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Abstract

We present the results of a quantitative study of the phase behavior of a model polymer chain with

side spheres using two independent computer simulation techniques. We find that the mere addition of

side spheres results in key modifications of standard polymer behavior. One obtains a novel marginally

compact phase at low temperatures, the structures in this phase are reduced in dimensionality and

are ordered, they include strands assembled into sheets and a variety of helices, and at least one of

the transitions on lowering the temperature to access these ordered states is found to be first order.

Our model serves to partially bridge conventional polymer phases with biomolecular phases.
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Our principal goal is a careful quantitative computational analysis of a simple chain model of teth-

ered spheres with side spheres attached to the main chain spheres. Our motivation for attaching side

spheres comes from proteins, the amazing molecular machines of life. The side spheres merely restrict the

conformational space that the chain can explore. In spite of this somewhat innocuous role, we demon-

strate that there are significant and surprising effects on the phase diagram and the nature of the ground

state conformations. We alert the reader that our paper is not about proteins but rather about a simple

standard model of polymer physics.

Some small globular proteins fold in an all-or-nothing manner under physiological conditions – the

transition from the unfolded to a folded state is akin to a first order phase transition albeit for a finite size

system [1]. The folding is rapid as well as reproducible in that a given protein folds into the same native

state structure upon unfolding and refolding. The native state structures of proteins are modular and

are built up of building blocks of helices and zig-zag strands assembled into almost planar sheets [2]. The

simplest model of a homopolymer (made up of just one type of monomer) chain of tethered spheres does

not account for many of these observations. For a generic range of attractive interaction, mimicking the

mediating influence of the water, we obtain a “continuous" transition from a high temperature expanded

coil phase to a globular phase at the so-called θ-temperature [3] via an ideal coil state. On lowering

the temperature further, we find indications of a second transition in our computer simulations into a

more compact unstructured globular phase. There are no building blocks of helices or sheets nor is

there any evidence of crystalline ordering, e.g. tethers passing through a face-centered cubic crystalline

arrangement (fcc) [4]. There is no rapid, let alone reproducible, folding into a specific ground state.

Motivated by proteins, our principal goal here is to quantitatively study the effects of modifying the

standard homopolymer chain model in the simplest possible way by adding side spheres to the main

chain spheres.

Proteins are made up of 20 types of naturally occurring amino acids, each with a distinctive side chain.

Incorporating this feature would make the problem inherently complex because now the details of the

distinct monomer types along with their interactions become a necessary part of the story. Here instead

we build a bridge between the homopolymer and protein behaviors by incorporating a simple attribute of

proteins into the polymer model. We seek to study the impact of side spheres (attached to all but the two

end main spheres) sticking out in the negative normal direction in the local Frenet coordinate frame [5].

We find a marginally compact phase at low temperatures between the compact globular phase and a less

well-packed restricted coil phase upon varying the side sphere size. The marginally compact phase is the

analog (on the side sphere size axis not the temperature axis) , for chain molecules, of the liquid crystal

phase [4], which is a sensitive phase of matter with applications in displays, mood rings, and sensors.

The vicinity of the marginally compact phase to other phases confers sensitivity to a chain poised in

2



it. The structures are ordered and the transition to the marginally compact phase upon lowering the

temperature is first order. This is not unexpected because the symmetry of the unstructured coil phase

is distinct from that of the ordered marginally compact phase [4]. We find novel ground state structures

including a planar sheet made up of zig-zag strands along with a variety of helices and dual helices. We

find, generally, that the limitations imposed by our study of moderate length chains as well as difficulties

associated with lack of equilibration are greatly reduced as the side sphere size increases. Even though

the simple addition of side spheres already introduces many protein-like features, we find clear differences

between the marginally compact structures and protein native state structures underscoring that other

essential features yet need to be incorporated into simple chain models to describe the amazing molecular

machines of life.

The tangent homopolymer chain comprises N spherical beads of diameter σ (set equal to 1) tethered

into a chain. Consecutive beads are kept at a fixed distance b = σ and non-consecutive beads are not

allowed to overlap resulting in excluded volume [6]. Solvent effects are incorporated by including a

short range square-well attraction between beads separated in sequence by at least three. The range of

attraction of the square well, Rc/σ, measured in units of the sphere diameter is a free parameter.

The phase diagram as a function of the reduced temperature (measured in units of the attractive

potential, which can also be set equal to 1) has been studied over the years by many different groups

using various methods [7]. It has a high temperature swollen phase also called the coil phase, where

the chain is in a relatively open stretched conformation, which is dominated by entropy. We find two

“continuous" transitions upon lowering the temperature. The first is a transition to a collapsed globule

phase at the so-called θ–temperature, and the second is to an unstructured compact globule phase. At

low temperatures, the minimization of the energy or, equivalently, the maximization of the number of

attractive contacts is the dominating factor resulting in the compact globule phase (for a chain of moderate

length ≈ 100) with many degenerate conformations having no discernible order and a high number of

attractive contacts. There are two unresolved issues of importance: first, what might happen for a much

larger system – would a highly compact crystalline arrangement (such as Hamiltonian walks on a fcc

lattice be the true ground states) and second, could the tethering of the spheres thwart equilibration –

are we observing glassy behavior characterized by low-lying metastable minima? Indeed, there is some

evidence in careful simulations [7] suggesting some murkiness in reliably identifying the ground state.

We generalize the simple polymer model by mounting on each main chain sphere (except the first and

last) tangent side spheres in the negative normal direction. The side spheres provide steric constraints

both on main chain spheres and other side spheres and reduce the conformational space. In our analysis,

the side spheres do not interact except that they are not allowed to overlap with each other and with the

main chain spheres. A partial penetrability would result in an effective smaller side sphere size but would
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not change the results qualitatively. The side sphere diameter, measured in units of the main chain sphere

diameter σsc/σ, is the second and final parameter of the model. We do not impose any attraction between

beads separated in sequence by two in order to not suppress the bond bending angles θ artificially. The

conformation of a chain of constant bond length is fully specified by two angle variables at each location

[8], the bond bending angle θ and the torsion angle µ, the angle between successive binormals of a Frenet

local coordinate system.

There have been previous insightful studies of heteropolymer lattice protein models with side chains (in

contrast, our work here deals with an off-lattice homopolymer), which have noted enhanced cooperative

folding [9] due to the denser packing in the interior of the structure. These studies did not fix the side

chain location in the Frenet coordinate system of the main chain residues like we do here. Our own earlier

studies [10] of homopolymers with side spheres mostly dealt with overlapping main chain spheres (the

overlap was overtly introduced to replace the spurious spherical symmetry associated with individual

main chain spheres with an axial symmetry befitting a chain). Furthermore, in the earlier work, the

attractive potential was extended to pairs of main chain spheres separated by 2 along the chain (unlike

3 in our studies here), which promoted the occurrence of artificially small bending angles θ. Finally,

the machinery for the quantitative characterization of the variety of helical geometries observed in the

simulations using the (θ,µ) variables is being used here for the first time.

Our Monte-Carlo simulations were carried out using two complementary methods: microcanonical

Wang-Landau (WL) simulations [11] and replica exchange (RE) (or parallel tempering) canonical simu-

lations [12]. WL entails the filling of consecutive energy histograms to derive the density of states g(E).

The acceptance probability is chosen to promote moves exploring less populated energy states seeking

to flatten energy histograms over the course of the simulations thus finding lower energy states. In all

cases, 28–30 levels of iterations were carried out with a flatness criterion in each iteration of at least

80%, ensuring convergence of the g(E) allowing for thermodynamic quantities to be calculated. The RE

approach entails running canonical simulations in parallel at M different temperatures, Ti, i = 1, 2, · · ·M .

Each simulation can be thought of as a replica, or a system copy in thermal equilibrium. The key advan-

tage is the possibility of swapping replicas at different temperatures without affecting the “equilibrium"

condition at each temperature, permitting rapid equilibration even when there is a rugged landscape.

Both methods employed standard local moves including crankshaft, reptation and end-point along with

the non-local pivot move. The results using both methods were completely consistent with each other

and each method was useful to benchmark the other.

We now proceed to discuss our results. Figure 1 shows the distinct characteristics of chain conforma-

tions in the compact globular (zero temperature possibly “non-equilibrium" phase maximizing attractive

interactions while respecting steric constraints) phase, the coil (infinite temperature–high entropy) phase,
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and a restricted coil phase in (θ,µ) cross-plots. Panels a) and b) are for chains with no side spheres

whereas the chain in panel c) has large side spheres with σSC/σ = 2.8. There is a tendency, in the ground

state, for a chain to bend maximally (favor the smallest sterically permitted value of θ) and avoid planar

conformations (by exhibiting a local minimum at µ = 180◦ in contrast to a local maximum in the coil

phase).

We monitored the specific heat as a function of temperature for three different chain lengths in order

to understand the nature of all the phase transition(s). As an example, the left panel of Figure 2 depicts

the specific heat versus temperature plot for Rc/σ = 1.6 in the absence of side spheres with the inset

showing the canonical energy probability distributions at three temperatures in the vicinity of the lower

temperature “continuous" transition. Our studies become more reliable and the transition becomes first

order on introducing large enough side spheres. The middle panel shows the temperature dependence of

the specific heat for σSC/σ = 1, whereas the right panel is for σSC/σ = 1.5. The ground state for the

former case is a precessing helix whereas the ground state for the latter case is a structured dual helix

(see third and fourth panels of Figure 3). For the chain lengths we have studied and likely in the infinite

chain length limit, the presence of side spheres greater than or equal to σSC/σ = 0.9 does not allow for

folding of the helix or the dual helix onto itself to create a hairpin structure and avail of more attractive

main sphere interactions. The scaling of the specific heat peak with system size and the two-peaked

structure in the energy probability distribution in the vicinity of the transition to the ground state are

both signatures of a first order transition, albeit for a finite size chain. Note that the first order transition

is weakened upon increasing the side sphere size from 1 to 1.5 (Figure 2 insets).

Figure 4 shows the phase diagram in the temperature-side sphere size plane for a fixed range of

attractive interaction Rc/σ = 1.6. The region of the phase diagram for side sphere size less than 0.9 seems

robust (independent of Monte Carlo technique and different runs), yet is possibly unreliable because of the

glassy behaviour and finite size effects (see shaded region of Figure 4). One observes both continuous (blue-

diamond) as well as first order (red-circle) transitions. For no side spheres, one observes two continuous

phase transitions. Around a value of σSC/σ = 0.6, there is a new feature in the ground state with the

unstructured compact globule giving way to an ordered ground state. The higher transition is still a

continuous coil-unstructured globule transition, whereas the lower transition between the globule and the

structured ground state is first order because of the distinct symmetries of the two phases. This situation

persists until σSC/σ = 0.8, where there is a steep increase in the coil-globule transition temperature

along with changes in the nature of the structured ground state. Starting at σSC/σ = 0.9, the results

of the simulations become reliable. The globule is replaced by a structured dual helix at intermediate

temperatures, and the ground state becomes a precessing helix (see the third panel in Figure 3). The

lower transition temperature diminishes to zero on increasing the side sphere size and there is just a single
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coil-double helix weakening first order transition for σSC/σ greater than 1.4 (Figure 2). The transition

temperature continues to decrease as the side sphere size increases – attractive contacts are harder to

make in any sustained manner. Ultimately, for large enough side sphere size, even at low temperatures,

one obtains a coil phase with a greatly reduced phase space because of the steric constraints imposed by

the large side spheres (Figure 1 c).

Figures 3 and 5 show some of the ordered ground state structures in the marginally compact phase

along with their (θ,µ) plots. Even the small sampling of structures shown here present a beauty and

richness not previously observed in polymer models or for that matter in standard biological systems. The

idealized structures (whose topology of attractive contacts are faithfully realized in computer simulations

albeit with some variations) include a planar sheet of zig-zag strands, a variety of distinct precessing

helices (with repeating (θ, µ) angles), a dual helix, a helix and a dual helix with a straight chain segment

(rod) penetrating it. The precessing helices are in fact two or three uniform helices intercalated between

each other. Our quantitative analysis is facilitated by the (θ, µ) description of the chain conformations.

We find that one obtains a compact globule to coil transition in two distinct ways: first, for the stan-

dard case of no side spheres, the globule to coil continuous transition occurs on increasing the temperature;

second, at zero temperature on increasing the size of the side spheres, the globule phase switches to the

coil phase through a sequence of first order transitions passing through structured ground states that we

denote as marginally compact states. They are marginally compact because they are more compact than

the coil phase structures but less so than the globular compact phase structures.

A tangent chain of spheres has problems associated with spurious symmetries. A spherical monomer

looks the same when viewed from any direction. However, when strung along a chain, then this spherical

symmetry becomes spurious. A chain has a tangent direction at each location and thus the isotropy is

lost. Attaching side spheres in the negative normal direction is one way to overtly move away from this

fake isotropy of the constituent spheres. One might imagine the compact globule and the somewhat open

entropically favored coil states as analogs of the crystal and liquid phases. The marginally compact phase

then is the analog of the liquid crystal phase [4]. First, the marginally compact structures lie in the

vicinity of transitions to other phases and, second, they arise on breaking the spurious symmetry in the

model associated with spherical monomers constituting a uniaxial chain. Liquid crystals are very sensitive

to the right types of perturbations and one would expect that to hold as well for the structures in the

marginally compact phase. Second, the marginally compact conformation has a Goldilocks compactness

between that of a dense globule (in which the conformation seeks to maximize the number of attractive

contacts somewhat akin to a sphere surrounded by a dozen spheres in a face-centered-cubic lattice)

and a coil conformation (in which a few chance contacts are made but the conformation is a typical self-

avoiding walk). Finally, the ordered marginally compact structures are all reduced dimensional structures
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(topologically one dimensional helices or two dimensional sheets), just as liquid crystals are not ordered

in the same manner in all three directions.

A marginally compact conformation has a Goldilocks compactness between that of a dense globule (in

which the conformation seeks to maximize the number of attractive contacts somewhat akin to a sphere

surrounded by a dozen spheres in a face-centered-cubic lattice) and a coil conformation (in which a few

chance contacts are made but the conformation is a typical self-avoiding walk). Striking examples of

marginally compact conformations presented in our paper are dimensionally reduced conformations such

as a two dimensional sheet and one dimensional helices and dual helices. Interestingly, these conformations

tend to be ordered promoting a first order phase transition between a disordered higher temperature phase

and this ordered marginally compact phase.

We have presented quantitative studies of the phase behavior of a tangent polymer chain with side

spheres. Our results demonstrate that the mere addition of side spheres results in key modifications of

the model behavior. As is observed in our simulations, proteins [2] fold in an all or nothing fashion akin

to the behavior at a first order transition, their structures are made up of reduced dimensional building

blocks including topologically one dimensional helices and two dimensional sheets. Proteins are stable

yet sensitive and are able to carry out a dizzying array of functions. In this regard, they are reminiscent

of liquid crystals. Despite the encouraging results reported here, the simple model we have studied is

still missing some essential ingredients for faithfully describing proteins. The symptoms of these missing

elements are that the structures we obtain are not those found in proteins. Unlike the rich variety of

helices found here, the α-helix is characterized by (θ, µ) values around (91.3±2.2◦,49.7±3.9◦) [13], which

we do not find in our studies here. Also, the sheet structure in proteins is qualitatively different from that

found in our model – the key difference is that adjacent strands in proteins are in phase with each other

unlike the out of phase packing, which maximizes the number of pair-wise contacts here. Third, we do not

observe coexistence of helices and sheets in our model here which is a crucial ingredient for obtaining the

diversity of protein folds. A powerful hint regarding the missing ingredient comes from recent work [13]

that used a tube-like description to derive the building blocks of protein structures from first principles

with no adjustable parameters. We look forward to studies incorporating a tube description along with

side chains to further understand proteins in a simplified manner. More generally, our work here ought

to be of relevance for understanding the phase behavior of polymers [6].
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Figure 1: (θ,µ) cross-plots showing local structure in three unstructured phases of a standard polymer
chain. θ is the bond-bending angle and µ is the torsion angle. Panel a) shows the the low temperature
compact globular phase in the absence of side spheres for a chain of length N = 60. Panels b) and c)
show the infinite temperature coil phase, but this time for N = 20. Panel b) is for a chain with no side
spheres whereas panel c) is for a chain with large side spheres of size σSC/σ = 2.8. All three panels
show 100,000 points.
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 a)                                       b)                                       c) 

Figure 2: Specific heat per bead (Cv/NkB) as a function of reduced temperature (T ∗=kBT/ε) for
chains of length N = 40, 60, and 80. Panel a) corresponds to Rc = 1.6 and σSC/σ = 0, for which the
“ground state" is an unstructured compact globule. The specific heat curve suggests the existence of two
phase transitions. The transition at the higher temperature, between the coil and the collapsed globule
(the θ-transition), is signalled by the shoulder. The more pronounced lower temperature peak is
suggestive of a second continuous transition between two unstructured phases, the collapsed globule and
the compact globule. Panel b) corresponds to Rc = 1.6 and σSC/σ = 1.0 – the ground state is the (7,45)
precessing helix (shown in panel 3 of Figure 3). Panel c) shows the specific heat curve for Rc = 1.6 and
σSC/σ = 1.5 – the ground state here is the (1,5) dual helix (shown in panel 4 of Figure 3). In all cases,
the inset shows the canonical probability distribution of the energy in the vicinity of the transition to
the ground state (the lower transition temperature when there are two transitions) for the longest chain
studied (N = 80) at three temperatures: the transition temperature corresponding to the peak in the
specific heat (purple curve), a temperature 1% below the transition temperature (blue curve), and a
temperature 1% above the transition temperature (red curve). The numbers of attractive contacts in
the lowest energy conformations in our simulations are 443, 316, and 259 for σSC/σ = 0, 1, and 1.5
respectively. The key message is that the low temperature transition in the absence of side spheres
appears to be continuous, whereas the addition of large enough side spheres results in a structured
helical ground state and a first order transition to it upon lowering the temperature. The
low-temperature first order transition weakens upon increasing the side sphere size (see panel c) versus
b)) because of the decrease in conformational entropy in the restricted coil phase.
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Figure 3: Sketches of several ordered structures in the marginally compact phase of a tangent chain for
different attraction ranges and side chain diameters. The structures are mathematical idealizations of
those observed in the simulations having the same number of attractive contacts. Small variations
around the idealized structures are permitted without any change in energy (the number of contacts).
The helical structures shown are robust and reproducible over a range of chain lengths with two
different simulation techniques and are likely ground states in the thermodynamic limit. The sheet
structure is not observed in our simulations of a short chain but is mathematically constructed to
maximize the number of contacts for the parameters shown. The side spheres are explicitly shown only
for the sheet. For the helices, the side spheres stick out tangentially. In all cases, there are no steric
clashes. The ground state for Rc/σ = 1.2 is a (1,2) sheet with 6 contacts per interior sphere and a
repeat of (θ,µ) values of (60◦,180◦); for Rc/σ = 1.4, a (7,39) helix with (5+5+8+...) contacts per main
chain sphere (degenerate with the sheet and a dual helix) corresponding to repeat (θ,µ) values of
(90◦,20◦), (90◦,20◦), and (170◦,10◦); for Rc/σ = 1.6 and σSC/σ = 1.0 a (7,45) helix with (6+10+10+...)
contacts and a repeat of (θ,µ) values of (60◦,180◦), (160◦,30◦), and (160◦,0◦); for Rc/σ = 1.6 and
σSC/σ = 1.5, a dual helix with 6 contacts per bulk main chain sphere and a repeat of (θ,µ) values of
(120◦,40◦); and for Rc/σ = 1.8, a (7,38) helix with (12+16+...) contacts and a repeat of (θ,µ) values of
(70◦,15◦) and (160◦,15◦). The notation used is (number of approximate full turns per period of the
helix,number of main chain spheres per period). The sheet picture does not depict the turns connecting
the zig-zag strands and the double helix picture does not show the single turn.
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Figure 4: Phase diagram in the reduced temperature – side chain diameter plane for the tangent
polymer chain of length N = 60. The blue points (diamonds) indicate continuous transitions whereas
the red points (circles) are first order transitions. Both parallel tempering and Wang-Landau
simulations yield consistent results. The shaded region indicates a part of the phase diagram where the
relatively modest chain length and potential equilibration issues make the results possibly unreliable. In
the unshaded region, the error estimates are smaller than the size of the points. The coil is the
canonical high temperature phase. For small side spheres, there are two globule phases, a collapsed
globule at intermediate temperatures (with the familiar θ-transition between the coil and the collapsed
globule) as well as a distinct low temperature phase of a compact globule (with a second continuous
transition between the compact and collapsed globule phases). The penetrated helix phase (PE) has, as
its ground state, a single or a dual helix with a large enough radius to allow penetration of a rod (an
essentially straight chain segment) within it (see Figure 5), the precessing helix phase (PR) has a helical
ground state with a period of 45 main chain spheres yielding a rotation of approximately 7 turns (see
third panel in Figure 3), and the dual helix is comprised of two symmetric helices connected by a turn
(see fourth panel in Figure 3 – turn not shown).
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Figure 5: Mathematical idealizations of two structures. The two panels show penetrated helical
structures, corresponding to a single rod (an essentially straight chain segment) within a dual helix and
a single helix. They are found for Rc/σ = 1.6 and for σSC/σ =0.7, and 0.8 respectively. The point
corresponding to both θ and µ equal to 180◦ denotes the rod whereas the small µ values correspond to
the helical jackets. These structures are seen consistently in our computer simulations, they can be
sustained in the long chain limit, and they are probably ground state structures.
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