
A topological selection of folding pathways from
native states of knotted proteins
Agnese Barbensi1, Naya Yerolemou1,2,+, Oliver Vipond1,+, Barbara I. Mahler1, Pawel
Dabrowski-Tumanski3, and Dimos Goundaroulis4,5,6,*

1University of Oxford, Mathematical Institute, Oxford, OX2 6GG, UK
2The Alan Turing Institute, London, NW1 2DB, UK
3Faculty of Mathematics and Natural Sciences, School of Exact Sciences, Cardinal Stefan Wyszynski University,
Woycickiego 1/3, 01-938, Warsaw, Poland
4The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
5Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
6Rice University, Center for Theoretical Biological Physics, Houston, TX 77030, USA
*Corresponding author: Dimos.Gkountaroulis@bcm.edu
+these authors contributed equally to this work

ABSTRACT

Understanding the biological function of knots in proteins and their folding process is an open and challenging question in
biology. Recent studies classify the topology and geometry of knotted proteins by analysing the distribution of a protein’s
planar projections using topological objects called knotoids. We approach the analysis of proteins with the same topology
by introducing a topologically inspired statistical metric between their knotoid distributions. We detect geometric differences
between trefoil proteins by characterising their entanglement and we recover a clustering by sequence similarity. By looking
directly at the geometry and topology of their native states, we are able to probe different folding pathways for proteins forming
open-ended trefoil knots. Interestingly, our pipeline reveals that the folding pathway of shallow knotted Carbonic Anhydrases
involves the creation of a double-looped structure, differently from what was previously observed for deeply knotted trefoil
proteins. We validate this with Molecular Dynamics simulations.

Introduction

A small percentage of proteins deposited in the Protein Data Bank1 (PDB) are known to fold into conformations that are
non-trivially entangled. All the currently known knotted protein structures are catalogued in the online database KnotProt2. The
vast majority of knotted proteins form simple knot-like structures. However, there are a few examples of proteins having more
complex entanglement types2. Interestingly, even though they are not ubiquitous, knots in proteins have been conserved within
species that are separated by millions of years of evolution3. This might imply that knottiness provides some advantages to
proteins4, but this theory is still being contested5. Besides the role of knots in proteins, there are many open questions about the
pathway that the backbone of a knotted protein follows to reach its native folded state. To this date, researchers have suggested
several mechanisms for protein self-tying that are based on wet lab experiments, numerical simulations, mathematical theory or
a combination of all the above3, 6–21.

Recently, Flapan et al.21 proposed a novel topological model that contains as special cases two of the most popular folding
theories13, 22. This theory is agnostic in terms of protein families and it is based on the assumption that there exist two loops
of different sizes, each containing up to two twists. It is shown that there are several possible pathways emerging from the
different choices of parameters of the model and it is suggested that these pathways are enough to recover any knot-type found
empirically thus far in proteins. Since this model is theoretical, physical interactions and dynamics that may affect the folding
pathway are not taken into consideration.

In this work, we systematically analyse the native states of all deposited positive trefoil knotted proteins, aiming to determine
potential folding pathways. We focus on trefoil proteins as these make up the majority of knotted proteins. Considering that the
global underlying topology of all proteins in our data set of proteins is a trefoil, the geometry of the conformation plays a key
role in detecting the most probable folding motif.

Our analysis is based on KnotoEMD, a statistical distance that we define on distributions of protein backbone projections
considered as knotoids. Knotoids are knot-like open-ended topological structures that extend knot theory to the case of open
curves23. The knotoid approach is a probabilistic method that does not require an artificial closure of the protein backbone.
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Multiple projections of the backbone are considered to determine the predominant knotoid type24. It has been shown that
knotoids provide a more refined overview of a protein’s topology2. KnotoEMD is a specialisation of the earth mover’s distance,
i.e. the 1st Wasserstein metric25, and it quantifies the distance between different knotoid distributions in the space of trefoil
knotted proteins.

We observe the existence of a double-loop in the conformation of shallow knotted Carbonic Anhydrases, which suggest that
their folding follows a pathway similar to the theoretical model of Flapan et al.. We subsequently perform computer simulations
for the Carbonic Anhydrase with PDB entry 4QEF. The results confirm that this protein follows a complex folding pathway
involving a double loop formation at the beginning of the process, although the specific mechanisms proposed by Flapan et al.
are not observed. In contrast, a much simpler geometry is revealed for other families of shallow knotted trefoil proteins and for
all the deeply knotted ones, providing strong evidence against a double-loop hypothesis in these cases. This is in agreement
with the current consensus that different folding pathways should be accessible by shallow knotted proteins26, 27, and with
previous simulations of deeply knotted trefoil proteins20. We find that KnotoEMD extracts subtle geometric information from
the knotoid distribution and groups together trefoil proteins by sequence similarity. This highlights the fact that KnotoEMD is a
versatile and robust mathematical tool that captures subtle topological and geometric information of open-ended conformations
and has potential beyond the scope of this research, as discussed in what follows.

Main

The knotoid distribution describes a protein’s entanglement
Mathematically, a knot is formally defined as a closed curve in 3-dimensional (3D) space, and two knots are deemed equivalent
if one can be deformed into the other without cutting and pasting the curve28. In order to identify the topological type of a
linear knotted protein, a classical approach consists in considering its backbone as a polygonal curve and then joining the two
termini with a new segment. The resulting closed curve is then analysed as a knot, and its underlying knot type can be formally
determined29. The obtained knot type is clearly dependent on the choice of segment connecting the end-points of the curve.
There are several ways to create a closed curve out of an open one in an unbiased way, in order to approximate the topology of
an open curve30. Perhaps the most popular approaches are those where one considers several different closures at once and
then takes the probability distribution of knot types as a topological descriptor of the open curve31, 32. In such a probabilistic
approach, the most likely outcome in the knot distribution defines the protein’s dominant topology and characterises its global
entanglement type, i.e. the topology of the entire curve. The position and the relative size of the knotted portion of the protein
can be identified by the so-called knot fingerprints33.

Recently, the introduction of new mathematical objects called knotoids inspired a more refined approach34 aimed at
detecting geometric and topological features of entangled open arcs subtler than their global knot type2. With this approach,
the topology of a knotted protein is described by the distribution of its planar projections’ topological types24, 35, as shown in
Figure 1.

Figure 1. Knotoid Distribution and Forbidden Moves. (A) An open curve in 3D space with three different planar
projections. Each projection defines a knotoid diagram, and different projections might yield non-equivalent knotoid diagrams.
By considering all of the possible planar projections, we can associate a distribution of knotoids to the initial open curve. (B)
The distribution of knotoids of the curve in (A) is visualised by colouring each point of a 2-sphere surrounding the curve
according to the topological type of the corresponding projection. This picture is obtained using the software Knoto-ID. (C)
The distribution of knotoids of the curve in (A). A minimal diagram is shown for each knotoid type. The knotoid distribution of
each curve analysed in this work was computed using Knoto-ID. In practice, 5000 projections are computed for each curve, and
this is known to be sufficient to properly approximate the continuous distribution. (D) Knotoid diagrams related by forbidden
moves. Any knotoid diagram can be untangled by a finite sequence of forbidden moves.
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A knotoid diagram is a possibly self-intersecting open curve in 2-dimensional (2D) space together with crossing information,
i.e. the data on which portion of the curve is on top at each self-intersection. Two knotoid diagrams are considered equivalent
if they differ by local transformations called Reidemeister moves, performed away from the endpoints23. A knotoid is then
defined as an equivalence class of knotoid diagrams under this relation. Transformations that displace the endpoints of the
diagram over or under other arcs can change the knotoid type and any knotoid diagram can be unknotted by performing finitely
many such moves. A knotoid can be interpreted as an open curve in 3D space with the additional data given by a fixed direction
of projection23, 36.

Each planar projection of a curve in space yields a knotoid diagram. The shape of an open curve in 3D can thus be
summarised by assigning the knotoid type of the 2D projection in each direction, as described in Figure 1A-B. This procedure
assigns a knotoid distribution to an open curve in 3D, with the distribution given by the proportion of directions for which each
knotoid is observed24, 34, 35. Crucially, the knotoid approach provides a richer representation of a protein’s entanglement than
any knot closure technique2.

The existence of open ends in a knotoid diagram enable another class of moves, whereby the endpoints pass under or
over portions of the curve and potentially change the knotoid type, known as forbidden moves37 (see Figure 1D). Forbidden
moves allow every self-intersection of a knotoid diagram to be resolved and thus to untangle the diagram, in the same way that
a tangled open curve in 3D can always be untangled without being cut. Counting the minimal number of forbidden moves
required to pass between knotoid types quantifies the difference in their entanglement and defines a distance, d f , known as the
f -distance37. Similarly, the minimal number of forbidden moves needed to untangle a knotoid measures how complex the
knotoid is. This notion of complexity can be encoded in the knotoid distributions to effectively differentiate between open
curves sharing the same underlying global topology i.e. with the same dominant knot type37.

KnotoEMD: a topological distance to distinguish geometric features of knotted proteins
Based on the above, it is reasonable to assume that knotoid distributions and pairwise f -distances of intra-distribution knotoids
may reveal key information about the shape of knotted proteins. Motivated by this, we introduce KnotoEMD, a distance
between the knotoid distributions of open curves in 3D. This distance incorporates both the topology (i.e. the global knot
type) and geometry (i.e. local features and shape) of open curves. Given two such curves, KnotoEMD is defined as the earth
mover’s distance25 between their knotoid distributions, with cost matrix given by the f -distance. Our distance quantifies the
cost of converting one knotoid distribution into another, where the cost per unit of converting one knotoid type to another is the
f -distance between them. Intuitively, this captures the amount of untangling and tangling required to pass between knotoid
distributions, and hence offers a way to meaningfully compare the entanglement of proteins with the same global topology,
which was not possible with previous methods2, 24, 29, 31–33, 38.

The KnotoEMD approach for knotted proteins incorporates the global topology of an open-ended conformation as well as
its local geometric features and overall shape. For example, the presence of nugatory crossings,crossings that can be removed
just by rotating a part of the curve, in a conformation will not dramatically change its global topology, since this is averaged out
over a large number of projections. However, the knotoid distribution will likely differ from the same conformation but with
the nugatory crossings removed. For this reason, we can consider that such geometric features of the conformation act as a
confounding variable of our pipeline. Two curves are considered close by KnotoEMD if the lists of knotoids in their respective
knotoid distributions are almost overlapping and with similar individual weights. For example, two curves differing only by
local changes away from the endpoints, such as the ones in Figure 2C, are very close to each other according to KnotoEMD. At
the same time, two sufficiently different embeddings of the same curve might be far from each other: a minimal realisation of
an open trefoil, for example, would have a large KnotoEMD from any open trefoil with higher average crossing number.

Folding hypotheses for knotted proteins
Results over the past decade arising from theory, simulations and experiments3, 6–12 reveal at least four potential folding
mechanisms for trefoil proteins20. All of these pathways rely on the formation of a single twisted loop at one stage of the
folding process, as shown in Figure 2A. They differ by the occurrence of N/C-terminus threading13–15, loop-flipping (aka
mouse-trapping)11, 16, 17, and by the presence of ribosomes and chaperones12, 18, 19. A detailed description of various folding
mechanisms is beyond the scope of this paper. We point the interested reader to a review by Sułkowska and the references
contained therein20. The single loop formation described by these folding mechanisms predicts a folded geometry resembling a
somehow minimal open trefoil having only one pierced loop, as shown in Figure 2, referred to henceforth as single loop (1-L)
trefoil configurations. In reality, the geometry of all proteins is far more complex than these idealised representations; however,
the smoothed, coarse geometric structure of a trefoil protein should resemble the minimal, single-looped geometry proposed by
the hypotheses, if the protein folds according to one of these pathways.

Flapan et al.21 introduced a new theoretical model for the folding of knotted proteins based on loop flipping and numerical
simulations of folding of complex knots22. A characteristic feature of this model is the formation of two initial loops, as
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Figure 2. Folding Pathways for Trefoil Proteins. (A) A schematic representation of the single-loop folding theories.
According to these theories, the formation of a twisted loop (native or not) is followed by either threading one terminus through
the loop (top) or flipping the loop over the terminus (bottom). (B) A schematic representation of the double-loop folding theory.
Two loops are formed and then approached by one terminus. This is followed by a combination of threading and flipping, in
either order. (C) Simple 2-L configurations and moves between them. Two diagrams in the same row are related by a flipping
of the green arc, while diagrams in a column are related by a twist of the red loop. Note that performing any of these moves is
possible by fixing the majority of the curve and changing only one small portion. The eight other 2-L configurations are divided
similarly into two groups of four. More details can be found in the SI. (D) An example of a generated 2-L trajectory, rendered
using Blender39. (E) An example of a generated 1-L trajectory, rendered using Blender39.

opposed to one (see Figure 2B). Similarly to above, the formation of two loops predicted by this model should result in creating
more complex, double-looped trefoil geometries. Knotting pathways in this model depend on the choice of several parameters,
which regulate the number of twists in the loops and their relative positions. Twelve possible choices of parameters were
identified, each yielding a different double-loop open positive trefoil (2-L) configuration. The twelve 2-L configurations are
labelled by a two letter word in {L,R} followed by a ± and two (signed) integers, describing the relative positions of the loops
and the number of twists21 – a list of these names can be seen in Figure 4. Out of these twelve 2-L configurations, the least
topologically complex are proposed as the most likely to occur as native states of trefoil proteins, while the more complex ones
are discarded21 based on an approximation to the knot fingerprint. We observe that the twelve proposed 2-L configurations
can be divided into three groups, where configurations within each group are related by local transformations, as illustrated in
Figure 2C. For more details, the reader is referred to the Supplementary Information (SI), contained as an appendix to this
manuscript.

Materials and Methods
The folding pathways described in the previous section predict two different overarching trefoil geometries as an end result.
Thus, we seek to differentiate trefoil proteins via their geometric entanglement in order to infer information about their
respective folding pathways. Since we are working with proteins in their native state deposited in the PDB, we work under the
premise that different folding pathways leave different geometric artefacts in the knot cores, such as a single or double loop
in the proteins’ native conformations. With this aim, we generate suitable curves of different lengths for the 1-L and twelve
2-L configurations predicted by the two folding models and then we apply numerous rounds of numerical perturbations to
produce several hundred piecewise-linear open curves resembling the end-states of each of the pathways described by the
models to compare with positive trefoil proteins. Our final data set consists of all the positive trefoil (K+31) proteins taken
from KnotProt2 and a collection of generated open curves for the 1-L and 2-L configurations (see Figure 2D-E). More details
on our data set can be found in the SI. We then use the knotoid approach for each curve in the data set and compute its knotoid
distribution. The knotoid distribution of each curve analysed in this work was computed using Knoto-ID35. In practice, 5000
projections are computed for each curve, and this is known to be sufficient to properly approximate the continuous distribution37.
Subsequently, we compute all pairwise KnotoEMD distances between distributions in the data set. All of these computed
pairwise distances are contained in distance matrices that can be found in the SI; for data visualisation purposes, we display our
results using the dimensionality reduction technique, UMAP40, projecting the space of proteins and/or curves with distance
given by KnotoEMD to a plane, whilst preserving the KnotoEMD distances as much as possible.

Our results suggest that the Carbonic Anyhdrase 4QEF is entangled in a way similar to a 2-L configuration, so we selected
it as a candidate protein for simulations to further probe its folding pathway. The coarse-grained simulations were performed in
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Gromacs 541 using a Cα structure-based model42 with parameters proposed by the SMOG server43 and shadow algorithm44.
The native structure taken from PDB was first unfolded at a high temperature to obtain the starting frames for folding. Next,
200 folding trajectories with 300-500 millions of frames each were performed close to the folding temperature, where there is
an equilibrium between folded and unfolded structures.

Figure 3. KnotoEMD clusters trefoil proteins by sequence similarity. (A) A dendrogram obtained from single-linkage
hierarchical clustering of all trefoil proteins based on sequence similarity scores from PDB. (B) A UMAP projection of the
space of trefoil proteins with KnotoEMD distances, when considering the entire protein backbone. Non-redundant proteins are
indicated with thicker boundaries. We highlight the groups corresponding to proteins with sequences similar to 6RQQ, 2ZNC,
1J85, 4QEF, 1FUG, 6QQW, 3KZK, 1UAK, 2V3J, as these are the nine largest in our subdivision. Note that 2ZNC and 4QEF
are all Carbonic Anhydrases with very similar structure. Similarly, 1UAK and 6QQW are both tRNA-methyltransferases. All
of the deeply-knotted proteins are contained in the cluster on the left, and this cluster contains no shallow-knotted trefoil
proteins. Depth is a dominant factor in determining the knotoid distribution, explaining why KnotoEMD separates proteins
with a very deep knot from everything else. Finer structure in the space of proteins as detected by KnotoEMD can be seen in
3D-plots available in our GitHub repository45.

Results
We find that KnotoEMD is capable of detecting subtle geometric information from the knotoid distribution. This is reflected
by the fact that it is able to group together trefoil proteins by sequence similarity. We differentiate between double-loop and
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single-loop open trefoils via this geometric and topological information, and detect fine structure in the space of trefoil proteins.
The local geometric features detected suggest different folding pathways for trefoil proteins. In particular, we find that the
proposed double-loop mechanism is the most likely for Carbonic Anhydrases forming a shallow trefoil.

Sequence similarity from the geometry of proteins’ native states
KnotoEMD is sensitive to the geometry and topology of the entire open curve, and is therefore influenced by the depth of the
knot core, locations of the termini, and the structure and entanglement of its core. These features are often shared by proteins
with similar sequences, and these proteins are therefore seen as similar by KnotoEMD, as shown in Figure 3B. To show this,
we cluster all trefoil proteins by first computing the pairwise sequence similarity scores, using PDB, and then performing
single-linkage hierarchical clustering and pruning clusters at a threshold of 30% similarity. More details on our subdivision can
be found in the SI, and a dendrogram showing the clustering by sequence similarity is shown in Figure 3A.

The structural features of the dendrogram are reflected almost perfectly by KnotoEMD; for example, the proteins represented
by 4QEF appear to form two separate groups in the UMAP40 projection, coherently with the fact that two light blue clusters
are merged quite late in the dendrogram to form the final one. Similarly, tight clusters in the dendrogram, such as the one
represented by 6QQW, are compact in the UMAP projection. Moreover, we are able to detect a range of geometries, and to
efficiently separate trefoil proteins by their geometric features. Indeed, by design, KnotoEMD takes into account both the
dominant topological type of a protein and its overall structure; hence, it is able to detect features of open curves not captured
by previously defined methods4, 32, 33, 46 used to compare them. In particular, it is able to differentiate between proteins with the
same dominant topology and at the same time distinguish pairs of homologous proteins with almost superimposable structures
differing only by a strand passage, as in the case of the pair knotted AOTCases/unknotted OTCases4 (see the SI for more
details). Within this study, we investigate the geometry and topology of protein structures and compare their entanglement to
knotting geometries predicted by the hypothesised knotting pathways. Since there is no restriction on the length of the two ends
in the knotting hypotheses we consider, the pathways really only describe the entanglement of the core. In order to make the
conformations proposed by the hypotheses comparable with the entangled proteins, we clip the ends of protein backbones up
to their entangled core using a top-down approach35. When reducing the chain to the knotted core, the sequence similarity
clustering is maintained, although it is slightly noisier in this case. The complete results on pairwise distances between protein
cores can be found in the SI.

KnotoEMD captures subtle geometric differences between double-loop and single-loop open trefoils
In a recent study, Piejko et al. highlight different folding behaviours for deeply knotted and shallow proteins26. It is then natural
to ask whether there are geometric features of trefoil proteins, other than depth, that could be used to infer further information
about their knotting mechanisms.

The knotoid distribution can vary substantially for different geometric realisations of an open-ended trefoil. We quantify
such differences in the knotoid distributions by computing the pairwise KnotoEMD between the cores of our 1-L and 2-L
trajectories, and of trefoil proteins. As shown in Figure 4, the three groups of 2-L trajectories and the group of 1-L trajectories
appear clearly separated, while 2-L trajectories within each of the three groups are close to each other. This demonstrates that
KnotoEMD successfully captures subtle geometric structure, since configurations within the same group only differ by simple
local moves (see Figure 2C), which only slightly impact the knotoid distribution and do not substantially change the overall
geometry of the core.

Local geometric features suggest different folding pathways for trefoil proteins
When analysing pairwise distances between protein and configuration cores, each trefoil protein core appears to have a knotoid
distribution highly similar to either those of 1-L trajectories or of simple 2-L trajectories. This is particularly evident when
looking at the distances between our generated trajectories and the list of non-redundant trefoil proteins taken from KnotProt2,
as visualised using a UMAP40 projection in Figure 4. Our results are coherent with the fact that complex 2-L configurations
exhibit knot fingerprints that are not compatible with those of trefoil proteins21. Indeed, trefoil proteins are distributed unevenly
between the two simple groups (1-L and simple 2-L trajectories), with the vast majority having a knotted core with topological
complexity indistinguishable from that of simple open-ended trefoil cores, i.e. from the 1-L trajectories. In particular, all of the
non-redundant deeply knotted proteins we considered share this feature. Again, this is coherent with previously simulated
folding pathways for deep trefoil proteins6, 20, 26, all involving the creation of a single twisted loop. This single loop can form
either in a native state, as for the threading mechanisms, or unfolded, as in the loop flipping hypothesis. We emphasise that our
computations demonstrate that the presence of two pierced loops in an open trefoil inevitably results in increased complexity of
its knotoid distribution, making it substantially different from that of a simple trefoil; indeed, all three double-loop clusters
appear clearly isolated in Figure 4. Hence, our results provide strong evidence that the double loop folding mechanisms21 can
be excluded for deeply knotted trefoil proteins.
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Figure 4. Local geometric features suggest different folding pathways for trefoil proteins. (A) 2D UMAP projection of
the pairwise KnotoEMD between 1-L trajectories, 2-L trajectories and non-redundant trefoil proteins. Recall that 2-L
configurations can be divided into three groups, in which configurations differ by small local transformations. 2-L
configurations LL(-,1,1), LR(-,1,2), RL(-,2,1), RR(-,2,2) and RR(-,1,-2), LR(-,0,-2), RL(-,-2,0), RR(-,-2,1) form the two
complex groups and LL(+,-1,-1), LR(+,-1,0), RR(+,0,0), RL(+,0,-1) the simple one. The clustering by KnotoEMD respects this
subdivision almost perfectly. Similarly, 1-L configurations are clustered together, with the exception of a bottom-left group,
which is separated due to oversimplification. The proteins appear distributed among the simple 2-L and the 1-L clusters. The
small isolated clusters contains 1-L configurations and deeply knotted proteins whose core is oversimplified due to perturbation
or noise in knot core reduction. (B) The knot cores of a shallow protein in the 2-L cluster (a Human Carbonic Anyhdrase, PDB
entry 4QEF), a deeply knotted protein in the 1-L cluster (a tRNA-n1g37 methyltransferase, PDB entry 6QQW) and a shallow
protein in the 1-L cluster (a S-adenosylmethionine synthetase, PDB entry 1FUG). These knot cores are rendered using
Blender39.

The same is true for the shallow protein 1FUG (see Figure 4), whose knot core appears very simple despite being
considerably longer than the ones of deep proteins (ca. 256 amino acids), and even longer than many shallow ones. For these
proteins, the cores’ low topological complexity is shown in Figure 4, where the single-loop structure is clearly visible.

Note that there are two separate clusters of 1-L trajectories, each containing some proteins. For the 1-L trajectories, this
stems from the fact that perturbing might have resulted in an over-simplification of the curve. Similarly, small errors in the knot
core reduction of proteins with particularly simple core might give rise to an almost trivial knotoid distribution. In both cases,
this happens to curves whose actual core is very simple, so this does not affect the interpretation of the results.

There is a consensus that multiple folding pathways are possible for shallow proteins26, 27 and this is reflected by our
results. We find that, contrary to the aforementioned 1FUG which clusters with the 1-L trajectories, all Carbonic Anhydrase
representatives, a group of proteins with very shallow trefoil knots, are clustered with simple 2-L trajectories. Hence, their
knotoid distributions have a complexity coherent with the double-looped trefoil geometries. This suggests that a single-loop
formation followed by either threading a terminus or flipping a loop over a terminus are unlikely folding mechanisms for
Carbonic Anhydrases. A pathway requiring double loop formation, such as those described by Flapan et al.21 is the most likely
among the proposed ones, as KnotoEMD shows that the knot core is tangled in a way most similar to a 2-L configuration.

To test this hypothesis we performed coarse-grained simulations of folding for the Carbonic Anhydrase with PDB code
4QEF. This protein features a very interesting "spine" of β -sheets, which joins together different parts of the protein. In
particular, one can identify a small fragment of the chain extruding from the β -sheet core, which can be interpreted as one loop,
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Figure 5. The scheme of the folding pathway of a Carbonic Anhydrase (PDB code 4QEF). Folding starts from the
unfolded conformation (left panel). Next one of the loops is formed (middle-left panel) followed by the formation of the second
loop (middle right panel). Finally, both of the tails are structured, and the order of the tail attachment differs between
simulations. The placement of the tails leads to the native structure (right panel).

shown in green in Fig.5, as well as a long fragment surrounding the entire β -core, which could be interpreted as the second
loop, shown in red in Fig.5. The C-terminal tail protrudes from the inner loop and pierces the outer loop, eventually forming
the knot. The folding of this protein starts from the formation of the β -sheet core and hence, the two loops are formed at the
initial stage of the folding process. The β -sheet can be formed starting either from the formation of the outer red loop, or the
internal green loop, as shown in Fig.5. Once both loops are formed, the tails are then placed and the simulations suggest the
existence of two different pathways, depending on which tail is placed first. Similar behaviour was observed in the case of the
52-knotted UCH-L47, which was used as a example of a protein following a double-loop folding mechanism by Flapan et al.21.
This mechanism, although not evidently confirming the mixed threading/mouse-trap movement event, is more complex than a
simple threading mechanism observed for deeply knotted proteins.

Conclusions
Understanding how and why there are knots in proteins has been a challenging question in biology for the last few decades.
One of the necessary steps to solving this question is to be able to efficiently distinguish and characterise different types of
entanglement. The knotoid approach makes significant progress towards characterising the entanglement of knotted proteins
since the knotoid distribution gives a topological and geometric description of an open-ended curve, richer than any closure
method can give2. However, until now, there has been no systematic way to extract information from this distribution about
specific geometric features of a curve, with the exception of very recent work by a subgroup of the authors37, in which the
topological complexity given by the f -distance is used to separate deeply knotted trefoil proteins from shallow ones.

KnotoEMD provides a sophisticated tool able to precisely and efficiently compare the entanglement of open knotted curves.
Remarkably, with KnotoEMD we are able to easily detect local geometric information within curves sharing the same global
topology, which other methods have struggled to do. Importantly, we show that this geometric information can be used to reveal
different folding pathways of trefoil proteins directly from their native states. Our methods are, of course, not restricted to
studying folding hypotheses of proteins, since the topological and geometric information can be applied to other problems in
protein science. In fact, they can be applied more generally to the study of entangled open polymers, such as DNA or RNA.
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Appendices
These appendices contain the Supplementary Information for: “A topological selection of knot folding pathways from native
states.

A Trefoil Proteins
In our work we consider all the 517 proteins whose backbones form open ended positive trefoil knots catalogued in the KnotProt
DataBase2 (as of August 2020).

A.1 Restriction to Knot Core
The knot core of an open knot is defined as the shortest portion of the curve involved in the knot2, 35. For some of our
computations we only needed to analyse the geometry and topology of knotted cores, rather than of the entire curves. In these
cases, we computed the position of the knot core and of the two ends in each backbone with the software Knoto-ID35, that uses
a top-down approach. We then removed both ends from the backbone, leaving a tolerance of one amino-acid on each side. The
xyz files of each protein backbone and of their cores are available on our GitHub repository45

A.2 Clustering by sequence-similarity
A sequence similarity search was performed for each of our 517 proteins using RCSB PDB Search API48. Using the
similarity scores returned by these searches we constructed a similarity matrix for the 517 proteins, assuming zero se-
quence similarity between proteins for which no score was reported. We converted the similarity matrix to a dissim-
ilarity matrix by converting α% → (100− α)% and performed single-linkage hierarchical clustering with the function
scipy.cluster.hierarchy.linkage49. We used a distance threshold of 70% dissimilarity to produce a clustering of
the 517 proteins. We extracted the 9 largest clusters from these clusters to study.

A.3 List of non-redundant proteins
Among all the 517 trefoil proteins considered, we sometimes used as representatives the list of non-redundant ones given by
KnotProt4. Note that in this list 7 of the proteins are obsolete PDB entries1. In each of these cases, we replaced the entry with
the corresponding updated PDB version.

The list of the 517 proteins we considered, the list of non-redundant ones and the sequence similarity clustering are all
available on our GitHub repository45.

B Double-loop and Single-loop open trefoil configurations

B.1 The twelve 2-L configurations and local moves between them
Flapan et al. identify twelve different 2-L configurations forming open ended trefoils, depending on the choice of several
parameters, which regulate the number of twists in the loops and their relative positions. More precisely, the parameters
prescribe the following characteristics:

The mutual positions of the blue end and the two loops (indicated by a string of length two in R and L).

The sign (+ or −) of the bottom crossing in each diagram.

The (signed) number of (positive or negative) twists in the two loops (indicated by two integers a and b);

The twelve 2-L configurations are shown in Figure 6. We observe that the twelve proposed 2-L configurations can be
divided into 3 groups, where configurations within each group are related by local transformations, as illustrated in Figure 6.
Among these three groups, the one whose configurations have the lower average crossing number (those forming the left-hand
square in Figure 6) will be called simple 2-L configurations.

B.2 Generating our data-set of trajectories
Our data-set of trajectories was generated as follows.
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Figure 6. 2-L configurations and local moves between them. The 12 2-L configurations differ by the number of twists in
the loops and their relative positions. These configurations can be divided into groups related by local transformations that do
not change the overall geometry of the curves. The 4 configurations on the left-hand side are the ones with lowest average
crossing number. We will refer to them as simple 2-L configurations.

Step 1: create the representative trajectories. For each of the 12 2-L configurations we created two different
representative piecewise-linear (PL) curves using the software KnotPlot50. In the same way, we created four different 1-L
PL curves representing minimal (thus, admitting a projection with only 3 crossings) geometrical embeddings of open
trefoils. All the curves were drawn to be quite shallow (i.e. with most of the curve involved in the knot).

Step 2: take different lengths of each curve. We then subdivide each trajectory in three different ways, to obtain curves
of length approximately (here the length is measured as the number of segments in the PL curve) 80, 160 and 240 (this is
to match the different lengths of trefoil proteins’ knotted cores). In this way we obtain a total of 6 different PL curves for
each 2-L configuration, and 12 curves representing a 1-L configuration, for a total of 84 curves.

Step 3: perturb each curve. We then generate 10 different trajectories for each of the 84 curves by performing numerical
perturbations. The minimal distance dm between vertices of each trajectory is determined. Each vertex is perturbed
uniformly within a sphere of radius dm centred at the vertex. This step adds some randomness to a curve without breaking
the geometry of the loops. The perturbation script is available in our GitHub repository45.

In this way, we end up with 60 different trajectories for each 2-L configuration, and 120 1-L trajectories, for a total of 840
different PL curves forming open ended trefoils with different geometries. The xyz coordinates of all the trajectories in our
data-set are available on our GitHub repository45.

C Computation of knotoid distributions and KnotoEMD
C.1 Knotoid Distributions
From the xyz file of each PL curve (either representing the entire chain of a protein or trajectory, or their reductions to the
knot core) the knotoid distribution is computed using the software Knoto-ID35. More precisely, a total of 5000 projections are
sampled and then subsequently analysed with polynomial invariants to detect their knotoid type. By results in37 a sample size
of 5000 is known to be optimal to well approximate the continuous knotoid distributions.

C.2 KnotoEMD
KnotoEMD is defined as the earth mover’s distance between their knotoid distributions, with cost matrix given by the f -
distance. Pairwise distances are computed using Python EMD wrapper PyEMD25, 51. The cost matrix containing the pairwise
f -distances between knotoids with minimal crossing number at most 6 is obtained from results in37. The cost matrix and the
KnotoEMD computation script are available on our GitHub repository45. A small number of trefoil proteins and some of the
most complicated 2-L trajectories have knotoid distribution containing a few occurrences of knotoids with minimal crossing
number larger than 6. Since the current classification52 of knotoids is restricted to minimal crossing number at most 6, these
entries are collectively catalogued as “‘unknown”. The f -distance between an unknown and any other knotoid is set to 2. Since
the probability of occurrence of unknowns for the curves considered is very low, the overall aspect of our computations does
not change for different choices of the distance between unknowns and other knotoids, such as for example 4 or 6.
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C.3 Distance matrices
This section contains a description of the various KnotoEMD matrices we computed. Figure 7 shows heat-maps for pairwise
distances of entire chains and knot cores of trefoil proteins. Similarly, Figure 8 contains pairwise distances of our generated
trajectories (restricted to the core), and distances between these and knot cores of trefoil proteins.

Figure 7. Pairwise KnotoEMD on trefoil proteins. On the left, knotoid distributions are computed from the entire chain,
while on the right from the knot core of each protein. Proteins are ordered according to sequence similarity: proteins in the
same sequence similarity cluster are placed close to each other. The top noisy square represents pairwise distances between
singletons (i.e. proteins that are not similar to any other protein considered). Note that pairwise distances between proteins in
the same sequence similarity group are very low, showing that our distance recovers clustering by sequence similarity. This
remains true when we only analyse the core, although the results are noisier in this case.

In all the relevant plots, proteins with similar sequences are placed closed to each other. The complete ordering and sequence
similarity clustering are available on our GitHub repository45. The generated trajectories are ordered as follows.

1. The simple 2-L trajectories, in the following order:

the 60 trajectories for RR(+,0,0);

the 60 trajectories for RL(+,0,−1);

the 60 trajectories for LR(+,−1,0);

the 60 trajectories for LL(+,−1,−1).

2. The first group of complex 2-L trajectories, in the following order:

the 60 trajectories for LR(−,1,2);

the 60 trajectories for LL(−,1,1);

the 60 trajectories for RR(−,2,2);

the 60 trajectories for RL(−,2,1).
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Figure 8. KnotoEMD of 2-L configurations, 1-L configurations and trefoil proteins cores. All the pairwise distances
shown here are computed from the knotoid distributions of the knot core of each curve. Pairwise distances of our generated
trajectories are shown on the left, and distance between trajectories and trefoil proteins are on the right. Note that KnotoEMD
clusters each group of 2-L configurations, and the group of 1-L configurations,. Similarly, distances from trajectories to
proteins respect both the sequence similarity subdvision of proteins and the subdivision of trajectories.

3. The second group of complex 2-L trajectories, in the following order:

the 60 trajectories for LR(−,0,−2);

the 60 trajectories for RR(−,1,−2);

the 60 trajectories for RR(−,−2,1);

the 60 trajectories for RL(−,−2,0).

4. The 120 1-L trajectories.

C.4 UMAP projections
To visualise the spatial structure of the metric space of proteins equipped with KnotoEMD we used the non-linear dimension
reduction technique UMAP40 on the KnotoEMD distance matrices. This dimension reduction technique requires choices of
four parameters:

n_neighbors: a constraint on the size of local neighbourhood considered in the dimension reduction.

min_dist: the minimum distance separating points in the reduced dimension space.

metric: the metric used to compare the points of the input space (in our case rows of a large distance matrix).

n_components: the target dimension of the low dimensional space to which we project.

The parameter n_neighbors controls the emphasis on local vs global structure preservation in dimension reduction, and was
set to 60 representing ∼ 10% the number of points. The parameter min_dist affects the ability for points to tightly pack in
the low dimensional embedding, and was set to 0.3 to balance fine and broad topological structure. Our plots were not highly
sensitive to the choice of either the n_neighbors or min_dist parameter. We set metric = ‘precomputed’ to
indicate that our input is a distance matrix rather than a sample-feature matrix. We produced both 2 and 3 dimensional plots45.
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C.5 The knotted/unknotted homologous pair
It is important to notice that KnotoEMD captures at the same time information on the topology and geometry of open ended
knots. Indeed, while it efficiently detects different structural and geometrical feature among proteins forming open trefoils, it is
at the same time able to distinguish proteins with almost superimposable structures differing only by a strand passage, as in the
case of the pair knotted AOTCases/unknotted OTCases4, shown in Figure 9. The complete distance matrix and the order of the
proteins considered are available on our GitHub repository45.

Figure 9. KnotoEMD of knotted and unknotted proteins with sequence similar to 3KZN. The deeply knotted
AOTCases with PDB entry 3KZN has sequence higly similar to several unknotted proteins. The heat-map shows pairwise
distances for proteins in this group. The first 17 entries represent the knotted ones, while the following ones are unknotted. The
pair knotted AOTCases/unknotted OTCases, whose structures are almost superimposable4, is highlighted.
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