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ABSTRACT

Topology and geometry of a sphere create constraints for particles that lie on its surface, which they otherwise do not experience in
Euclidean space. Notably, the number of particles and the size of the system can be varied separately, requiring a careful treatment of
systems with one or several characteristic length scales. All this can make it difficult to precisely determine whether a particular system is in a
disordered, fluid-like, or crystal-like state. Here, we show how order transitions in systems of particles interacting on the surface of a sphere
can be detected by changes in two hyperuniformity parameters, derived from a spherical structure factor and cap number variance. We dem-
onstrate their use on two different systems—solutions of the thermal Thomson problem and particles interacting via an ultra-soft potential
of the generalized exponential model of order 4—each with a distinct parameter regulating their degree of ordering. The hyperuniformity
parameters are able to not only detect the order transitions in both systems but also point out the clear differences in the ordered distribu-
tions in each due to the nature of the interaction leading to them. Our study shows that hyperuniformity analysis of particle distributions on
the sphere provides a powerful insight into fluid- and crystal-like orders on the sphere.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0049089

I. INTRODUCTION

Geometrically frustrated assemblies are ubiquitous in biological,
soft, and condensed matter,1 yet even the influence of spherical
geometry—perhaps, the simplest closed, curved surface—on crystalli-
zation and ordering of particles remains poorly understood.2–5 It is
important to understand and determine the degree of (dis)order in
spherical structures, as it can lead to different optic,6,7 elastic,8,9 and
dynamic10 properties. Crystal-like order and defects have been studied
in viruses,11,12 metazoan epithelia,13 and colloidal capsules,14–16 where
different ways of construction have been shown to lead to different
degrees of order.17 At the same time, the order of the underlying
spherical lattice can also significantly influence the orientations of
anisotropically interacting particles positioned on it.18–20 Order
parameters describing local positional relationships between particles
are also an important tool in determining structural features of liquids
and glasses.21 In such disordered systems, particle arrangement tends
to be much better studied on a local scale (shells of nearest neighbors)
than on larger scales.22,23 However, order parameters that can detect
long-range structure and changes in it are useful in studies of liquids

exhibiting a shell-like structure with a changing order,24–27 as well as
in changes in shapes in cooperatively rearranging regions in colloidal
liquids on a sphere.28

Despite its importance, it can be difficult to characterize the
degree of order in a distribution of particles on the sphere, particularly
given the numerous defects and topological scars present even in the
most ordered structures.29,30 Often, local bond order parameters31 are
used to detect the presence and onset of order in particle distributions
on the sphere,4,32–34 but they tend to be based on the expected order
and the prevalent sixfold character of locally-ordered crystal-like parti-
cle distributions. Other (“order-agnostic”22) measures such as the
mesh ratio and energy are used to distinguish between different types
of spherical structures,35 but there are important exceptions where nei-
ther these nor local bond order parameters can provide a good
answer.36,37 Recently, however, some progress has been made by
extending the notion of hyperuniformity, thoroughly explored in the
Euclidean space,38,39 to the sphere and other curved surfaces,40–45

which introduces a more global view of the order on the sphere.
In our previous work,40 it was shown that by extending the

notion of hyperuniformity to spherical geometry, it is possible to
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derive two parameters that together indicate the degree of order in
scale-free distributions of particles on the sphere. Here, this notion is
generalized to systems with one or more length scales, which are more
difficult to tackle, as both the number of particles and the size of the
system have to be treated as independent parameters.46,47 Nonetheless,
we demonstrate that the hyperuniformity parameters can be used to
detect the degree of order even in those systems where usual
approaches fail. Hyperuniformity on a sphere could thus provide a
good framework for a consistent definition of fluid- and crystal-like
orders on the sphere.

II. METHODS
A. Spherical structure factor and cap number variance

We describe an arbitrary distribution ofN particles on the surface
of a sphere with radius R with a surface density distribution,

qðXÞ ¼ 1
R2

XN

k¼1
dðX� XkÞ ¼

1
R2

X

‘;m

q‘mY‘mðXÞ; (1)

where Xk are the positions of the particles in spherical coordinates
ð#;uÞ. The coefficients q‘m, used to expand the distribution in terms
of spherical harmonics Y‘mðXÞ, further define the spherical structure
factor,40

SNð‘Þ ¼
1
N

4p
2‘þ 1

X

m

jq‘mj2 ¼
1
N

XN

i;j¼1
P‘ðcos cijÞ: (2)

Here, PnðxÞ are the Legendre polynomials and cij is the spherical dis-
tance between particles i and j. Spherical structure factor is tightly
related to the pair correlation function33,36,48 and should reflect the
interaction potential of the system. The spherical structure factor can
be connected to another measure, the cap number variance r2

NðhÞ,
which gives the variance of the number of particles contained in a
spherical cap with an opening angle h,40,43

r2
NðhÞ ¼

N
4

X1

‘¼1
SNð‘Þ

P‘þ1ðcos hÞ � P‘�1ðcos hÞ½ �2

2‘þ 1
: (3)

In practice, r2
NðhÞ is obtained by covering the sphere with a series of

randomly-positioned spherical caps with an opening angle h, deter-
mining the number of particles in each, and calculating their variance.

B. Hyperuniformity on the sphere

It has been shown previously40 for scale-free particle distributions
on the sphere that the form of the cap number variance in Eq. (3) can
be approximated by

r2
NðhÞ ¼ AN

N
4
sin2hþ BN

ffiffiffiffi
N
p

4
ffiffiffi
3
p sin h; (4)

with an additional (small) residual, relevant only in the case of ordered
distributions. The form of a cap number variance in Eq. (4) can be
considered a spherical analogue of the asymptotic form of the number
variance in the Euclidean space used to determine the degree of hyper-
uniformity in such systems.39,40 Furthermore, the two parameters in
Eq. (4), AN and BN, turn out to be particularly good measures of order
in scale-free particle distributions on the sphere. For a completely

random distribution, one can show that AN¼ 1 and BN¼ 0; this corre-
sponds to a uniform structure factor, where SNð‘Þ ¼ 18‘. With a
gradual onset of order in a system of particles, first a low-‘ gap starts
to appear in the structure factor and simultaneously AN starts to
diminish while BN increases. In the limit of AN ! 0, equivalent to the
onset of hyperuniformity in the Euclidean space, a particle distribution
on the sphere becomes ordered with a series of pronounced peaks in
its structure factor and can be, in principle, characterized by its value
of BN—which depends not only on the type of distribution but also on
any symmetries present in it (for details, see Ref. 40).

C. Distributions of particles on the sphere

In this work, we generalize these results to particle distributions
with one or more internal length scales. To do this, we study two
completely different systems: (i) solutions of the thermal Thomson
problem, where temperature introduces a length scale into an other-
wise scale-free system; and (ii) particles interacting via an ultra-soft
potential of the generalized exponential model of order 4 (GEM-4),
where the system exhibits an ordered phase of cluster crystals depend-
ing on both the number of particles and the size of the system.

In the first case, (i), particles interact via long-range electrostatic
potential, just as in the classical Thomson problem, but we additionally
introduce a temperature T into the system. The N particles all carry
identical charge, and the electrostatic energy of the system is deter-
mined by pairwise summation, V ¼ E0

P
i>j jri � rjj�1, where

E0 ¼ e2=4pe0R sets the interaction scale and the distance is measured
in the Euclidean sense. Here, e0 is the vacuum permittivity and R is
the sphere radius. We work with dimensionless units and use a
reduced temperature for the system, T ¼ kBT�=E0, where T� is the
real temperature and kB is the Boltzmann constant.

To obtain ensembles at different temperatures, we start at a very
high temperature, T ¼ 103, and gradually lower it. This is achieved by
virtue of Monte Carlo simulations,49,50 where at each temperature
step, we perform a series of random displacements of individual par-
ticles drawn from a spherical Gaussian (vonMises–Fisher) distribution
centered around a particle.51 For the width parameter of the distribu-
tion, we choose k ¼

ffiffiffiffi
N
p

=T , which ensures a good acceptance rate
also at low T and large N. We have also tested a few other choices of k,
which turn out to work similarly well. After a burn-in phase, configu-
rations are sampled every 4N moves until 250 different configurations
are obtained, which are then used to obtain an ensemble-averaged
spherical structure factor and cap number variance. At the lowest tem-
peratures studied, T � 10�5, the system converges to the known min-
ima of the Thomson problem. Nonetheless, due to the nature of the
procedure, the system can, for a given N, get trapped in a local mini-
mum, whose energy remains very close to the known energy minima
of the Thomson problem30 (with a relative error of �10�5).

In the second case, (ii), we study particles interacting via a general-
ized exponential model of order 4 (GEM-4 potential36), a bounded,
purely repulsive soft pair potential of the form wðrÞ ¼ e exp ð�ðr=dÞ4Þ.
Here, e and d determine the energy and length scales of the model,
respectively. We use the former to again rescale the temperature T of the
system, T ¼ kBT�=e, while the latter introduces a length scale to the sys-
tem, d=R, which controls its phase behavior. The distance between the
particles r is measured along the surface of the sphere. While the GEM-4
system is also simulated at a finite T, this is the least interesting variable
in the system; we will, thus, study the system at T¼ 1, unless specified
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otherwise, and explore its behavior with respect to both N and d=R. At
each point in the phase space, 50 configurations are sampled to generate
an ensemble-averaged spherical structure factor and cap number vari-
ance. Further simulation details can be found in Ref. 36.

III. THERMAL THOMSON PROBLEM

Solutions of the Thomson problem are distributions of particles
minimizing their electrostatic interaction.52 Known minimum energy
distributions are often characterized by a high symmetry and a locally
triangular mesh, where each particle has six neighbors, with the excep-
tion of 12 fivefold defects owing to the topology of the sphere; at high
N, pairs of defects in the form of topological scars are also common.29

When temperature (measured relative to the interaction energy) is
introduced into the system, the order disappears and different kinds of
local defects are ubiquitous. Temperature is also the only length scale
in the system—note that changing the radius of the sphere is equiva-
lent to changing the scale of interaction energy and, thus, the scale of
the reduced temperature. As it is lowered, the solutions of the thermal
Thomson problem converge toward the known minima of the
Thomson problem.

A. Structure factor and number variance

The temperature-dependent order transition in a thermal
Thomson system can be easily observed when we take a look at the
(ensemble-averaged) spherical structure factor [Eq. (2)]. Figure 1(a)
shows SNð‘Þ in the T–‘ plane for distributions of N¼ 120 particles. At
high T, the structure factor is essentially indistinguishable from that of
a random distribution, SNð‘Þ ¼ 18‘. As T is lowered, SNð‘Þ becomes
progressively more defined: first, a gap appears at low ‘, growing with
a decreasing temperature, and as it approaches ‘0 � p

ffiffiffiffi
N
p

=
ffiffiffi
3
p

,40 the
first peak of the structure factor appears at ‘0 [Fig. 1(b)]. Its position
does not change as T is lowered further; on the other hand, higher-‘

peaks do not initially appear at the exact positions of the crystal-like
(minimum energy) state but shift slightly with decreasing T. At the
very lowest T, the form of SNð‘Þ is completely defined and approaches
the form of the known minimum solutions of the Thomson prob-
lem.30,40 In some cases, discrepancies remain: these structures, while
ordered and crystal-like, are trapped in local minima.

Spherical structure factor is directly related to cap number vari-
ance [Eq. (4)], the variance in the number of particles contained in
spherical caps with an opening angle h. As the temperature of the sys-
tem is lowered and SNð‘Þ becomes more defined, the angular depen-
dence of r2

NðhÞ goes from / sin2h, characteristic of a random
distribution, to / sin h, typical of crystal-like distributions.40

Furthermore, when the order in the distribution becomes crystal-like,
r2
NðhÞ also starts to exhibit a modulation on top of its general h-

dependence, whose form is related to ‘0 (and thus toN) and is another
consequence of ordering.40

B. Hyperuniformity parameters

Changes in the spherical structure factor and cap number vari-
ance can be summarized by fitting r2

NðhÞ to the form given by Eq. (4),
which yields two hyperuniformity parameters AN and BN. As already
mentioned, it has been shown previously40 that for a completely ran-
dom distribution, AN¼ 1 and BN¼ 0, while ordered distributions
(such as the minima of the Thomson and Tammes problems) have
AN¼ 0 and BN � 1. This, of course, holds in the average sense, partic-
ularly for randomly-generated distributions.

Figure 2 shows the hyperuniformity parameters AN and BN of the
thermal Thomson distributions in the N–T plane. The fits of Eq. (4)
are performed on ensemble-averaged curves r2

NðhÞ for each N and T,
as fits to individual ensemble samples do not yield reliable results due
to the large degree of randomness present in the system. We can
observe several things: at high T when the system is disordered,

FIG. 1. (a) Ensemble-averaged spherical structure factor for distributions of
N¼ 120 particles in the T–‘ plane. Note that the x scale is inverted to reflect the
onset of order as the temperature is decreased. Ensemble-averaged spherical
structure factor (b) and cap number variance (c) of distributions at three different
temperatures, marked by dotted lines in panel (a). The legend of panel (b) also
applies to panel (c). Dashed gray lines show the expected behavior for a
completely random distribution: SNð‘Þ ¼ 18‘ [panel (a)] and r2

NðhÞ ¼ N sin2h=4
[panel (b)].

FIG. 2. Hyperuniformity parameters AN (a) and BN (b) of thermal Thomson distribu-
tions in the N–T plane, obtained as fits of Eq. (4) to ensemble averages of cap
number variance r2

NðhÞ. The y scale is inverted in both cases to reflect the onset
of order as the temperature is decreased. The insets show the temperature depen-
dence of the two parameters for three different values of N, marked in the main
plots with dotted lines. The legend of the inset in panel (a) also applies to the inset
in panel (b). The black contour line in panel (a) shows the critical temperature Tc,
where AN 6 0:1, which is proportional to Tc / N.
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AN � 1 and BN � 0, close to the values pertaining to random distribu-
tions (albeit not completely, as even at highest T, the system is not
completely random due to the interactions involved; see Fig. 1).
Furthermore, higher N have lower values of AN at high T, which is
understandable since the energy of the system also increases with N.
As T is lowered, AN ! 0 and we can talk about the onset of crystal-
like order in the distributions.40 The transition is gradual, and the criti-
cal temperature shows a slight dependence on N—for higher N, the
transition occurs at higher T. The approximate range of temperatures
where the transition occurs is T � 1 to 0.1 (insets of Fig. 2).

Since the order transition is continuous with the temperature, we
cannot speak of a clear critical temperature of the onset of order.
However, a reasonable threshold c can be chosen so that AN 6 c, since
we know that BN already has a peak when AN is of the order of magni-
tude of a few tenths (Fig. 2). Any threshold choice above c� 10�3

shows almost exact proportionality of the critical temperature to the
number of particles, Tc / N [Fig. 2(a) shows the example of c¼ 0.1].
On the other hand, setting the threshold to even lower values is too
affected by noise to be suitable for defining a transition temperature.
The increasing trend reflects stronger bonding and thus higher energy
cost of displacement when particles are packed closer together. In a
physical system, the energy scale also includes the size of the sphere
and the particle charges, which were set in our case.

Parameter BN is dominated by noise at high T since AN is the
dominant parameter there. As T is lowered, BN typically crosses a
“barrier” in the temperature range where AN first starts to decrease,
the height of which increases with N. This increase in BN as AN is low-
ered could, thus, indicate some particular property of the interactions
in the system. At low T where AN ! 0, values of BN start to converge
to very similar values regardless of N, BN � 0:9, which is characteristic
of ordered distributions on the sphere, in general, and minimum solu-
tions of the Thomson problem, in particular.40 The vanishing of
parameter AN thus clearly signals a transition from a disordered to an
ordered distribution. The parameter BN, on the other hand, becomes
relevant only when AN vanishes—then, BN carries some information
about the nature of the order.

IV. GEM-4 POTENTIAL

The same analysis that has been done for the thermal Thomson
problem can be applied to particle distributions resulting from the
GEM-4 interaction potential. At a given T (note that the temperature
related to the GEM-4 potential has a different scale than that pertain-
ing to the thermal Thomson problem), the system of GEM-4 particles
is known to undergo an ordering transition from a homogeneous fluid
to a cluster crystal phase, depending on both the number of particles
N and the (scaled) radius of the sphere d=R.36 At high density, par-
ticles aggregate into clusters at sites that are distributed on the sphere
in a highly ordered manner [Fig. 3(a)]. However, the internal structure
of such clusters remains disordered, as particles randomly move inside
the potential well. The number of clusters is a function of d=R but not
N—an increase in the number of particles at a fixed sphere size will
only lead to each cluster having more particles.

A. Structure factor and number variance

Different types of order in systems of GEM-4 particles can be
clearly seen both in their spherical structure factor and in their cap
number variance (Fig. 3). When the system is in the homogeneous

fluid phase, SNð‘Þ exhibits only a shallow first peak, while r2
NðhÞ

shows no modulation related to a shell-like structure, typical for
ordered systems. However, when the system is in the cluster crystal
phase, SNð‘Þ exhibits several pronounced peaks and r2

Nð‘Þ now shows
the characteristic modulations related to structural order. Notable is
the overall scale of both measures compared to their form: the modu-
lations in r2

NðhÞ [Fig. 3(c)] are characterized by the number of clusters
N� and not the total number of particles N, as was the case in the ther-
mal Thomson distributions. At the same time, the large magnitude of
the peaks in the spherical structure factor [Fig. 3(b)] when compared
to those observed for thermal Thomson distributions [Fig. 1(b)] is due
to the fact that each of the N� clusters is composed of N=N� particles
on average.

B. Hyperuniformity parameters

While both SNð‘Þ and r2
NðhÞ show the transition of a system of

GEM-4 particles from a homogeneous fluid to a cluster crystal phase,
this transition is difficult to capture using standard order parameters
due to the disordered nature of particles within each cluster. However,
the difference between the two phases is immediately apparent if we
take a look at the hyperuniformity parameters AN and BN, again
obtained by fitting Eq. (4) to the ensemble-averaged r2

NðhÞ. Figure 4
shows that the value of parameter AN clearly separates the two phases
in the N–d=R plane. In the homogeneous fluid phase, AN is always
larger than zero. It also never reaches the value of AN¼ 1, indicating
that the system is never completely random, which is expected due to
the strong interactions between the particles. When the system transi-
tions to the cluster crystal phase, AN suddenly vanishes, AN�10�10

[shown by the black region in Fig. 4(a)]. This is in stark contrast to the
order transition in the thermal Thomson system, where AN slowly
decreased to zero as the temperature was lowered.

When AN vanishes, BN again starts to increase. Unlike what we
observed in the thermal Thomson problem or what was previously
observed in scale-free distributions,40 BN can take on extremely large

FIG. 3. (a) Voronoi tessellations of distributions of N¼ 200 GEM-4 particles at
T¼ 1 and d=R ¼ 0:40, 0.65, and 0.90 (from left to right). The ensemble averages
of the spherical structure factor (b) and cap number variance (c) for the same val-
ues of N, T, and d=R as in panel (a) are also shown. The legend of panel (b) also
applies to panel (c).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 047109 (2021); doi: 10.1063/5.0049089 33, 047109-4

Published under license by AIP Publishing

https://scitation.org/journal/phf


values. The reason is that in the ordered state withN� clusters, the dis-
tribution is closer to a hyperuniform distribution of N� particles with
larger particle weights, while the expression in Eq. (4) is normalized
only with N, as N� is not known in advance. Rescaling the structure
factor shows that BN should scale as a power of the number of particles
per cluster, ðN=N�Þ3=2. Indeed, this scaling helps explain the observed
pattern for the number of clusters in the N–T plane,36 where the num-
ber of clusters, and, thus, the average number of particles per cluster,
changes with d=R but not with N. In the ordered state, the scaling of
the parameter BN shows the same pattern; however, it also includes an
unknown prefactor, which we are currently unable to predict theoreti-
cally. Nonetheless, the parameter BN clearly shows the potential to be
used for assessing finer aspects of order, such as clustering.

The observation that AN vanishes suddenly with the appearance
of the cluster crystal phase can be exploited to separate the N–d=R
plane into two regions corresponding to homogeneous fluid and clus-
ter crystal phases. This is shown in Fig. 5 for five different tempera-
tures of the system. By observing when AN � 10�10, it is easy to see
that the cluster crystals span a larger part of the phase diagram at lower
T. Moreover, increasing the temperature appears to shift the phase
curve toward larger N while maintaining its position in the d=R direc-
tion. While these observations have been made previously by Franzini
et al.36 in their original study, they did not use an order parameter to
delineate the regions of the phase space. Our results demonstrate that
AN and BN can be used as global order parameters to construct the
phase diagram of the system, something that cannot be done using
standard order parameters on the sphere.

We also note that there is a larger uncertainty in determining the
phase line at low d=R: the likely reason is that in this regime, a very
high number of clusters is formed (N�� 50; cf. Ref. 36), and the tran-
sition from a homogeneous fluid to the cluster crystal phase becomes
blurred. In this part of the phase space, our predictions also differ
from the observations of Franzini et al.;36 specifically, we predict that
low d=R leads to the onset of the cluster crystal phase at a much higher
N than originally thought.

V. DISCUSSION

Hyperuniformity has only recently been generalized to non-
Euclidean geometries, and the known notions from the Euclidean
space have been shown to extend to spherical geometry as well.
Nonetheless, there are several notable differences between the two,
related to the restrictions that topology and geometry of the sphere
dictate. At the moment, there seem to be no distinct hyperuniformity
classes on the sphere—unlike in the Euclidean case—as the hyperuni-
formity parameters AN and BN derived from cap number variance can
change in a continuous manner. However, just as it is already known
for scale-free systems of particles on the sphere, we have shown here
that these two parameters can be used to consistently detect and study
order transitions in systems of particles involving one or more internal
length scales.

By studying two such systems—thermal Thomson problem and
particles interacting via GEM-4 potential—we have shown that the
parameter AN is a good measure of disorder in the system. While AN is
finite, AN61, the system is in either completely disordered (AN � 1)
or fluid-like (AN < 1) state. Importantly, when AN vanishes, AN ! 0,
the system undergoes an order transition. Once this occurs, the
parameter BN becomes relevant and in a crystal-like state takes on a
constant value. As AN gradually vanishes, BNmight also cross a barrier,
increasing at first before assuming this value. Both of these observa-
tions and the scale of BN are likely related to the details of the systems,
particularly regarding the interactions involved, although further theo-
retical insights into this are currently still lacking. Ideally, these would
connect the exact nature of the interaction potential to an improved
approximation of cap number variance, currently given by Eq. (4).

When the positions of the particles are known, the fit of Eq. (4) is
easy to carry out not only in simulations but also in experimental real-
izations of spherical assemblies. However, based on our analysis, we
also see that it might be possible to derive some proxies for disorder
and the parameter AN, which might be quicker to determine. Such
candidates are the dipole moment of the spherical structure factor,
SNð‘ ¼ 1Þ, or the hemispherical cap number variance, r2

Nðh ¼ p=2),

FIG. 4. Hyperuniformity parameters AN (a) and BN (b) in the N–d=R plane for distri-
butions of GEM-4 particles at a reduced temperature T¼ 1. The parameters were
obtained as fits of Eq. (4) to the ensemble-averaged cap number variance. The
black contour line in panel (a) shows where the parameter AN vanishes,
AN � 10�10.

FIG. 5. Curves of vanishing AN in the N–d=R plane for five different temperatures
of the system. The curves are defined as points where AN � 10�10 and mark the
transition from a homogeneous fluid in the left part of the phase diagram to a clus-
ter crystal phase in the right part of the diagram.
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as both are the first to show drastic changes when a system undergoes
an order transition. These are, nonetheless, likely to fail in systems
such as that involving GEM-4 potential, where only a full analysis of
the hyperuniformity parameters AN and BN correctly detects the phase
transitions of the system.

The results of our study imply that the concept of hyperuniform-
ity on a sphere can be used to study order and order transitions in any
system of particles confined to its surface. Future work should aim to
incorporate this not only in various simulated systems but also in
experimental situations of, for instance, colloids confined to the sur-
face of liquid droplets. Furthermore, a better theoretical understanding
of how the nature of the interactions in a system governs the hyperuni-
formity parameters AN and BN would allow to discern not only
between ordered and disordered systems, in general, but also between
the different degrees of order present in them.
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