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Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes the papain-like
protease (PLpro). The protein not only plays an essential role in viral replication but also cleaves
ubiquitin and ubiquitin-like interferon-stimulated gene 15 protein (ISG15) from host proteins, making
it an important target for developing new antiviral drugs. In this study, we searched for novel,
noncovalent potential PLpro inhibitors by employing a multistep in silico screening of a 15 million
compound library. The selectivity of the best-scored compounds was evaluated by checking their
binding affinity to the human ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), which, as a
deubiquitylating enzyme, exhibits structural and functional similarities to the PLpro. As a result, we
identified 387 potential, selective PLpro inhibitors, from which we retrieved the 20 best compounds
according to their IC50 values toward PLpro estimated by a multiple linear regression model. The
selected candidates display potential activity against the protein with IC50 values in the nanomolar
range from approximately 159 to 505 nM and mostly adopt a similar binding mode to the known,
noncovalent SARS-CoV-2 PLpro inhibitors. We further propose the six most promising compounds
for future in vitro evaluation. The results for the top potential PLpro inhibitors are deposited in the
database prepared to facilitate research on anti-SARS-CoV-2 drugs.

Keywords: SARS-CoV-2; COVID-19; coronavirus; PLpro; papain-like protease; UCH-L1; virtual
screening; docking; pharmacophore

1. Introduction

Due to the alarming spread levels and rising infection numbers, on 11 March 2020,
the World Health Organization (WHO) declared coronavirus disease 2019 (COVID-19) as a
world health emergency and characterized it as a pandemic [1]. Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) was identified as pathogen causing COVID-19 [2].
People infected with SARS-CoV-2 can suffer from mild symptoms such as high fever,
cough, and fatigue, but the virus can also cause acute respiratory difficulties, multiple
organ failure, and death. The elderly and people with comorbidities are especially at risk
of a severe course of the disease [3]. As of March 2021, more than 2.5M people have died
from COVID-19 and more than 114M confirmed infection cases have been reported around
the world [4,5]. As the disease has a substantial impact on global health and significantly
affects social and economic aspects, the scientific community has put great effort toward
developing new treatments.

SARS-CoV-2 is an enveloped positive-strand RNA virus from the Coronaviridae
family [6]. In the infection cycle, viral polypeptides (pp1a and pp1ab) are translated. They
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have to be cleaved by a protease to become functional peptides [7,8]. In SARS-CoV-2,
two proteases were identified as essential in the cleavage process—namely, main protease
(Mpro) and papain-like protease (PLpro). As they determine successful viral replication,
Mpro and PLpro became potential drug targets [9–11]. Inhibition of viral proteases crucial
for polypeptide processing has been reported as a successful strategy for the treatment of
other viruses—hepatitis C virus (HCV) and human immunodeficiency virus (HIV) [12,13].

Beyond viral polypeptides cleavage function, PLpro also has the ability to reverse
post-translational modifications of host proteins. It can hydrolyze a bond between a
host protein and ubiquitin (Ub) or protein of interferon-stimulated gene 15 (ISG15) [14].
Coronavirus PLpro recognizes the LXGG sequence as the cleavage target. The same
sequence is recognized by deubiquitinating enzymes [8,15]. Structural similarities to other
viral ubiquitin-specific proteases have been reported [16]. A ubiquitin-like protein ISG15,
the product of interferon-stimulated gene, consists of a C-terminal LRLRGG sequence,
which makes it a PLpro cleavage target. ISGylation and ubiquitination events are prominent
elements of the innate immune response, which have to be broken by the virus for successful
infection [7,16]. Both ISG15 and Ub proteins are substantial mediators and regulators in
antiviral defense [14]. By modifying host proteins, PLpro suppresses the immune system
response [7]. The above functions, along with polyprotein processing, make PLpro an ideal
molecular target for potential anti-SARS-CoV-2 drugs.

Structural similarities to PLpro can be found in a human protein—ubiquitin carboxy-
terminal hydrolase L1 (UCH-L1). UCH-L1 recognizes the same target sequence and exhibits
functional similarity to PLpro. It belongs to deubiquitinating enzymes (DUBs, deubiq-
uitylases) family and plays a significant role in neural protein homeostasis by removing
ubiquitin or adding it to proteasome-degradation-destined proteins [17]. Mutations in
UCH-L1 cause neural disorders, including Parkinson’s disease [18]. As deregulation of
UCH-L1 level can lead to Alzheimer’s disease [19] and some types of cancer [20], UCH-L1
is frequently used in research as a drug target [21]. UCH-L1, as well as other C-terminal
hydrolases (UCHs family members), possesses a nontrivial topology; its protein backbone
forms a knot (when pulled by termini tied) [22,23]. Due to UCH-L1’s important function,
it is clear that the effect of potential drug binding to this protein has to be taken into
account when new inhibitors for SARS-CoV-2 PLpro are designed. Both human and viral
deubiquitinating enzymes have to be evaluated to identify safe anti-SARS-CoV-2 drugs.

Because SARS-CoV-2 PLpro is necessary for viral replication, as well as for suppression
of the host immune response, it is a promising molecular target. As such, it has already been
put in a spotlight by the scientific community. This includes research on its structure [24–26],
functions [11,27], and similarity to PLpro from other related coronaviruses, most notably
SARS-CoV [28]. The search for PLpro inhibitors has already begun. So far, most studies
focus on trying to utilize previously developed noncovalent SARS-CoV inhibitors or their
derivatives [7,24,29] or to design specific, covalent inhibitors [30,31]. However, covalent
protease inhibitors come with risks of toxicity due to high reactivity and, in some cases, low
selectivity and nonspecific binding off the target [32–34]. In this context, it may be favorable
to design noncovalent PLpro inhibitors. There is a considerable amount of data on such
compounds with regards to SARS-CoV PLpro, which will facilitate the design of analogical
inhibitors for the novel coronavirus, as these two strains share considerable similarity
in terms of PLpro structure [24]. Alas, the recently developed and studied SARS-CoV-2
PLpro inhibitors exhibit only moderate binding affinity toward this enzyme [7,24,35,36].
Furthermore, they lack consideration of potential toxicity, most importantly in terms of
potential off binding to similar deubiquitinating enzymes, most notably to UCH-L1. Thus,
a new, more comprehensive approach should be taken to design novel PLpro inhibitors
with potentially higher binding affinities and a low toxicity.

In this study, we were searching for novel, potent, noncovalent, and selective PLpro
inhibitors. Such compounds would have higher affinity to SARS-CoV-2 PLpro than up-to-
date known inhibitors as well as low affinity toward human UCH-L1 to reduce the risk of
toxicity. In order to achieve these goals, we conducted comprehensive in silico screening,
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which is an effective and relatively fast route in modern drug design. We put an emphasis
on the high quality of our predictions. Thus, we extensively validated used techniques,
to ascertain that they are suitable for this specific project. As a result, we employed a
broad range of computational methods, merging both ligand-based and structure-based
ones. Initially, we screened a large library of over 15M drug-like compounds using mixed
pharmacophores. Then, we evaluated binding affinities of selected molecules toward
SARS-CoV-2 PLpro with molecular docking and binding energy calculations. The potential
PLpro inhibitors were then tested for their ability to bind to human UCH-L1. Finally,
we conducted an in-depth analysis of the selected best compounds’ chemical structures
and binding modes and evaluated their toxicity. We identified nearly 1000 compounds,
including six with very high probability to be potential selective PLpro inhibitors. These
results are deposited in a publicly available database to allow future investigation to
overcome the COVID-19 pandemics.

2. Results and Discussion
2.1. Overview of SARS-CoV-2 PLpro Structure and Its Known Inhibitors

SARS-CoV-2 PLpro is a monomeric enzyme that may be divided into two main
domains—the catalytic domain and the ubiquitin-like (Ubl) domain. The first one is the
interesting part in terms of enzymatic functions, as well as inhibiting the protein. It may be
further divided into three subdomains: thumb, palm, and fingers (Figure 1A). The active
site is located between palm and thumb, utilizing three main residues, called the catalytic
triad: Cys111, His272, and Asp286 (Figure 1B) [24].

Figure 1. Overview of the SARS-CoV-2 PLpro structure and inhibitors. (A) Tertiary structure of PLpro and its division into
two main parts: the ubiquitin-like (Ubl) domain (purple), and the catalytic domain, which may be further divided into
three subdomains: thumb (orange), palm (blue), and fingers (green). (B) PLpro active site at the interface between palm and
thumb. Three amino acids of the catalytic triad—Cys111, His272, and Asp286 are depicted in stick representation (PDB ID:
7jn2). (C) PLpro with covalent peptide inhibitor VIR250 bound to Cys111, shown in stick representation. Part of the inhibitor
exceeds beyond the active site and is placed under the blocking loop 2 (BL2) (PDB ID: 6wuu). (D) Structural formulas of
the representatives of the two main classes of SARS-CoV-2 noncovalent inhibitors—GRL0617 and rac3j. (E) PLpro with
noncovalent inhibitor GRL0617. Such compounds bind under the BL2, just outside the active site (PDB ID: 7jir).

Although SARS-CoV-2 PLpro is a relatively short known protein, its great significance
for the virus, as well as being an immensely valid molecular target for novel potential
drugs, led to great attention on it in the scientific world. Thus, multiple crystal structures
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of this enzyme are already available, including apo-protein [24,25] as well as structures
of PLpro with ubiquitin, ISG15 [35] or inhibitors [24,25,30]. There are two main classes
of SARS-CoV-2 PLpro inhibitors, with both solved tertiary structures of protein–inhibitor
complexes and results of in vitro studies regarding their binding affinities.

Covalent inhibitors represent one of the most important types of compounds studied
so far. In this group, the main direction seems to be focused on the peptide scaffolds [30].
There are also other proposals for nonpeptide, covalent inhibitors, such as ebselen [37], its
derivatives [31], and disulfiram [38]. In the case of the peptide inhibitors, the covalent bond
is formed with one of the amino acids of the catalytic triad—Cys111. As the structures of
those compounds form quite long chains, the large part of the molecule is placed out of the
active site and lies under the blocking loop 2 (BL2) in the palm subdomain (Figure 1C) [30].

Noncovalent PLpro inhibitors are the second main type of potential anti-SARS-CoV-2
drugs. In this group, the most significant and the most extensively studied compounds
include inhibitors known to act on SARS-CoV PLpro and their derivatives. Such a di-
rection is reasonable due to the high sequential similarity (90%) and identity (83%) of
PLpro between SARS-CoV and SARS-CoV-2 [24]. The SARS-CoV PLpro noncovalent
inhibitors are in a big part members of one structural group of compounds, namely, the
derivatives of N-[1-(naphthalen-1-yl)ethyl]benzamide (e.g., GRL0617) [7]. Other proposals
include, most notably, derivatives of N-benzyl-1-[1-(naphthalen-1-yl)ethyl]piperidine-4-
carboxamide (e.g., rac3j), with a different arrangement of the scaffold in the center of the
molecule [35] (Figure 1D). A recently developed class of GRL0617 derivatives retains its
central N-ethylbenzamide part, but replaces the naphthyl group with a 2-phenylthiophene
moiety [36]. Importantly, the noncovalent inhibitors do not bind at the active site, but
instead nearby, below the BL2, similarly to the part of the structure of the peptide, covalent
inhibitors (Figure 1E). This binding site is placed at the interface between palm and thumb.
Residues from both of these subdomains take part in forming protein–ligand interactions.
While most of the site is quite rigid, the crucial BL2 is a flexible loop, exhibiting consid-
erable induced fit effects. Our analysis of available structures as well as conformations
from explicit solvent molecular dynamics simulations implies that the conformation of the
BL2 varies significantly, depending on the presence and the type of the inhibitor. Thus, not
every tertiary structure of PLpro is equally suitable for computer-aided drug design and
there is a need to rationally select applicable ones.

At present, new SARS-CoV-2 PLpro crystal structures are constantly determined, and
to date, there are over 30 available at the Protein Data Bank (PDB) (Supplementary Table S1).
From the structure-based drug design perspective, the most crucial factor is the presence
and the type of ligand at the binding site of interest. Thus, the PLpro structures may be
divided into a few main groups. The first one includes crystals with the apo-enzyme,
namely PDB IDs: 6wrh, 6wzu, 6xg3 [24], 7cjd [25], 6w9c, 7d47, 7d6h, and 7nfv. Because of
the induced fit effect at the BL2, the apo conformations are in most cases the least useful
ones for an application in structure-based computational methods. The second type of
PLpro structures contains natural ligands, namely ubiquitin (PDB ID: 6xaa [35]) and ISG15
(PDB IDs: 6yva [11] and 6xa9 [35]). Those structures should intuitively be more suitable
than the apo ones. However, a more detailed analysis of the BL2 conformation and our
validation show that the structures with ubiquitin or ISG15 are also not sufficient for the in
silico screening. The third group contains PLpro with covalent, peptide inhibitors (PDB IDs:
6wuu and 6wx4 [30]). Covalent inhibitors, apart from an obvious covalent bond, present
a distinct binding mode compared to the noncovalent compounds. Once again, this is
especially visible in the BL2 conformation, therefore limiting these crystal structures utility
for noncovalent inhibitors’ design. The fourth group includes PLpro with cocrystallized
GRL0617 or its close derivatives, namely PDB IDs: 7jir, 7jit, 7jiv, 7jiw [24], 7cmd [25], 7jn2,
7koj, 7kok, 7kol, 7krx, 7jrn, and 7cjm. These structures are well suited for the in silico
screening. All the ligands in this group retain the N-[1-(naphthalen-1-yl)ethyl]benzamide
scaffold of the GRL0617, varying only in the substituents attached to the phenyl group.
Thus, the conformations of the BL2 remain almost exactly the same, and the aforementioned
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PDB entries exhibit only slight differences. Selection of one representative PLpro structure
from this set is therefore a sufficient strategy. The next group contains GRL0617 derivatives
with N-ethylbenzamide scaffold retained but with the naphthyl group replaced with a
2-phenylthiophene moiety (PDB IDs: 7lbr, 7lbs, 7llf, 7llz, and 7los [36]). However, the
altered fragment of the inhibitors is placed between the BL2 and the rest of the palm
subdomain and in turn does not cause any significant BL2 conformational rearrangements
compared to GRL0617-bound structures. The next type of the PLpro structure is the PDB
ID: 7e35 with the derivative of rac3j. As the inhibitor cocrystallized in this entry possesses
a distinct scaffold than GRL0617, the conformation of BL2 varies slightly in this structure.
Thus, it may be utilized alternatively to or together with the aforementioned noncovalent
inhibitor-bound PLpro structures in order to design potentially more diverse compounds.
The last PLpro structure type is the PDB ID: 7m1y with ebselen. However, this compound
is bound at a distinct site, and thus this PLpro conformation is not suitable for design of
noncovalent inhibitors, similarly to apo-structures.

2.2. Overview of Human UCH-L1 and Its Similarity to SARS-CoV-2 PLpro

UCH-L1 is a proteolytic enzyme that hydrolyzes the peptide bond with glycine at
ubiquitin’s C-terminus. Thus far, eight crystallographic structures have been solved, one
of which was cocrystallized with a covalent, peptide inhibitor [39] and other three with
ubiquitin, which is considered to interact with two sites created with residues 5–10 and
211–216 (Figure 2A) [40].

Figure 2. (A) Overview of UCH-L1 structure (PDB ID: 3kw5) with ubiquitin (purple), ubiquitin binding sites (red), and
catalytic triad (yellow). (B) UCH-L1 active site (dark grey ribbon and yellow sticks) superimposed on PLpro active site
(light grey ribbon and green sticks) from PDB structures 3kw5 and 7jn2, respectively.

In native state, UCH-L1 exists as a monomer. However, it was shown that this protein,
unlike other UCH family members, can create an asymmetric homodimer while exhibiting
additional ubiquitin ligase activity [41,42]. Its secondary structure comprises, similarly to
UCH-L3, a helix-β-helix sandwich fold consisting of a right lobe—five α-helices, and left
lobe—two α-helices and six β-strands [41]. The highly folded protein backbone creates the
52 knot with a core length of 215 amino acids (residues 5-219), and a slipknot 31 containing
159 amino acids (residues 6-164) [43,44].

The active site is created by Cys90, His161, and Asp176, together called the cat-
alytic triad [45]. The catalytic triad of UCHs shows close resemblance to PLpro active
site (Figure 2B) [46]. To the best of our knowledge, a comparative study of UCH-L1 and
SARS-CoV-2 PLpro has not yet been conducted. Middle East respiratory syndrome coro-
navirus (MERS-CoV) PLpro and human UCH-L3 have been previously used together in
experimental work in inhibitor research [47].
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While superimposing PLpro and UCH-L1 structures by catalytic triad, the resemblance
of β-strands beneath PLpro BL2, α-helices that include Cys90, and loops above active site
(Figure 2B) can be seen. The similarity is sufficient to consider the risk of nonselectivity,
although existing differences create possibilities of designing selective PLpro inhibitors.

2.3. Virtual Screening Workflow

In order to both efficiently and accurately select potential PLpro inhibitors, we estab-
lished a multistep workflow, including a diverse range of computational techniques. We
started with relatively fast methods and, moving to the next steps, employed more accurate
and time-costly ones (Figure 3). As a chemical space to screen, we picked a library of over
15 million drug-like, diverse compounds from the ENAMINE REAL database.

Figure 3. The computational workflow employed in the screening campaign. The procedure consisted of several steps
aimed to find potential, potent SARS-CoV-2 inhibitors, using increasingly accurate in silico methods. First, we conducted
pharmacophore screening of over 15M compounds in LigandScout. Then, we proceeded with docking and molecular
mechanics–generalized Born and surface area solvation (MM–GBSA) binding energy calculations in Discovery Studio. The
number of compounds obtained from the first phase initially increased from around 88 to 120 thousand due to the ligand
preparation step, which included creation of possible multiple ionization states. The best 950 potential PLpro inhibitors
are gathered in a database. In the last phase, we evaluated these compounds’ affinity toward human UCH-L1 in Maestro
software and obtained 387 potential, selective PLpro inhibitors.

The first step of our workflow was to efficiently screen the above-mentioned large
ligand library. For this purpose, we selected pharmacophore screening, using Ligand-
Scout [48]. As traditional ligand-based methods may have difficulties in finding novel
structure groups, we utilized a mixed pharmacophore based on protein–ligand complexes
obtained from the PDB. It contains descriptors derived both from a ligand’s chemical
structure and from ligand–protein interactions. To further enhance our model’s ability to
properly filter a broader spectrum of potential PLpro inhibitors, we merged a few such
pharmacophores into a complex one. As components we used structures with SARS-CoV-2
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PLpro cocrystallized with noncovalent inhibitors similar to GRL0617 [24] or covalent in-
hibitor [30], as well as SARS-CoV PLpro with a noncovalent inhibitor of another type than
may be encountered in SARS-CoV-2 PLpro crystals present at the time, the derivative of
N-benzyl-1-[1-(naphthalen-1-yl)ethyl]piperidine-4-carboxamide [49]. In this case, elements
of ligand-based drug design have an advantage of being biased toward compounds similar
to those exhibiting moderate successes in both SARS-CoV and SARS-CoV-2 in vitro studies.
However, as we aim to find potentially superior drug candidates, the procedure able to
seek also slightly different structural groups is preferable. The decision to utilize a merged
model consisting of various protein–ligand complexes allowed us to obtain a less restrictive
pharmacophore, capable of spotting compounds with more diverse chemical structures
compared to those from crystals.

In the second phase of the screening campaign, we picked around 88,000 compounds
with the best scoring function values from the previous step. In this part, we estimated
binding affinities of selected compounds toward the PLpro binding site. We selected
molecular docking as a semiaccurate and effective method to achieve this task. Additionally,
this is a structure-based technique which allowed us to put more emphasis on the molecular
target and consequentially allowed us to potentially find compounds more distinct from
the PLpro inhibitors known so far. We utilized the Discovery Studio CDOCKER protocol—
an accurate, rigid-protein docking program [50]. We used PDB ID: 7jn2 structure as a
model of the PLpro, as it performed best during our validation. Docked compounds were
scored with Jain function. Then, as a more accurate measure of binding affinity prediction,
we calculated binding energies of the 5486 best-scored compounds using the molecular
mechanics–generalized Born and surface area solvation (MM–GBSA) method. After this
step, we left 950 potential PLpro inhibitors. As our validation showed, in this case, both
Jain and MM–GBSA binding energy correlated well with experimental pIC50 values of
PLpro ligands known so far. Thus, in order to more accurately estimate the potential
inhibitors’ binding affinities, we established our own consensus function based on the
multiple linear regression (MLR) for Jain and the binding energy from MM–GBSA. The
combined model outperformed both its components alone when it comes to the correlation
with the in vitro data. Using this model, we calculated predicted pIC50 values for the
potential PLpro inhibitors.

The third step of the project was aimed to predict the chosen compounds’ selectivity
and to filter those that potentially have a weak to no affinity toward human UCH-L1.
Here, once again, we employed molecular docking. Based on the comparison of different
methods and on the validation results, we decided to use Schrödinger Glide [51]. We
docked 950 potential PLpro inhibitors to the model of UCH-L1 based on the PDB ID:
4jkj. For the obtained protein–ligand complexes, we calculated their binding energies
with the MM–GBSA method. The results for the top candidates for PLpro inhibitors,
regarding both PLpro and UCH-L1 calculations, are deposited in the database (https:
//plpro-inhibitors.cent.uw.edu.pl) to facilitate future work.

Finally, it is important to stress that one of the most significant difficulties in the
drug design process is the potential toxicity of the drug candidates. It may be time- and
money-saving to assess the potential drug’s toxicity at the early stages of the design. For
this purpose, computational techniques are becoming increasingly useful [52]. In the case
of the potential PLpro inhibitors, we focused mainly on the human analogous protein
UCH-L1. However, there are many more factors needed to be taken into account. Thus,
from the compounds with potentially low affinities toward UCH-L1, we selected 20 with
lowest predicted IC50 values toward PLpro, based on our MLR model. Then, we assessed
the potential toxicity of these selected molecules. For this purpose, we utilized the Toxicity
Estimation Software Tool (TEST). We estimated the mutagenicity, developmental toxicity,
and rat LD50 of the selected 20 compounds.

https://plpro-inhibitors.cent.uw.edu.pl
https://plpro-inhibitors.cent.uw.edu.pl
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2.4. Validation Results

The computational methods we employed in this screening procedure may be power-
ful tools. However, it is important to consider their limitations. Inaccurate or semiaccurate
in silico techniques may perform well when it comes to one problem but at the same time
be inadequate to create a realistic model for another. This is an extremely sensitive matter
when it comes to working with different proteins. Therefore, such methods require an
extensive validation each time they are used for a new molecular target. We describe such
validation in detail in the Methods section. However, as this is a crucial matter for such
a type of an in silico project, in the next few paragraphs, we highlight the results of the
validation of methods we selected for each part of our procedure.

2.4.1. Pharmacophore Screening

For initial drug screening, we used a pharmacophore based simultaneously on ligand–
protein interactions and the structure of inhibitors, which was chosen out of a set of
many pharmacophores. To create them, we combined pharmacophores obtained from
different ligand–protein complexes, because structurally diverse compounds make use
of slightly varied interactions. In this way, we wanted to ensure that the pharmacophore
would be able to detect compounds with different chemical structures. In order to validate
the pharmacophores’ ability to spot potent inhibitors, we created a database of active
compounds with low IC50 values and tested if a given pharmacophore can pick them up
against a set of decoys.

Based on the validation results, we chose a pharmacophore derived from PDB IDs:
7jiw, 7jn2, 4ovz, and 6wuu with 19 descriptors presented in the Figure 4A and with
27 exclusion volumes. During validation, the pharmacophore reached the enrichment
factor 1% (EF1%) value of 67.0, which is an excellent result. It was able to detect expected
ligands as active (Figure 4B) and four of them occupied the top four places even though they
were structurally different. These results prove the ability of the selected pharmacophore
to spot compounds with diverse chemical structures without a bias toward only one
inhibitor type.

To confirm the chosen pharmacophore’s ability to identify potent PLpro inhibitors, we
conducted an additional validation step. We performed an analogical test screening, but
with a bigger, more diverse set of known, active compounds with IC50 values below 1 µM.
The pharmacophore reached a high value of EF1% = 40.8, therefore proving its viability
(Figure 4C).

2.4.2. PLpro Binding Affinity Estimation

In our study, we used BIOVIA Discovery Studio to predict the binding affinities of
the compounds selected in the previous step. This software was chosen over other tested
programs (Schrödinger Maestro and Autodock Vina) because it achieved the best vali-
dation results. We employed a technique of molecular docking and then assessed the
obtained poses by scoring functions and binding energy calculations. However, prior
to this, we validated the software’s ability to predict correct ligand poses by redocking
and cross-docking techniques. We compared ligand root-mean-square deviation (RMSD)
obtained after the proteins with docking poses were superimposed on the original struc-
tures (Supplementary Table S2). With most of the redocking RMSD values under 2 Å,
we can conclude that the obtained poses are valid for our further research. We observed
a significant induced fit effect, so we expected that noncovalent inhibitors would reach
high RMSD values after cross-docking to PLpro structures from complexes with covalent
inhibitors (6wuu and 6wx4).
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Figure 4. (A) The pharmacophore selected for screening, derived from Protein Data Bank (PDB) IDs: 7jiw, 7jn2, 4ovz, and
6wuu. Types of descriptors: green arrows—H bond donor, red arrows—H bond acceptor, yellow spheres—hydrophobic,
blue rings—aromatic rings, blue star—positive ionizable. Exclusion volumes are not shown to increase the readability.
Aromatic rings on the right are highly conserved between potent PLpro inhibitors because of their strong interactions
with the amino acids in the binding pocket. The hydrogen bonds on the left are less important interactions, hence their
positions are more varied. (B) Receiver operating characteristic curve obtained from the screening of the initial set of active
compounds using the pharmacophore with the maximum number of omitted features set to 14. Obtained EF1% = 67.0
indicates the chosen pharmacophore’s ability to distinguish potent PLpro inhibitors. (C) Receiver operating characteristic
curve obtained from the test screening of the additional set of active compounds. The value of EF1% = 40.8 confirms that the
selected pharmacophore is suitable for drug screening.

In the latter phase, we validated the ability of the docking procedure to predict binding
affinities of potential PLpro inhibitors. We checked the Pearson correlation coefficients
between 21 known pIC50 values for different inhibitors and values of scoring functions
and binding energies. We repeated the calculations for different PLpro structures retrieved
from PDB (Supplementary Table S3). This allowed us to find the best PLpro structure for
the drug screening, PDB ID: 7jn2, and the best affinity predictors, which were Jain and
MM–GBSA. Additionally, we prepared a MLR model, merging both Jain and MM–GBSA
into one function. 7jn2 reached Pearson correlation coefficients of 0.73 (p < 0.005) for Jain,
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−0.64 (p < 0.005) for MM–GBSA, and 0.82 (p < 0.005) for MLR (Figure 5A–C), and obtained
a low RMSD value (1.6 Å) in redocking (Figure 5E) and mostly low RMSD values from
cross-docking of ligands from other PLpro crystal structures (Supplementary Table S4).

Figure 5. (A–C) Correlation between values of scoring functions and binding energies, and pIC50 values of the inhibitors
docked to PLpro (PDB ID: 7jn2). (A) Jain scoring function. (B) MM–GBSA binding energy. (C) Multiple linear regression
(MLR) model. (D) Analogical correlation for MLR model for the extended set of test compounds. (E) A comparison of poses
between the PLpro inhibitor from the crystal structure (PDB ID: 7jn2, grey) and the same inhibitor after redocking (green).
The naphthalene and the amide group are aligned more closely with the original ligand because of the strong interactions
with the amino acids in the binding pocket, whereas the left fragment forms less important interactions and is aligned
worse. (F) Correlation between pIC50 values and MM–GBSA binding free energies of UCH-L1 inhibitors docked to the
target protein (PDB ID: 4jkj, chain B) using Glide SP.
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Finally, we evaluated the selected docking procedure’s ability to correctly predict the
binding affinities of potential inhibitors. We prepared an additional set of inhibitors with
known IC50 values for SARS-CoV-2 PLpro, picking representative compounds in terms of
various chemical structures and a wide range of IC50 values, together with the previously
used molecules giving the total of 50 test compounds. We docked them to 7jn2 and scored
analogically as described above. This additional validation step confirmed the docking
procedure’s suitability for further screening, with Pearson correlation coefficients of 0.71
(p < 0.005) for Jain, −0.55 (p < 0.005) for MM–GBSA (Supplementary Figure S1), and 0.75
(p < 0.005) for MLR (Figure 5D).

2.4.3. UCH-L1 Binding Affinity Estimation

Before the docking of potential PLpro inhibitors to the selected UCH-L1 structure, we
checked the validity of bioactivity predictions for 30 compounds with known IC50 values
against the hydrolase, made by several docking programs. Therefore, we determined the
Pearson correlation coefficients between the pIC50 values of the docked ligands and their
estimated docking scores or MM–GBSA binding free energies.

The strongest linear correlations were obtained between pIC50 values and MM–GBSA
binding free energies predicted for ligands docked to the target proteins with PDB ID: 2etl
using Glide SP (R = −0.62) and 4jkj using both Glide SP (R = −0.61) (Figure 5F) and Glide
XP (R = −0.58). We validated the docking protocol by conducting redocking and cross-
docking of the only available UCH-L1 cocrystallized ligand (PDB ID: 4dm9). We docked
the molecule to all UCH-L1 crystal structures with Glide SP and Glide XP, and calculated
the RMSD of the docking poses relative to the native pose. Considering that the docked
ligand was a covalently bound inhibitor, the calculated RMSD values were high, with the
average of 5.9 Å for redocking and 10.1 Å for cross-docking. Among the poses obtained
from cross-docking, the lowest RMSD values were calculated for the ligand docked to
the structure with PDB ID: 2len (RMSD = 6.2 Å) and PDB ID: 4jkj, chain B (RMSD = 6.4 Å)
using Glide SP in both cases.

Since the difference between the best Pearson correlation coefficients was small and
cross-docking to the structure with PDB ID: 4jkj, chain B using Glide SP gave one of
the lowest RMSD values, we selected this entry as the target protein to which we con-
ducted the further docking of potential PLpro inhibitors. We used MM–GBSA binding
free energies calculations as a measure to estimate their binding affinities to the selected
UCH-L1 structure.

2.5. Analysis of the Best Scored Compounds

After all main phases of our screening, we obtained 950 potential PLpro inhibitors.
Three hundred eighty-seven of those may be treated as potentially selective, meaning
that they should potentially bind well to PLpro and weakly to UCH-L1. We selected
the 20 best selective compounds according to their calculated pIC50 toward PLpro using
our MLR model (Table 1, Supplementary Figure S2). Their IC50 values come between
159 and 505 nM. This suggests a potentially higher affinity toward PLpro binding site than
for up-to-date synthesized inhibitors. For these 20 compounds, we conducted detailed
analysis of their binding poses, the protein–ligand interactions they form, as well as their
chemical structures.
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Table 1. Twenty compounds chosen from the 387 potential selective PLpro inhibitors, with the lowest pIC50 values based
on the MLR model estimation. ID numbers in the first column are given to these compounds according to the increasing
values from the second column—the IC50 toward PLpro predicted using our MLR model. The next two columns show
values of the MM–GBSA protein–ligand binding energies and Jain scoring function obtained after docking to PDB ID: 7jn2
PLpro model using Discovery Studio CDOCKER. The fifth column shows the values of MM–GBSA protein–ligand binding
energies calculated after docking to UCH-L1 model based on PDB ID: 4jkj in Maestro Glide. As the binding energies toward
these two proteins were estimated with different software, force fields, and settings, their values are not comparable. The
last column depicts the results of our visual inspection of the binding poses obtained after docking to PLpro in Discovery
Studio. “+++” indicates a binding pose nearly identical to the crystal (PDB ID: 7jn2), while “−” an entirely different pose.

ID Predicted IC50
(nM)

Binding Energy—PLpro
(kcal/mol) Jain—PLpro Binding Energy—UCH-L1

(kcal/mol)
Visual Inspection

PLpro

1 159 −13.4 10.7 −29.6 ++
2 226 −19.2 9.2 −29.3 +
3 227 −16.9 9.5 −19.7 +
4 248 −19.2 9.0 −28.4 −
5 270 −18.1 9.0 −24.2 +
6 287 −17.6 9.0 −26.6 ++
7 303 −23.0 8.2 −27.2 +++
8 324 −20.4 8.4 −23.7 +++
9 359 −17.6 8.6 −29.7 −
10 370 −25.0 7.5 −30.0 ++
11 383 −12.0 9.3 −20.6 +
12 385 −18.2 8.4 −28.0 +
13 420 −13.9 8.8 −16.0 ++
14 432 −19.6 8.0 −26.1 +++
15 433 −17.7 8.2 −25.0 ++
16 446 −13.5 8.8 −29.6 +++
17 476 −15.0 8.4 −20.4 ++
18 483 −18.7 7.9 −27.1 +++
19 498 −17.8 8.0 −21.1 +++
20 505 −19.7 7.7 −29.8 +

2.5.1. Chemical Structures and PLpro Binding Modes

Most of the selected compounds possess similar structural features compared to the
SARS-CoV-2 PLpro noncovalent inhibitors known so far. This is partially an expected
outcome considering the structure–ligand-based character of the first step of the screening
in LigandScout. However, it also shows that the latter phases in Discovery Studio favor
similar compounds, even though there are also slightly different ones among the subset
obtained after pharmacophore screening. The analysis of the compounds’ binding modes
also shows that, in most cases, the 20 selected molecules adopt poses analogical to those
from crystals with complexes of PLpro with noncovalent inhibitors. To simplify the
analysis, the compounds’ structures may be divided into three parts. When looking from
the perspective as in Figure 1E, BL2 is placed above the inhibitor, the naphthyl group,
closer to the fingers subdomain, is situated on the right side, whereas the part near the
catalytic triad is located on the left. The right part usually consists of aromatic rings
that most often form π–π interactions with Tyr268. The central part comprises crucial
hydrophilic groups able to form important hydrogen bonds or salt bridges with nearby
residues. Usually, it contains secondary amine groups or amide bonds. The right and
central fragments are, in most cases, connected with a methylene group, similarly to the
known PLpro inhibitors. The structure of the left part is more diversified and may form not
only some hydrogen bonds or salt bridges but also other interactions and, in some cases,
only weak ones (Figure 6).
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Figure 6. A schematic presentation of the structural features among the 20 potentially selective
compounds with the lowest predicted IC50 toward PLpro. The compounds’ structure is divided
into three main fragments: the right aromatic part, central amine linker, and left, most diversified
one. The directions are in agreement with the perspective shown in Figure 1E. The upper panel
depicts the simplified structure most often encountered. The bottom part shows possible, most
common variations. The fragment of the molecule between wavy lines is also diversified. However,
in some cases, a second functional group of the central part, which forms favorable protein–ligand
interactions, may be present there.

In detail, the right part of the crystal ligands is built by a naphthalene and forms
π–π T-shaped interactions with Tyr268. In our set of the top 20 potential inhibitors, 18
compounds possess an aromatic ring (11) or a polycyclic aromatic scaffold (7) in this part.
Among these 18, 12 ligands form interactions with Tyr268, ten of which have a π–π T-
shaped character and the latter two are of π-S nature (specific type of the π–lone pair
interaction). Interestingly, six of the π–π interactions are formed by polycyclic aromatic
structures and only four by single aromatic rings, despite the higher occurrence of the latter.
This indicates that in this part of the inhibitor, it is probably preferred to use polycyclic
aromatic scaffolds. In the case of the aromatic rings that do not form interactions with
Tyr268, they tend to create only other weak interactions instead, whereas the energetically
substantially favorable contacts are present in the other parts of those compounds. In those
cases, the binding mode of the whole molecule is also slightly different than in crystals
(Figure 7A,D) or in our 12 potential inhibitors described above that strongly interact with
Tyr268 (Figure 7B,E).

The central part of the noncovalent inhibitors from the crystal structures contains
amide groups. In some cases, there may be also present a piperidine connected via the
nitrogen atom to the right part of the molecule and via the carbon atom in position 4
to the amide linker in the left (e.g., PDB ID: 7e35). This part of the inhibitor is crucial
for the proper steric fit to the narrowest pocket of the binding site, just under the BL2.
The functional groups present in the center of the molecule are responsible for the most
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important interactions with nearby amino acids. These include mainly hydrogen bonds
or in some cases salt bridges with Asp164, Tyr264, Tyr268, and Gln269. In the case of the
latter two, the interactions are formed by the main chains of these amino acids. Thus, the
induced fit effect is of great significance in this context, especially the conformation of the
backbone of BL2. Hence, it may be difficult to spot such interactions for specific chemical
structures of the inhibitors, specific conformations of PLpro or their combinations. Because
we conducted docking to only a single, rigid PLpro structure, it is possible to miss some of
the potentially important interactions, as our potential inhibitors slightly vary compared to
known, crystallized, noncovalent inhibitors. However, the PLpro model based on PDB ID:
7jn2, that we used in this study, comprises a BL2 conformation with Tyr268 and Gln269
placed similarly to the most of the other crystal, inhibitor-bound structures. The utilization
of a representative PLpro structure allows us to model the behavior of this crucial fragment
of potential inhibitors in a satisfactory manner.

All of our 20 potential inhibitors in the central part of the molecule contain functional
groups that create strong interactions with the binding site. Seventeen compounds possess
a secondary amine group, while the other three—tertiary amine in a heterocyclic ring.
Additionally, two compounds with secondary amine groups also include concurrent tertiary
heterocyclic amines. Three other molecules have a second functional group of another type
in the main part—amide, hydroxyl, or ester. All 20 compounds form salt bridges with
Asp164. Six potential inhibitors create hydrogen bonds with Tyr273. Seven compounds
form π–cation interactions with Tyr264. There are also three molecules with hydrogen
bonds with Gln269. Interestingly, these compounds possess more than one functional
group in the central part, suggesting that it may be a valid strategy to include in this
fragment multiple groups able to create hydrogen bonds or salt bridges.

Both the chemical structures and consequently the interactions formed by the left
part of the PLpro inhibitors exhibit a greater variety compared to the rest of the molecule.
This fragment of the crystal ligands consists of an aromatic ring or a polycyclic aromatic
scaffold. However, it seems to serve little to no purpose itself when it comes to interacting
with binding site residues. In some cases there are hydrogen bonds between substituents
attached to the aromatic ring and Gln269, Tyr268 or Glu167. Hence, there is room to
work on this part of the new potential inhibitors and achieve a structure more suitable
for creating a larger number of important interactions with the binding site, compared to
the known chemical compounds. In the case of our potential inhibitors, this part is also
diversified. Ten of our compounds possess a heterocyclic scaffold, seven of which being a
piperidine. Most of these molecules have binding poses placed in such a way to facilitate
creating a salt bridge with Asp164, concurrently to a similar interaction of the same amino
acid with the central part of the inhibitor. These are usually the compounds that adopt an
overall slightly different binding mode than in crystals. They put a bigger emphasis on the
interactions of the left part of the inhibitor and do not always form π–π interactions with
Tyr268 with the right fragment, which is a characteristic feature of the crystal complexes.
Thus, these compounds have the binding poses directed slightly more toward right and
their right aromatic part toward bottom, further from the BL2 (Figure 7C,H). Additionally,
these potential inhibitors create π–cation interactions with Tyr264 using the left fragment
(Figure 7F), contrarily to the compounds with a more crystal-like binding mode that form
the same interactions utilizing the central part of the molecule. When it comes to the
other chemical constituents in the left fragment, there are three compounds containing a
halogenphenyl group. Interestingly, two of them form π–π interactions with Tyr268 here,
instead of the right part, being a third, least often observed binding mode. Additionally,
these compounds create π–anion interactions with Asp164. Four other potential inhibitors
contain various hydrophilic, noncyclic groups in the left fragment, including ester, amide,
ether or amine groups. This set of ligands interacts with this region of the binding site in
various manners, e.g., via hydrogen bonds with Gln269 or Gly163. Lastly, there are three
compounds with only hydrophobic groups in the left part. They do not form any strong
interactions using this fragment, owing their possibly high affinity to the favorable contacts
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in the other regions of the binding site. Similarly to many inhibitors from crystal structures,
there may be a possibility to optimize the structure here.

Figure 7. A comparison of binding modes between the inhibitor from the crystal structure (PDB ID: 7jn2) and potential
inhibitors from our screening campaign. Panels (A–C) depict poses of the inhibitor from the crystal structure and potential
inhibitors 18 and 3 docked in Discovery Studio to PLpro model based on the aforementioned PDB entry, respectively. Panels
(D–F) show interactions these compounds form with the nearby PLpro residues. (G) Binding poses of the inhibitor from
crystal structure (gray) and compound 18 (green). (H) Binding poses of the inhibitor from crystal structure (gray) and
compound 3 (green). Compound 18, depicted in the middle panels, adopts nearly identical binding pose compared to the
crystal inhibitor. Compound 3, shown in the lower panels, binds in a slightly different manner, utilizing more heavily the
left part of the molecule instead of the right aromatic ring.

Summarizing the chemical structure of the 20 analyzed potential inhibitors and their
binding modes, a few key characteristics should be emphasized. In general, the structures
of selected compounds are similar to those from crystal complexes. In the central part, all
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compounds possess functional groups forming crucial hydrogen bonds or salt bridges,
most importantly with Asp164. In the right fragment, the vast majority of the molecules
contain an aromatic ring or a polycyclic aromatic scaffold, and the latter seems to be favored.
However, only 12 compounds utilize this part of their structure to form interactions with
Tyr268, observed in nearly all crystals. A lesser number of potential inhibitors adopt a
slightly distinct binding mode, with the lack of the above mentioned contact, and instead
with a bigger role of the left fragment. This is especially valid for compounds with a
piperidine in the left, as its nitrogen atom forms strong interactions with amino acids in the
central pocket of the binding site. Overall, the left fragment of the selected compounds is
most diversified both in terms of the chemical structure and interactions. This part seems
to be the most promising one for a potential lead optimization.

2.5.2. Detailed Analysis of Compounds with Best Binding Modes

The visual inspection and the analysis of the binding modes of the top scored com-
pounds show that overall they are placed at the binding site similarly to the inhibitors in the
crystals. However, only some of them adopt exactly the same binding mode (Figure 7G),
while others slightly differ or adopt a wider range of binding modes (Figure 7H). The
experimental evidence and knowledge about PLpro inhibitors is still expanding. So far,
the in vitro studies have included only a very limited range of structurally relatively simi-
lar compounds. Thus, it is difficult to judge whether molecules with different structural
features, obtaining in silico slightly varying poses at the binding site, have their predicted
binding modes well- or misrepresented. While they are alternative to those from crystals,
and as such may be treated as potentially wrong, according to today’s knowledge it is
impossible to state that certainly. Hence, if one would want to assess their binding affinity
in vitro, it is not an unreasonable choice. Nevertheless, such a direction could be more
risky, compared to compounds with binding modes nearly identical to the crystal ones.
Therefore, we will focus on such molecules with more conserved poses and will analyze in
more detail a few selected, safe proposals.

Six compounds from the set of top 20 potential inhibitors (compounds 7, 8, 14, 16, 18,
and 19) displayed nearly identical binding mode to the one observed in the SARS-CoV-2
PLpro crystal structures (Table 1, Figure 8). Therefore, we conducted a more detailed
analysis of the six molecules based on the PLpro complex with PDB ID: 7jn2.

The biggest similarity to the binding of the cocrystallized ligands was observed for
the right and central fragments of the compounds. The right part of all six molecules was
composed of one or two fused aromatic rings occupying a hydrophobic cavity hedged
by Pro247 and Pro248. This fragment of the selected compounds was buried nearly in
the same position as the naphthyl group from the cocrystallized ligand, thereby creating
similar interactions. The aromatic rings of the inhibitor from the PDB structure formed π–π
T-shaped interaction with Tyr268 and alkyl interactions with Pro247 and Pro248. The first
one played the main role in stabilizing the right part of the compound and was observed
in all complexes with the six potential inhibitors. The latter interactions were maintained
in most cases.

Compounds 7 and 14 showed the biggest similarity in binding of the right part of
the molecules. It was due to the fact that these were the only compounds composed
of a naphthalene (compound 7) or its derivative (compound 14). The substituent in the
naphthyl group of the latter compound had no significant impact on its binding beside
the additional alkyl interaction with Pro247. The right fragment of compounds 18 and
16 showed a slightly bigger shift from the naphthyl group of the ligand from the crystal
structure than the other four potential inhibitors. The benzofuran rings of the compound
18 were more shifted toward the BL2, causing the loss of an alkyl interaction with Pro247,
observed in the rest of the complexes. The benzene ring from the chromane forming the
right part of the compound 16 was accommodated higher than one of the naphthalene rings
from the cocrystallized inhibitor, enabling the molecule to form π–π T-shaped interactions
not only with Tyr268 but also with Tyr264.
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Figure 8. Overview of the six potential SARS-CoV-2 PLpro inhibitors with nearly identical binding mode to the noncovalent
inhibitors from the SARS-CoV-2 PLpro crystal structures.

The central fragment of the inhibitor from the crystal structure consisted of an amide
group, which was stabilized by the hydrogen bonds formed with Gln269, Tyr264, and
Asp164. Furthermore, multiple alkyl interactions were established between the target
protein and a methylene group connecting the right and central part of the ligand. Four
out of six potential inhibitors (compounds 8, 14, 16, and 19) possessed an acyclic secondary
amine group in the central part of the molecule that, similarly to the crystal structure, was
connected to the right part with a methylene group. All compounds were stabilized by
the salt bridges formed between the amine nitrogen and Asp164, which were analogous
to the hydrogen bond established in the crystal complex. Although the four compounds
lacked the oxygen atom, which was a hydrogen bond acceptor in the crystal structure,
the interaction with Tyr264 was still established in the form of the π–cation interaction.
We observed that the amine nitrogen atoms from the central part of these four molecules
were positioned deeper in the binding site than the amide nitrogen from the cocrystallized
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ligand. It allowed the central fragment of these potential inhibitors to be additionally
stabilized by the hydrogen bond formed with Tyr273.

Unlike the previous four molecules, the central fragment of the compounds 7 and 18
was composed of a tertiary heterocyclic amine. Although both molecules also possessed a
methylene group connecting their right and central part, the interactions formed by these
two compounds were slightly different. Similarly to the crystal ligand, compound 7 formed
the salt bridge and π–cation interactions with Asp164 and Tyr264, respectively. Compound
18 established an additional interaction. The central part of the molecule consisted of a
4-hydroxypiperidine ring. After superimposing the complex with compound 18 onto the
crystal structure, we observed that the oxygen atoms from both ligands were localized in
the similar position, allowing the potential inhibitor to establish an additional hydrogen
bond with Gln269, apart from the salt bridge formed with Asp164.

The left fragment was the most diverse among the compounds. The ligand from the
crystal structure possessed the 2-amine-1-methylphenyl group in its left part, which was
mainly stabilized by the π–π T-shaped interaction with Tyr268 and π–anion with Asp164.
The left fragment of potential inhibitors was composed of various groups. However, not
only the chemical properties affected the binding of the compounds in the left part of the
PLpro binding site, but also their size. Compound 7 was longer than the cocrystallized
ligand and did not bind in the bent conformation around the BL2. Therefore, the molecule
established a hydrogen bond with Gly163 and alkyl interactions with Cys111 and Leu162.
The other potential inhibitors were of similar length to the ligand from the crystal structure.
The left terminal part of the compounds 8 and 16 consisted of the ethoxycarbonyl and
methoxycarbonyl groups, respectively. Both compounds were stabilized by a hydrogen
bond formed between the carbonyl oxygen and Gln269. In terms of the left fragment,
compound 18 stood out the most from the rest of potential inhibitors. The molecule
possessed the trifluoromethylphenyl group, which was accommodated in the similar
position as the benzene ring from the cocrystallized inhibitor. The compound established
multiple strong interactions with the target protein—four halogen bonds between the
fluorine atoms and the residues Gln269, Leu162, Gly163, and also a hydrogen bond with
the latter. All molecules were additionally stabilized by a few alkyl interactions.

In conclusion, the six potential PLpro inhibitors displayed similar binding mode to
the noncovalent ligands from the crystal structures and in some cases they also formed
additional interactions, which is one of the main factors of their potentially very high
binding affinity. Most interactions stabilizing the naphthyl group of the cocrystallized
inhibitor were maintained in the analogous groups of all six compounds. The central
fragment of the analyzed molecules formed several interactions similar to the ones observed
in the compared crystal structure, but it also established some additional ones, in most
cases strong hydrogen bonds. The fragment located the closest to the catalytic triad was
the most diverse among the compounds. Although in some cases this part of the molecules
formed strong interactions with the PLpro binding site, several potential inhibitors were
only stabilized by the alkyl interactions. Therefore, optimization of this fragment of the
compounds may lead to the enhancement of binding affinity.

2.5.3. Binding Modes from the Perspective of the Protein

Some residues in the PLpro binding site were especially important in forming interac-
tions with the potential inhibitors (Figure 9). Two of the key amino acids were Tyr268 and
Gln269 placed in the flexible BL2. The first residue stabilized the ligand poses by forming
interactions with the aromatic rings mainly located in a hydrophobic cavity hedged by
Pro248, Pro247, and Met208. The side chain of Tyr268 established π–π T-shaped interac-
tions with 12 ligands and π-S with two ligands from the set of top 20 potential inhibitors.
Gln269, however, was involved in stabilizing the central part and the other end of the
compounds by creating hydrogen bonds with five potential inhibitors, three of which inter-
acted with the backbone and two with the side chain of the amino acid. The interactions
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formed between the molecules and the residues Tyr268 and Gln269 were similar to those
observed in most inhibitor-bound SARS-CoV-2 PLpro crystal structures.

Figure 9. Bar graph showing selected amino acids from the SARS-CoV-2 PLpro binding site (PDB ID: 7jn2) and the number
of interactions formed by each with top 20 potential inhibitors. The numbers included in the graph represent the number of
compounds with which an amino acid has formed a given type of interaction.

The flexible BL2 may adopt various conformations among different structures de-
pending on the interacting compound. However, due to the fact that most cocrystallized
SARS-CoV-2 PLpro inhibitors adopt nearly identical binding mode, the BL2 of the analyzed
crystals, especially the backbone and side chains of two important binding residues—
Tyr268 and Gln269, show great conformational similarities. One of the few examples,
where the BL2 is differently arranged is the structure with PDB ID: 7e35, bound to the
compound with a different chemical structure (derivative of rac3j) and a binding mode
compared to the rest of the crystal ligands. In this case, the backbone of Tyr268 and Gln269,
and the side chain of the latter residue adopt a more open conformation due to the induced
fit mechanism. This might result in a decreased formation of some of the aforementioned
interactions, namely the hydrogen bonds established between certain potential PLpro
inhibitors and the backbone and side chain of Gln269. However, the carbonyl oxygen of
Tyr268 in the structure with PDB ID: 7e35 is shifted toward the binding site, which may
potentially induce the formation of new hydrogen bonds. Additionally, considering that
the aromatic side chain of Tyr268, engaged in forming important π–π contacts, adopts an
almost identical conformation in all of the analyzed inhibitor-bound SARS-CoV-2 PLpro
crystals, it is highly probable that the overall interaction profile would be maintained in
various structures, regardless of their BL2 arrangement.

Another residue, which played an important role in stabilizing both the cocrystallized
inhibitors and selected compounds was Asp164. The amino acid occupying the central part
of the PLpro binding site, formed salt bridges with all 20 potential inhibitors, which were
analogous to the hydrogen bonds observed in the SARS-CoV-2 PLpro crystal complexes.

Two tyrosine residues located close to the BL2 were also engaged in forming relevant
interactions with selected compounds. Tyr264 created π-cation interactions with the
protonated nitrogen atoms from the central or left fragment of 15 molecules. The second
tyrosine residue—Tyr273, formed hydrogen bonds with amine groups of six compounds
from the set. Although the latter amino acid did not form relevant interactions in the PLpro
crystal complexes, it turned out to be an important residue for binding some of the top
20 potential inhibitors.
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Apart from the mentioned tyrosine, there were a few more amino acids, which formed
relevant interactions with the PLpro potential inhibitors, despite not playing any important
role in stabilizing the cocrystallized ligands. These were mainly residues occupying the
left part of the binding site, which was localized closer to the catalytic triad. Arg166 and
Gly163 were both engaged in binding two compounds by forming the hydrogen bonds
with each. In one of the newly obtained complexes, we observed the appearance of a type
of interaction, which was not present in the crystal structures, namely the halogen bond.
The interaction was formed with Leu162, Gly163, and previously analyzed Gln269 from
the BL2.

We noticed some similarities between the weak interactions established in the PLpro
crystal structures and the complexes obtained from the virtual screening workflow. The
right part of the molecules occupied a hydrophobic cavity formed by Pro248, Pro247, and
Met208. Sixteen out of 20 analyzed ligands were engaged in forming alkyl or π-alkyl
interactions with one or both prolines from the pocket, which resembled the binding of the
naphthyl group in the cocrystallized inhibitors. The amino acids from the central part of
the PLpro binding site—Tyr264, Tyr268, and Tyr273 also showed an analogous tendency
of forming π-alkyl interactions. Leu162, which was one of the most often encountered
residues stabilizing the left part of potential inhibitors with alkyl interactions, was not
involved in binding the ligands from the crystal structures.

In conclusion, most of the interactions formed between potential inhibitors and the
target protein were analogous to those observed in the SARS-CoV-2 PLpro crystal structures.
However, some amino acids, which did not seem to be relevant in binding the cocrystallized
inhibitors, turned out to be engaged in forming important interactions in the complexes
obtained as a result of our research. Thus, there is a high possibility that more PLpro
binding site residues could be engaged in forming relevant interactions than it may appear
from the analysis of the crystal structures. Therefore, it is feasible to design new, potent
PLpro inhibitors, which would interact with a greater number of amino acids than the
cocrystallized compounds reported so far.

2.5.4. UCH-L1 Binding Modes

We examined the protein–ligand interactions of UCH-L1 using the top 20 potential
PLpro inhibitors from the screening. For those compounds, obtained docking scores
suggest a low probability of binding to UCH-L1. To support this result, we analyzed the
complexes obtained from docking to the UCH-L1 from the PDB ID: 4jkj crystal structure.

We compared protein–ligand interactions to the 4dm9 crystal structure as a refer-
ence, as it is the only available UCH-L1 PDB structure with an inhibitor. 4dm9 was
cocrystalized with the covalent inhibitor Z-VAE(OMe)-FMK (benzyloxycarbonyl-Val-Ala-
Glu(γ-methoxy)-fluoromethylketone) [39]. The compound irreversibly modifies UCH-L1
by binding covalently to Cys90, which forms, along with His161 and Asp176, the catalytic
triad [45].

Despite that 4dm9 may not be an ideal reference structure, due to the different ligand
binding type, the similarities are sufficient to provide relevant comparison. The described
comparative interaction analysis of the covalently bonded Z-VAE(OMe)-FMK and other
noncovalently bonded compounds constitutes a reliable foundation for the prediction of
potential toxicity.

In the analysis of the 4dm9 crystal structure, apart from covalent bonds, noncovalent
interactions can be seen: hydrogen bonds with Gln84, Asn88, Cys90, and Arg153, weak carbon–
hydrogen bonds with Arg153, alkyl hydrophobic interactions with Ile8, Leu52, Cys90, and
Arg178 and π–alkyl hydrophobic interactions with Ala57 and Phe160 (Figure 10A,B).
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Figure 10. A comparison of ligand–protein interactions between the crystal structure (PDB ID: 4dm9) and the potential
inhibitor from the screening campaign. The upper panels show a 3D view of ligand binding mode (A) and 2D interaction
diagram (B) for Z-VAE(OMe)-FMK covalent inhibitor. Panel (C) shows biding mode of compound 9 from screening. In
panels (A,C) the residues that create hydrogen bonds with inhibitors were shown in a sticks representation. Panel (D) shows
a 2D interaction diagram for potential PLpro inhibitor, compound 9. Chosen compound creates visibly fewer interactions,
including hydrogen bonds, than the inhibitor from the crystal structure.

Considering interactions appearing in the 4dm9 crystal, among the top 20 compounds
docked to 4jkj three create hydrogen bonds with Gln84, eight with Asn88, two with Cys90
and none with Arg153. In terms of hydrophobic interactions, eight compounds create
alkyl bonds with Ile8 and 11 with Cys90. Three of the chosen ligands show none of
the interactions indicated for the 4dm9 crystal structure and another six—only one of
indicated interaction.

The chosen compounds also create other interactions not occurring in the reference
crystal structure. Seventeen out of 20 compounds form hydrogen bonds with Asp156 and
seven with Val158. Nine compounds create salt bridges with Asp155 and 16 compounds
form an attractive charge interaction with Asp155 or Asp156.

As hydrogen bonds are strong interactions and are considered as the most important
ligand binding factor, summing them up enables clear comparison. Five compounds
(numbers 1, 2, 5, 15, and 18) create one hydrogen bond, nine (3, 4, 6, 7, 9, 11, 13, 19, 20)
have two hydrogen bonds, five (8, 10, 12, 14, 17)—three hydrogen bonds and only one,
compound 16, creates four. As it can be seen, the vast majority of the compounds (19 out of
20) create fewer hydrogen bonds than are present in the reference crystal structure. Four
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of the compounds have unfavorable interactions, including compound 16 (donor-donor
unfavorable interaction with Ans88), which had been pointed out before as having a greater
number of hydrogen bonds.

Differences in binding strength become more pronounced considering the fact that in
Z-VAE(OMe)-FMK the strong covalent bond provides stable ligand binding in the active
site. Noncovalent interactions have only a supportive function, so there are fewer of them.
Compounds chosen in the conducted screening are designed as noncovalent inhibitors, so
they bind to the protein thanks to multiple noncovalent, relatively weaker interactions.

Having less or the same number of strong noncovalent interactions as in 4dm9,
the top 20 potential PLpro inhibitors have very little chance to create stable binding to
UCH-L1. Apart from the lack of a covalent bond, most compounds create less than
three conventional hydrogen bonds, one or two electrostatic interactions, less than three
hydrophobic interactions and multiple weak interactions such as carbon hydrogen bonds
(Figure 10C,D). Although the overall number of interactions is greater in some cases,
this does not necessary imply stronger binding affinity. Lacking a covalent bond and
abundant, strong noncovalent interactions, compounds are rather unable to create stable
binding to UCH-L1.

Even though some of the compounds create hydrogen bonds and salt bridges with
UCH-L1 residues, it is unlikely that they are sufficient to induce strong ligand binding.
Together with the docking score results, protein–ligand interaction analysis suggests that
the compounds chosen in the screening have a low probability of exhibiting toxicity due to
inhibiting UCH-L1.

2.5.5. Toxicity Estimation

For top 20 potential PLpro inhibitors from screening, we conducted an approximative
toxicity prediction. Based on the results, only three compounds exhibit mutagenicity. Thir-
teen compounds are probably developmental toxicants. Most compounds show a relatively
high LD50 value. In general, the top 20 compounds do not appear to be particularly toxic,
however most of them may not be suitable for pregnant women and children (Table 2).

Table 2. Toxicity prediction for top 20 compounds from screening campaign. The “+” sign indicates positive result in
mutagenicity or developmental toxicity prediction, “−” was used for nonmutagenic and nontoxic compounds.

Mutagenicity Developmental Toxicity Oral rat LD50

ID Predicted Value Mutagenicity Predicted Value Developmental Toxicity Predicted Value (mg/kg)

1 0.85 + 0.80 + 1036.8
2 0.13 − 0.23 − 742.9
3 0.23 − 0.26 − 748.1
4 0.27 − 0.87 + 356.6
5 0.13 − 0.51 + 1133.2
6 0.12 − 0.64 + 279.6
7 0.56 + 0.83 + 485.1
8 0.48 − 0.50 − 2234.4
9 0.05 − 0.85 + 696.8

10 0.10 − 0.68 + 180.2
11 0.30 − 0.36 − 382.7
12 0.55 + 0.26 − 908.8
13 0.33 − 0.88 + 2121.2
14 0.41 − 0.44 − 579.3
15 0.08 − 0.55 + 988.2
16 0.03 − 0.72 + 503.5
17 0.35 − 0.38 − 435.4
18 0.37 − 0.76 + 129.2
19 0.24 − 0.60 + 1023.1
20 0.35 − 0.58 + 705.1
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3. Materials and Methods
3.1. Ligands Database for Screening

In this project we used the ENAMINE REAL database, containing 15,547,092 drug-
like, diverse compounds on the date of acquisition (13 July 2020). These compounds
possess drug-like properties, fulfilling the Lipinski [53] and Veber [54] rules, including
molecular weight (MW) ≤ 500 g/mol, ClogP ≤ 5, hydrogen bond donors (HBD) ≤ 5,
hydrogen bond acceptors (HBA) ≤ 10, rotating bonds ≤ 10, topological polar surface area
(TPSA) ≤ 140 Å2, and lack of PAINS. Additionally, the library contains no compounds
with Tanimoto similarity above 0.6 in relation to other molecules within the set.

3.2. Pharmacophore Screening

For creation of pharmacophores and initial screening of drugs we used LigandScout
4.4.5 [55]. Initially, we designed a set of pharmacophores and later tested their ability to
detect active compounds. We created pharmacophores from protein–ligand complexes
retrieved from PDB (PDB IDs: 6wuu (all chains), 6wx4 [30], 7jir, 7jit, 7jiv, 7jiw, 7jn2, 4ovz
(chain A), and 3mj5). In 6wuu and 6wx4, we manually separated covalently bonded
peptide ligands from Cys111 in BIOVIA Discovery Studio and fixed peptide bonds before
creating pharmacophores. 7jir, 7jit, and 7jiv structures had a C111S mutation so we changed
their Ser111 back into cysteine in Discovery Studio. The initial pharmacophores were then
merged by reference points in different combinations to make them less specific toward
one type of ligand.

Pharmacophores were tested for their ability to pick up potent inhibitors out of a set
of decoys by screening and comparing the enrichment factor 1% and the Pharmacophore
Fit Score for the active ligands. We chose high-affinity inhibitors out of compounds with
the best IC50 values from in vitro studies: GRL0617, rac3j_R, rac3k_R, rac5c_R (active R
enantiomers of rac3j, rac3k, and rac5c, respectively) and peptide inhibitors from 6wuu
and 6wx4 (VIR250 and VIR251, respectively). As a decoy database we used a preprepared
drug-like ligand decoys set from Schrödinger containing 1000 compounds. Both databases
were prepared for screening using the idbgen function with the high-throughput iCon Fast
option and with max conformations: 100. The screening consisted of fitting multiple ligand
conformations into a rigid pharmacophore. We chose the Get Best Matching Conformations
retrieval mode and used different values of Max. Number of Omitted Features to find the
optimal screening parameters.

The validation allowed us to find a pharmacophore that was used for the subsequent
drug screening. The chosen pharmacophore was created from protein–ligand complexes
PDB IDs: 7jiw, 7jn2, 4ovz (chain A), and 6wuu (chain C) to ensure that every inhibitor
structural type was taken into account with as few initial pharmacophores as possible. We
manually modified the pharmacophore and changed two default descriptors (hydrophobic
spheres), present in the initial naphthyl group of 7jiw, 7jn2, and 4ovz, to aromatic rings
in order to emphasize the importance and directionality of π–π interactions between in-
hibitors and Tyr268. We removed two H-bond acceptor descriptors in the central part of
the 7jiw initial pharmacophore, as they contributed to high bias toward GRL0617 type
of ligands. Based on the validation results we decided that the Max. Number of Omit-
ted Features of 14 was optimal for this drug screening since 110 hits were reported with
five being true positive (GRL0617 placed first, VIR251—2nd, rac3j_R—3rd, rac3k_R—4th,
rac5c_R—14th). Performance of the pharmacophore for different numbers of omitted
features is presented in Supplementary Table S5. In order to confirm the selected phar-
macophore’s ability to identify potent PLpro inhibitors, we performed an additional test
screening. The step was conducted on the same set of decoys and the bigger set of active
compounds composed of 20 SARS-CoV-2 PLpro inhibitors with IC50 values below 1 µM
(Supplementary Table S6). All other parameters were kept unchanged. For the ENAMINE
library preparation and the subsequent drug screening we used the same functions and
options as during the validation.
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3.3. Docking and Binding Energy Calculations—PLpro

For docking to PLpro and calculations of binding energy, we used BIOVIA Discovery
Studio v20.1.0.19295 [56]. The structures retrieved from PDB were prepared using the Pre-
pare proteins protocol with pH set to 7.4 and the CHARMm forcefield. We used spherical
gridboxes with a radius of 15 Å that were created around a ligand if the PLpro complexes
featured one, or around the PDB ID: 3e9s ligand after superimposing the proteins by Cα
atoms. We prepared the potential inhibitors using the Prepare ligands protocol and changed
their ionization for pH 7.5 ± 1 without generating tautomers and isomers. Afterward, we
employed the CDOCKER protocol, a tool performing grid-based docking to a rigid protein
with ligand conformational sampling utilizing molecular dynamics. We retrieved only the
best pose for each ligand by setting the option top hits to 1. After docking, we assessed
the obtained poses by scoring functions in the Score ligand poses protocol and utilized
the Calculate binding energies protocol with generalized Born implicit solvent model
(MM–GBSA). Afterward, we created a MLR model by merging the Jain scoring function and
the MM–GBSA binding energy. For this purpose, we utilized Statistica 13.1 software [57].

Initially, we validated the ability of the software to predict the correct inhibitor poses
by employing the redocking and cross-docking techniques. We retrieved various PLpro
structures (PDB IDs: 7jir, 7jit, 7jiv, 7jiw, 6wuu (all chains), 6wx4, 6w9c (chain A), 6xa9 (chain
A), 7jn2, 7jrn (all chains), 7cjm, 7cmd, and 7cjd (all chains)) and redocked their original
inhibitors as well as cross-docked inhibitors from other PLpro complexes. Additionally,
we docked a few ligands found in complexes of SARS-CoV PLpro (PDB IDs: 3mj5, 4ovz,
and 4ow0). The obtained protein–ligand complexes were superimposed by Cα atoms on
the original PLpro complexes with the corresponding ligands in order to calculate ligand
heavy-atom RMSD values. Based on the validation results we chose the PLpro structures
with the lowest cross-docking RMSD values and used them to test the ability of the docking
procedure to predict binding affinities of inhibitors. Two of the chosen structures (PDB
IDs: 7jiv and 7jit) had a C111S mutation so we created additional structures where the
serine residue was mutated back into cysteine. We created a set of 25 PLpro inhibitors
with known IC50 values (Supplementary Table S7). After docking them to the chosen
PLpro structures, we assessed the obtained poses by scoring functions (CDOCKER Energy,
CDOCKER Interaction Energy, LigScore1, LigScore2, PLP1, PLP2, Jain, PMF, PMF04) and
MM–GBSA calculations. Subsequently, we checked Pearson correlation coefficients and the
corresponding p-values between pIC50s and the values obtained from scoring functions
and binding energy calculations. If an inhibitor had its IC50 measured for a racemate, we
took an average of scoring functions and binding energies calculated for both enantiomers.
Through this validation, we found the best PLpro structure, which was used for the
subsequent drug screening. Additionally, we prepared a MLR model for this structure
and the best-performing scoring function (Jain) and MM–GBSA. To validate the model,
we examined p-values for the model itself as well as for all the terms of the equation. All
p-values came below 0.01. Due to the simplicity of the model and to the occurrence of only
two independent variables, we did not conduct cross-validation.

We conducted an additional step of validation in order to confirm the best-performing
docking procedure’s (PDB ID: 7jn2, Jain, and MM–GBSA) ability to correctly predict
potential inhibitors’ binding poses and affinities toward PLpro. First, we docked inhibitors
cocrystallized with PLpro structures available in PDB that we did not utilize in the main
cross-docking validation (PDB IDs: 7koj, 7kok, 7lbr, 7lbs, 7llf, 7llz, 7los, and 7e35). We
superimposed the complexes and calculated the ligand’s heavy atom RMSD analogically
as described above. Next, we created an additional set of PLpro inhibitors with known
IC50 values (Supplementary Table S8). We docked them to 7jn2 and conducted analogical
scoring and binding energy calculations as described above. We determined Pearson
correlation coefficients and the corresponding p-values between the experimental pIC50
values and the values of Jain function, MM–GBSA binding energies, and pIC50 values
estimated using the MLR model for the combined two sets of test ligands.
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In the screening part, we prepared the potential inhibitors and docked them using
the same procedure as during validation, and then assessed the obtained poses by the Jain
scoring function and MM–GBSA calculations.

3.4. Docking and Binding Energy Calculations—UCH-L1

In order to check the validity of bioactivity predictions made by docking programs
(CDOCKER and Glide), we checked how they perform on a set of 30 compounds with
known in vitro activity against UCH-L1 (IC50 value). After comparing both programs, we
noticed that significantly better results were obtained from docking in Glide. Therefore,
the following steps refer to the workflow employed in the latter.

First, we generated 3D conformations of the selected compounds in Maestro 2017-
1 software [58]. The set of compounds was prepared using the LigPrep protocol; we
generated possible protonation states in the pH range 7.0 ± 2.0 using Epik. We retrieved
the total of eight crystal structures of UCH-L1 from the PDB, among which one structure
was in complex with a covalent ligand (PDB ID: 4dm9), three structures were in ubiquitin-
vinyl methyl ester (UbVMe) bound forms (PDB IDs: 3kw5, 3kvf, and 3ifw), and four
structures were in ligand-free forms (PDB IDs: 3irt, 2len, 4jkj, and 2etl).

The structures were prepared in Maestro 2017-1 using Protein Preparation Wizard.
After removing water molecules, we added hydrogen atoms and generated probable proto-
nation states using Epik in the pH range 7.0 ± 2.0. We optimized the H-bond assignment
using PROPKA and minimized the structures in the OPLS3 force field. If a PDB entry
consisted of multiple chains, we conducted the docking to each of them.

Defining the grid coordinates depended on whether a structure contained a cocrys-
tallized ligand. We determined the center of the box for ligand-bound forms according to
the centroid of the defined ligand molecule. The grids for ligand-free and UbVMe bound
structures were generated based on the amino acid residues involved in the interactions
with the crystal bound ligand of the PDB entry 4dm9. We established the center coordinates
by indicating the following residues: Met6, Gln84, Asn88, Ser89, Cys90, Arg153, Asn159,
Phe160, and Arg178. The size of the receptor grid was set at default 20 Å. The set of selected
compounds was docked to the UCH-L1 structures with Glide Standard Precision (SP) and
Glide Extra Precision (XP) using the default settings.

Before validating the bioactivity estimations made for the set of 30 selected compounds,
we conducted redocking and cross-docking of the only available UCH-L1 cocrystallized
ligand (PDB ID: 4dm9). We prepared the inhibitor in Maestro 2017-1 by initially removing
the covalent bond between the compound and the target protein, adding a missing fluorine
atom and conducting geometry minimization using the Minimize Selected Atoms feature.
The docking was then conducted to all aforementioned UCH-L1 crystal structures using
Glide SP and Glide XP. In order to validate the process, we calculated RMSD between the
heavy atoms of native and docking poses, after prior superposition of Cα atoms from the
obtained complexes onto the crystal structure (PDB ID: 4dm9).

To check the validity of bioactivity predictions made by Glide, we docked 30 com-
pounds with known in vitro activity against UCH-L1 (Supplementary Table S9) and calcu-
lated the Pearson correlation coefficient (R) between their pIC50 values and their estimated
docking scores or MM–GBSA binding free energies. Therefore, we generated the best
pose for each docked compound and predicted its binding affinity using the DockingScore
scoring function and conducting MM–GBSA binding free energy calculations using Prime
(∆Gbind [kcal/mol]).

3.5. Toxicity Prediction

We utilized TEST 4.2.1 software to estimate selected toxicological properties of the top
20 potential PLpro inhibitors. We calculated Ames mutagenicity, developmental toxicity,
and oral rat LD50. For all calculations, we used consensus method, which averages the pre-
dicted toxicities from all quantitative structure–activity relationship (QSAR) submethods.
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3.6. Database

The database page (https://plpro-inhibitors.cent.uw.edu.pl) was generated using the
csvtotable Python package. The images of chemical compounds were downloaded from
the ChemDB Chemoinformatics Portal [59].

4. Conclusions

Because of the scale and significance of the COVID-19 pandemic, it is of utmost
importance to design specific anti-SARS-CoV-2 drugs. One of the most suitable molecular
targets for this task is the papain-like protease. Here, we selected the best potential
candidates for potent and selective PLpro inhibitors. For this purpose, we established
a multistep virtual screening workflow. To the best of our knowledge, it is the most
meticulously validated and probably the most accurate procedure for computational
prediction of SARS-CoV-2 PLpro inhibitors to this date. In our approach, we utilized three
main drug design programs, with several, diverse ways of the evaluation of the potential
PLpro inhibitors. We considered potential toxicity of the drug candidates at the early stages
of the design. In this manuscript, we put emphasis on the most important structural analog
of SARS-CoV-2 PLpro in the human organism—UCH-L1. Additionally, we also roughly
estimated other toxicological parameters.

The comprehensive analysis of the results led to identification of important structural
and binding patterns of potential inhibitors. These properties are in agreement with
those that may be drawn from the overview of the PLpro-inhibitor crystal structures.
Moreover, our results provide additional information on binding modes of potential PLpro
inhibitors as well as this enzyme’s amino acids that may be involved in forming significant
interactions with drug-like compounds.

The analysis of the chemical structure of our top potential hits shows that their
preferred scaffold is in general similar to the known noncovalent inhibitors. However,
the present differences allow to potentially encounter a slightly distinct, better compound.
The successful drug candidate should consist of an aromatic moiety on one side, a central
fragment containing functional groups able to create hydrogen bonds or salt bridges, and
a less defined moiety on the other side. The aromatic part should comprise preferably a
bicyclic scaffold. We shown that the central part, instead of containing amide group, may
include an amine group and it may be beneficial to add additional ones, i.e., hydroxyl
groups. The last fragment of the potential PLpro inhibitors has the least number of
structural requirements. Thus, this part of the molecule is a valuable space for future
lead optimization.

The analysis of the binding modes of selected potential PLpro inhibitors led also to im-
portant conclusions from the perspective of the protein itself as well as amino acids crucial
for small molecule binding, that may be also exploited while designing new drugs. Our re-
sults show that there are several residues that stand out in the frequency of forming relevant
interactions with noncovalent ligands. The most significant ones include Asp164, Tyr264,
Tyr268, Pro247, and Pro248. Moreover, we encountered amino acids that are not relevant
for binding inhibitors from the crystal complexes but may be important for binding the
compounds with different chemical structures. The most prominent ones are Tyr273, being
able to create hydrogen bonds, and Leu162, forming multiple hydrophobic interactions.

Herein, we identified 950 potential SARS-CoV-2 PLpro inhibitors. Among these, 387
are potentially selective, with low predicted affinity toward human UCH-L1. The predicted
IC50 values of the 20 top scored of these compounds come between 159 and 505 nM. Based
on their detailed analysis, we proposed six of them as very promising candidates for future
in vitro evaluation. These compounds exhibit similar binding mode to the noncovalent
inhibitors from the crystal structures and also create additional interactions, which is one
of the key factors of their potentially high binding affinity. However, all the 950 potential
PLpro inhibitors are also worth taking into account for future experimental evaluation.
Thus, we prepared an open-access database containing all of them, with results of our in
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silico predictions. Such a database may be very useful for other scientific groups and may
potentially help to fight the COVID-19 pandemics.

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/8/3957/s1, Figure S1: Correlation between values of scoring functions and binding energies,
and pIC50 values of the extended set of inhibitors docked to PLpro, Figure S2: Structural formulas of
the 20 potentially selective PLpro inhibitors candidates with the lowest predicted IC50 values based
on the MLR model estimation, Table S1: Summary of SARS-CoV-2 PLpro crystal structures available
in the PDB database, Table S2: Cross-docking ligand heavy-atom RMSD [Å] after superposition of
proteins by Cα atoms, Table S3: Pearson correlation coefficients between pIC50 values of inhibitors
and values of scoring functions and MM–GBSA, Table S4: Cross-docking results for 7jn2, Table S5:
Performance of the selected pharmacophore for different numbers of omitted features, Table S6:
SARS-CoV-2 PLpro inhibitors used for the confirmatory validation of the best pharmacophore, Table
S7: PLpro inhibitors used for validation of binding affinity prediction, Table S8: PLpro inhibitors
used for additional validation of binding affinity prediction, Table S9: Summary of compounds
with known in vitro activity against UCH-L1 used for molecular docking validation conducted in
Maestro 2017-1.
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BL2 blocking loop 2
COVID-19 coronavirus disease 2019
DUB deubiquitinating enzyme
EF enrichment factor
HBA hydrogen bond acceptor
HBD hydrogen bond donor
HCV hepatitis C virus
HIV human immunodeficiency virus
IC50 half maximal inhibitory concentration
ISG interferon-stimulated gene
ISG15 interferon-stimulated gene 15
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LD50 lethal dose, 50%
MERS-CoV Middle East respiratory syndrome coronavirus
MLR multiple linear regression
MM–GBSA molecular mechanics—generalized Born and surface area solvation
Mpro main protease
MW molecular weight
PDB Protein Data Bank
PLpro papain-like protease
QSAR quantitative structure–activity relationship
RMSD root-mean-square deviation
SARS-CoV severe acute respiratory syndrome coronavirus
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
SP standard precision
TEST Toxicity Estimation Software Tool
TPSA topological polar surface area
Ub ubiquitin
Ubl ubiquitin-like (domain)
UbVMe ubiquitin-vinyl methyl ester
UCH-L1 ubiquitin carboxy-terminal hydrolase L1
UCH-L3 ubiquitin carboxy-terminal hydrolase L3
WHO World Health Organization
XP extra precision
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