + S_Z) (A.8c)
Uz = Saa012 + QuaPrPy + Fyy (& + g_j:j) (A.8d)
Uy3 = Sga013 + QuaP1P3 + Fyy (6P1 + g_j:j) (A.8e)
Up3 = 544023 + QuaP3Py + Fyy (apz + gj:g) (A.8f)

Equations (A.8) should be considered aong with equations of mechanical equilibrium
do;;(x)/0x; = 0 and compatibility equations e;y; €jmn 0% (x)/0x,0x,, = 0, which areequivalent
to the mechanical displacement vector U; continuity [22]. The boundary conditionsfor elastic stresses
are the virtual absence of their norma components at the nanoparticle surface, as the ambient media

is regarded absolutely soft.
B. Finite Element Modelling Details

FEM simulations are performed in COMSOL @M ultiPhysics software, using electrostatics,
solid mechanics, and general math (PDE toolbox) modules. The size of the computational region is
not less than 40x40x160 nm?, and is commensurate with the cubic unit cell constant (about 0.4 nm)
of BaTiOs at room temperature. The minimal size of a tetrahedral element in a mesh with fine
discretization is equal to the unit cell size, 0.4 nm, the maximal sizeis (0.8 — 1.2) nm in the core, 1.6
nm in the shell, and 4 nm in the dielectric medium (see Fig. S1). The dependence on the mesh sizeis
verified by increasing the minimal sizeto 0.8 nm. We verified that this only resultsin minor changes
in the electric polarization, electric field, and elastic stress and strain, such that the spatial distribution
of each of these quantities becomes less smooth (i.e. they contain numerical errorsin the form of a

small random noise). However, when using these larger cell sizes, all significant details remain



visible, and more importantly, the system energy remains essentialy the same with an accuracy of
about 0.1%.

(b) rounded ends
with R., = 1 nm

(c) spherical
ends R.,=5nm

(a) “sharp”
ends

Element size (nm)

Element size (nm) Element size (nm)

Figure S1. Examples of mesh for the sharp edges (a), rounded edges (b) and rounded caps (c) of the cylindrical
nanoparticle. The color corresponds to the size of the mesh elements.

Table S1. LGD coefficients and other material parameters of BaTiOs nanocylinders

Coefficient Numerical value
€b, e en= 7 (core background) &e= 10 (surrounding)
a (inmJC? a1 = 3.34(T-381)-10°, or=3.34-10° (a1=-2.94-10" at 298 K)
aj (inm>JC? a1 = 4.69(T-393)-10°-2.02-108, a; = 3.230-108,

(a = -6.71-10° at 298 K)
ayx (in mPyCo) ai1 = -5.52(T-393)-107+2.76-10°, ay12 = 4.47-10°%, anz3 = 4.91-10°
! (at 298 K a111= 82.8-108, a11o= 44.7-10%, ayxs = 49.1-108)

Qij (m4/C2) Q11=0.11, Q12= -0.043, Q44=0.059

sj (in10*?Pa?l)

$11=8.3, S1o= -2.7, S44=9.24

gi (in10°m3JC?

91125.0, J12= -0.2, Oua= 0.2

Fij (in 10'11m3/C)
fij (in V)

F11=2.4, F12= 0.5, Fa1= 0.06 (these values are recal culated from [23]
values fi1= 5.1, fio= 3.3, faa=0.065 V.
The equality F,4 = F;; — F;, isvalidin theisotropic case.

0 (since its characteristic values are unknown for BaTiOs and other

Vijm perovskites)

a® 0 (that corresponds to the so-called natural boundary conditions)
B (in 10K 9.8 (thermal expansion coefficient)

a9 . (in &) 4.035 A lattice constant at 1000 °C

R (in nm) 10 (vary from 2 to 20 nm)




Appendix B. Supplementary Figures

FEM, performed for the sharp and rounded ends of cylindrical core at room temperature with
nominal values of the flexoelectric tensor components F;; (listed in Table S1), revedls that the
distribution of the polarization component P; depends critically on the curvature radius of the
cylinder ends (see Fig. S2). The increase of the curvature leads to both a strong increase of the P;
value and a simultaneous gradual transformation of the multiple edge domains into a bidomain
configuration, which contains flux-closure domains at the spherical ends (see the top row in Fig. S2).
For the sharp and slightly rounded ends, the distribution P; becomes much more contrasting with
increasing F;;; but the dependence of P; on F;; virtualy disappears as the curvature increases
(compare the top and bottom row in Fig. S2). FEM results presented below are performed for the
cylindrical core with sharp ends, because this shape isthe most sensitive to the flexoel ectric coupling.

(a) “sharp” (b) rounded ends | | (c) rounded ends | | (d) spherical ends
ends with R, = 1 nm | [with R, = 1.8 nm with R, =5 nm

P3 (UC/cm?)
0.6

P3 (uC/cm?) Ps (uC/cn:i) Ps3 (pC/cn;g)

Nominal F;

Figure S2. Distribution of the polarization component Ps in three different cross-sections of the cylindrical
nanoparticle with sharp ends (a), rounded ends with curvature R, =1 nm (b) and 1.8 nm (c); and
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hemispherical ends (d). The values of the flexoelectric coefficients are F;; = 2.4 -10'm?C, F;, = 0.5 10
Um?¥C, and F,, = 0.06 - 10'm%/C for the top row; F;; = 144 -10"m?*C, F;, = 3-10"m*C, and F,, =
0.36 - 10™m?/C for the bottom row. Temperature T = 300 K. All other parameters are listed in Table S1.

FEM, performed for room temperature, zero and nominal values of the electrostriction tensor
components Q;;, and different values of F;; reveds the high sensitivity of the P;-distribution to the
values of polarization gradient coefficients g;;. The nominal values of Q;;, F;; , and g;; arelisted in
Table S1. For zero Q;; = 0 and F;; = 0 the shape of the P;-distribution isinsensitive to the values of
the polarization gradient coefficients g;;; the width of 180-degree domain walls is proportional to
@ (compare Fig. S3a with Fig. 2a in the main text).

For nonzero nominal values of Q;; afactor of 10 decrease of g;; leads to the appearance of
guasi-periodic spot-like P;-domains located near the lateral surface of the cylinder (shown by blue
and red spots in the top row of Figs. S3b-d) instead of two diffuse axial domains shown in Fig. S2a.
These spot-like domains are insensitive to the value and sign of F;;, if its absolute value is less than
3-107'm3C (see Figs. S3b-d). Corresponding distributions of polarization magnitude P calculated
for nonzero Q;; and |Fl-j| < 4-10""'m®/Creveal atwisted central line with quasi-periodically located
multiple Bloch points, P = 0, whose patterns are shown in the bottom row of Figs. S3b-d.

The sharp transformation of the quasi-stable spot-like P;-domains into a stable bidomain
configuration with flux-closure domains at the cylinder ends appears at very high values of F;; (see
Fig. S3e). FEM results presented below are performed for nominal values of g;; (listed in Table S1),
because this case is the most realistic and the most sensitive to the flexoel ectric coupling.

The distributions of the polarization component P in three different cross-sections of the
nanoparticle core, polarization magnitude P in the XZ cross-section of the nanoparticle, and
isosurfaces of polarization components P, , ; areshown in Fig. S4. Theimages are calcul ated without
electrostriction (Q;; = 0) and flexoelectric (F;; = 0) coupling (Fig. S4a); with electrostriction
coupling (Q;; # 0) and negative (Fig. $4b), zero (Fig. $4c), positive (Fig. $4d), or high positive
(Fig. S4e) values of the flexoelectric coefficients F;;.

The distribution of the polarization component P; in three different cross-sections of the
nanoparticle core, P; distribution XZ cross-section, and isosurfaces of polarization components P; ; 3
are shown in Fig. S5. Images are calculated for the fixed values F;; = 2.4 -10"m%/C and F;, = 0.5 -

10 m3/C are, and the value of F,, variesfrom -6 to 6 (in 10'm%C) as indicated in the legends to
Fig. Sha-f.



(a) F;;=0 (b) F;j<0 (€) Fi; =0 (d) Fi; >0 (e) |Fij| » 0
Qij = Qi #0 Qi #0 Q;j #0 Qi #0

P (uC/cm?) P (uC/cm?)

Figure S3. Distribution of the polarization component Ps (top row), and polarization magnitude P (bottom
row) inthree different cross-sections of the nanoparticle core. Different columnsare calcul ated for the different
values of electrostriction and flexoelectric coupling coefficients. The following values of gradients are used:
g11 = 1-10°m¥F, g,, = —0.04 - 10°m¥F, and g,, = 0.04 10*m?¥F. Temperature T = 300 K. All other
parameters are listed in Table S1.



Qij =0 Qi #0 Qi # 0 Qi # 0 Qi # 0
P, (uC/cm?) P3 (uC/cm?) P, (uC/cm?) P, (C/em?) P, (uC/cm?)
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O 0.4 s Vi
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% 4 \ z ‘ Z Z
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%"
<

Figure $4. Distribution of the polarization component Ps (the top row) and polarization magnitude (the
middle row) in the XZ cross-section of the nanoparticle. The bottom row: isosurfaces of zero polarization
components P1 (gray), P2 (green), and nonzero P; =+ 0.1, + 0.1, £ 0.2, and + 0.4 uC/cm? (red and blue).
Images are calculated without electrostriction (Q;; = 0) and flexoelectric (F;; = 0) coupling (a); with
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electrostriction coupling (Q;; # 0) and negative (b), zero (c), positive (d), or tripled positive (€) vaues of
flexoelectric coefficients F;;. Reference values of F;; and al other parameters are given in Table S1.
Temperature T = 300 K.
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Figure S5. Distribution of polarization component P; in three different cross-sections of the nanoparticle core
(top row), and P; in the XZ cross-section of cylindrical core (middle row). Bottom row: isosurfaces of
polarization components P; (gray), P, (green), and P; (red and blue). Zero values correspond P; and P,

isosurfaces, whileisosurfaces of P; correspond to thevalues P; = + 0.1, £ 0.2, and + 0.4 uC/cm?for theimages
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(a)-(d), (e), and (f) respectively. Theimages are calculated for the fixed values F;; = 2.4 -10"m¥/Cand F;, =
0.5 - 10"m?/C, while the value of F,, variesfrom -6 to 6 (in 10**m%C) asindicated in the legends. All other
parameters are listed in Table S1. Temperature T = 300 K.

Appendix C. Approximate Analytical Solution

00 _ 00iy _ dojs

Since Ox; Ox; 0x;

= 0 in accordance with mechanical equilibrium equations, the right-
hand sidesin Egs. (A.3) can be rewritten as:

ap
r_l + 2Py (a3 — Q12(02; + 033) — Q11011) — Qua(012P; + 013P3) + 4ay, PP + 2a,,P, (PF +

a2p
P%) + 6a,11 PP + 2a,1,P; (P3 + 2PEP + P§ + 2P2PZ) + 2a4,3P, PZP% — 914 axl_

30'11

a%p; | a%p,
L+ 20 = —(Fyy — iy — Fip) 22

0 ~
g4,4_ ( 2 + ax - F12 a_XlTrO— + E1 (Cla)

ap
r_z +2P,(a1 — Q12(011 + 033) — Q11022) — Qua(012P1 + 023P3) + 4ay1 P; + 2a1,P,(PF +

a2p.
P%) + 6a,11P5 + 2ay1,P, (P} + 2PPE + P + 2P7P§) + 2a,,3P,P2PZ — 9116 > —

d2P d2P b} 0 ~
944( 2+ axzz) = —(F11 — Fyq — F12) 222 —F; aTTTU + E, (C.1b)
3 2
dP.
F . e 2P3(ay — Qq2(011 + 023) — Q11033) — Quq(013P; + 053P,) + 4a11P5 + 2a,,P;(PE +

a?p.
P22)+6a111P3:5+2a112P3(Pf+2P3?P]?+P§+2P22P3?)+2a123P3P12P22 _:911?32,3_

60'33

9%p; | 0%p;
944( S+ ) = —(Fj; — Fjq — F12)

dx2

—Fy, aiXSTrﬁ +E; (C.lo)

The derivation is sraightforward: —F;; 222 — F,, (a"“ + 6022) Fy, (6613 + aaﬁ) = —(F; —

6 aX3 aX3 6x2
6033 do11 0022 60'33
F4_4) F % + ? = _(Fll - F4_4 FlZ) F12 o%s TT‘O' Whel’e TTO' = 011 + 0'22 +
3 3
60'13 60'23 — 60'33
0-33 and X1 axz - 6x3 ’

Elastic stresses existing in the system can be found from Eq.(A.6) as:

OP: BP
011 = C11Upq + C12(Ugp + Uzz) — Q11P1 CI12(P2 + P32) f11 oz - f12 ( 2 3) (C.29)

0P dP:
022 = C1qUpp + C12(Uyg + Usz) — q11 P — q12(PE + PE) — f11 ax — fi2 (_1 + _3) (C.2b)

4 oP:

oP.
033 = C1qUsz + C12(Uqg + Upp) — q11PF — q12(PZ + PE) — f11 ax - fi2 ( . ox, ) (C.20)
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dP. OP
O12 = Caalliz — QaaP1 Py — f44( . Z), (C.2d)

ax,
013 = C44U13 — QaaP1P3 — fou (ap1 gz) (C.2¢)
023 = CaqUp3 — qaqP3Py — fo4 (apz Zz)- (C.2f)
Here qq4 = Lot 1 Caq = _andf44 =,

Sa4

In the virtual absence of a depolarization field, which is true with high accuracy for a vortex

type polarization, the divergence divP = % should bevery small. Indeed, the approximation divP ~

0 isvalid inside the cylindrical core (see Fig. S6b).

We also note the polarization magnitude P = \/P? + P? + P¢ is very close to the constant

value everywhere, except for the vortex core (see Fig. S1, middle row), and its derivative S—P IS

X3
negligibly small everywhere, except in theimmediate vicinity of the vortex core when in contact with

the cylinder ends. For this case we obtain that:

oTro oTru

% ox% [(C11 +2¢1)Tr — (qu1 + 2q12)P? — (fir + Zflz)de] ~ (¢ + 2612) (C 3a)
and
aaf: = ai [011u33 + ¢ (Ug1 + Uz2) + (q11 — 912)PF — q12P? — (fir — flz) ap3 flzdlvP]
aixg [(c11 = c12)uss + 12 Trl + (q11 — 12D P51 — (fi1 — fi2) 57 2z P3 (C.3b)

Assuming that 2%

- = 0 and using the smallness of P;, we can obtain the approximate
3

linearized equation for P;:

% d2p, 9%p; | 9%pP;
2a1P; — gq1 6x3 (ax; + o2 ) Q44(013P; + 023P;) — (F11 — Fus — Fip)(c11 —

d
C12) af; +E;, (C5)

where a; = a; — Q12Tr6 — (Q11 — Q12)033 = a1 — Qiz(cy1 + 2¢12)Tril — (q11 + 2q12)P” —
(Q11 — Qu)[(c11 — c12)uss + ¢ Trit] = ag — (11 + 2G12)p* — (Q11 — Q12) (€11 — c12)uzs  and
911 = 911 + (F11 — F4y — Fi5)(fi1 — fi12)- The simplest 2D polarization vortex can be modeled by
the functions

= p(r)sing, P, = —p(r)cosp and P; = 0. (C.69)
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These polarization components in cylindrical coordinates are
P.=0,P,=—p(r)and P; = 0. (C.6b)
It is easy to check that in the case divP = 0 for arbitrary p(p). For a 2D-vortex with an empty core

we can assume that p(p) = tanh (Lﬂx) where L} isatransverse correlation length.
Cc

Using Eqgs.(C.6) as a zero approximation we obtain from Eq.(C.2) that 0,3 = C44lUq3, 053 =

_ ~ 2
Caalpz aNA 033 = (11 — C12) U3z + €1 Tril — qp

Q44C44P(U135INQ—U3C05Q)—(F11—Faa—F12)(c11— C1z) ax3
Py , (C.79)

2[f11 (q11+2912)p%—(Q11—Q12) (c11—c12)Uz3+(g11+ (Fi1—Faa—F12) (fi1—f12)) Lé+GaaL¥]

Next, we consider several model cases. Thefirst caseis an absolutely rigid shell covering the
ferroelectric core, when the maximal stresses evolved in the system can be roughly estimated from
Egs.(A.8) at u;; = 0. The second case corresponds to avery soft shell covering the rigid ferroelectric
core, when the stresses are minimal and the strains (at least near the cylinder ends) can be roughly
estimated from Eqgs.(C.2) at o;; = 0. Furthermore, the compatibility conditions should be valid.

: : Q11—Q12
Using the relations q;; — g1 = (Q11 — Q12) (€11 — €12) = 1151, q11 +2q12 = (Q1 +
Q11+2Q12 _ 1 _ 1 _
2Q12)(c11 + 2¢13) ==——==, 11— €12 = 1 C4qp = and fi; — fi, = (Fi; — Fi3)(c11 —
S1 +2512 S11—S12 Sa4
F. F;
C1) = % we obtain that
11—512
Q44 _F11-F44-F12 0
P. ~ p(u13sm(p U23C05Q) S11—512 9z 433 (C 7b)
~ Q11+ZQ12 Q11—Q12 11-F12 X :
2[01 S11+2512 p2 S11-512 u33+[g11+(F11—F44—F12)W] %4 gasl ]

where {p, ¢, z} are cylindrical coordinates, the function p(p) = tanh <Lﬁx) and L} and arelateral and
Cc

axia correlation lengths. The functionsu;;(p, @, z) areelastic strains, s;; are €lastic compliances, Q;;
are electrostriction tensor components, g;; are polarization gradient coefficients written in Voight

notations. From Eq.(C.7bb) the axia part of the flexon polarization is proportiona to

— M%u%(p, @, z), and this proportionality along with Fig. S6o qualitatively describes the

S11—512
curves’ behavior in Fig. 3f and 4f in the main text.

Using Egs.(C.1), we can “recover” an analog of Eq.(A.2) for a “full” Lifshitz invariant:

_ F11—Fy4—Frp 9P 501‘1‘) F12 [ A aPl _ 6Tr(6)
Gflexo - 2 (O-ll 9x; Pl 9x; Tr ( ) l 9%; ) (C8a)

Assuming that % ~ 0 (asit should be for the mostly uncharged domain structures) and making an

integration over partsin the second term in Eq.(C.8a), we obtain:
13



F11—F44—F; oP; doj;
Griexo ~ M(G.._ _p2 ) (C.8b)

22 l
2 0x; 0x;

Elementary, but cumbersome calculations lead to an “odd” flexo-field in the boundary conditions

~ F11—=F44—F13 Q11—Q12 3
fV Gflexo ~ fV Go + 2 3 fsi Pi :

(a) P, (b) divﬁ (C) E, (d) Orr

uClcm? Clcm?®
04
02
0
02
) 04
x)\‘y

(f) 027

Figure S6. Distribution of polarization component P, (a), its divergency divP (b), eectric field component

E, (€), nonzero elastic stresses (d-i), their derivatives (j, k), strain components (I,m) and its gradients (n, 0)
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in three different cross-sections of the cylindrical core. A cylindrical coordinate system {r, ¢, z} isused for the
mechanical stress, strain, electric field and polarization. Note that the stress component o, = 0 (in spherical

coordinates). Temperature T = 300 K. All other parameters are listed in Table S1.

Appendix D. Topological Index and Toroidal Moment

First, let us calcul ate the topological index n of the unit polarization orientation [24]
=1 [p [ ap] dxdy (D.1)
for zero, positive, and negative flexoelectric tensor coefficients. The integration is performed over
the cylinder cross-section, and here p = g
The flexon polarization has the following structure in Cartesian coordinates
~ p(r,z) cos[p(a,z)], P, = p(r,z)sin[p(a,z)], P; = n(r, z). (D.29)

Herep(r,z) > 0,and p(a,z) ~ a — g, where a isthepolar angle, x = rcosa,andy = rsina. The

polarization magnitudeis P(r, z) = \/p2(r, z) + n%(r, 2).
Let usintroduce the unit polarization as:
p = {sin[0(r, z)] cos[p(a, z)], sin[6(r,z)]sin[p(a,z)],cos[0(r,2)]}, (D.2b)

: . _ p(rz) — n(r.z)
where the functions sin[6(r, z)] = D and cos[0(r,2)] = e

The gradients of the unit polarization can be written as

op a6 . . 00
22 ~ {cos[6] cos[p] =% — sin[6] sin[p] 2222, cos[6] sin[p] 5= +

. dp da 06
+sin[6] cos[] 2222, — sin[6] 22}, (D.20)
9
ay

a0 y

~ {cos[6] cos[p] 222 — sin[6] sin[p] 2222, cos[6] sin[e] 222 +

da dy orr

+ sin[0] cos[¢] (a;p Za sin[6] 06 y}, (D.2d)

Here we used dr/ox =x/r and dr/dy =y/r. Below we use the following relations

) 9 da ) . .
Xcos a=rsina—= == and —sma +r Zcosa= = =—2 After obvious, but tedious
ay dy 12 0x 0x T2

transformations we obtain:

S [0P 6;3] . a0 dg (x da vy 6a) __sin[0] 86 a¢p
— X—| = —_—|——— ) = — .
p [ax dy Sln[g] or da \r 0y r dx r Orda (D 26)

Note, that this relation remains unchanged even if one could take into account the radial dependence

of polarization magnitude, P(r,z) = /P2 + P + PZ.
Using the representation (D.2b) and reproducing the detailed calculations in Ref. [25], we

obtain:
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n(z) = [ sin[6(r, )] =2 dr [T 259D 4g = L [cos[0(r, )10 o (e, )43 (D.32)

| i i it ~a-T _ e
Here R is the cylinder radius. Substituting here ¢(a,z) =~ « > and cos[0(r, z)] = S
we obtain
~ = n(R,z) 1(0,2z) _ 1(0,2)
Tl(Z) (\/DZ(R Z)+172(R Z) \/pz(O.Z)'I'T]Z(O,Z)) - 2 pZ(O,Z)+1]2(0,z)' (D-Sb)

sincen(R,z) = 0andp(R,z) > 0.

The dependence n(z) is shown in Fig. S7a for zero (green horizonta line), positive (3 solid
curves), and negative (3 dashed curves) flexoelectric tensor coefficients F;;. The black curves F;;
values are listed in Table S1; the red curves are calculated for twice the value of F;; (labeled as
“2F;;) and the blue curves are calculated for six times the value of F;; (labeled as “6F;;”). The Z-
profile of the axial polarization P5(0, z) and polarization magnitude P (0, z) are shown in Fig. S7b
and Fig. S7c, respectively. Symbols are calculated by FEM for positive F;; (black diamonds), 2F;;
(red triangles) and 6F;; (blue squires). An applied voltage is absent in Fig. S7.

Solid and dashed curves are the interpolation functions.

P;(0,2) = f2(1+ Az?) (tanh [mm] — tanh [Z Zm]) (D.4a)
P(0,2) =g;7 [1+= (1+Az2)( m] — tanh [ m]) (D.4b)
n(z) = — T/a) (D.4c)

Here f, g, A, B, z,, and z,, are the fitting parameters to FEM results, which are listed in Table S2.
The length scale L = 1 nm. The amplitude f increases with the increase of flexoelectric coupling
strength and saturates at high |Fl- j|. Since the value P (0, z) is very close to the P;(0,z) near the
cylinder end, but P;(0,z) vanishes in the nanoparticle center, the topological index continuously

changes from - to +% with a z-coordinate change from one cylinder end (z = —20 nm) to another

(z =420 nm).
Table S2. Fitting parameters for Egs.(D.4)

Fitting Flexoelectric coefficients F;;

parameter —6F;; —2F; —F;; 0 Fyj 2F;; 6F;;
f (uC/cm?) -0.011 -0.0071 —0.0045 0 0.0045 0.0071 0.011
g (uC/cm?) 0.0305 0.0224 0.0174 N/A 0.0174 0.0224 0.0305

A (nm?) 0.0100 0.0125 0.0110 N/A 0.0110 0.0125 0.0100

B (nm?) 5 10 15 N/A 15 10 5
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Zo (NM) 18 22 23 N/A 23 22 18
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Figure S7. (a) Z-dependence of the polarization orientation topological index n(z) for zero (green horizontal
line), positive (solid curves), and negative (dashed curves) flexoelectric tensor coefficients F;;. For the black
curves F;; values are listed in Table S1, for the red curves we used 2F;;, and blue curves, we used 6F;;. (b-c)
Z-profile of the axia polarization P; (b) and polarization magnitude P (c) calculated at r = 0. Symbols are
calculated by FEM for positive F;; (black diamonds), 2F;; (red triangles), and 6F;; (blue squires). Solid and
dashed curves arefitting functionslisted in the text. Referenced values of F;; and all other parametersare given

in Table S1. TemperatureT = 300 K, U = 0.
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Asanext step, let us calculate the toroidal moment (TM):
M= % J,[P x #]d®r (D.5)
The integration here is performed over the nanoparticle volume V = mR?h. The toroidal moment
(D.5) is independent on the coordinate origin of radius-vector 7, only if all three components of
electric polarization have a zero average over the nanoparticle volume. Thisistruein the considered
casefor U = 0 (no applied voltage).
Let us estimate the toroidal moment using the following approximation for polarization
distribution:
P, = p(r,z)sin[a], P, =~ —p(r,z)cos[a], P; =n(r,z), (D.6a)
where the coordinates are
x = rcos[a], y = rsin[a], zZ=2z. (D.6a)
The vectoria product is:
[ﬁ X F] = —e,(p(r, z) cos[a] z + n(r, z)r sin[a]) + e, (n(r,2)r cos[a] — p(r, z) sin[a] 2) +
ep(r,z)r (D.7a)
After the integration we obtain that only the z-component of the TM is nonzero:
M~ e_z’%fORp(r, z)rdr. (D.7b)
Since the magnitude p(r, z) is amost independent of the flexoel ectric coupling (see e.g. Fig. $4, the
middle row), the TM appears nearly the same for zero, positive, and negative flexoelectric tensor

coefficients. To make an analytical estimate in Eq.(D.7b), one can use the following approximation

for the magnitude p(r,z) = pytanh (ri) where the p, and r, are temperature-dependent. This
0

resultsin:

_ 2 -2 _2
M = e,p, {1 —d? (% + PolyLog [2, —e d]) + 2dLog [1 +e d]}, (D.8)
whered = %" and PolyLog[x] isapolylogarithmic function. Figur e S8 shows the dependence of the

normalized TM pﬂ on the parameter d.
0
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