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Abstract

Lyotropic solutions containing two types of semiflexible macromolecules in spherical confinement

are studied by Molecular Dynamics simulations and Density Functional Theory, using a coarse-

grained model. The case of strong stiffness disparity between both types of polymers is treated,

and for simplicity we take the contour lengths of both types of polymers to be equal. Only sphere

radii larger than this contour length are considered, so many chains can be packed inside the sphere,

even when the chains are stretched out in a nematic state. For the chosen polymer solution, in

the bulk one finds with increasing monomer concentration a transition from an isotropic phase

through an isotropic- nematic two-phase region to a homogeneous nematic phase to which both

constituents contribute. In the corresponding confined systems, there is an interplay between these

phase transitions and surface enrichment of one component (typically, but not always, the stiffer

one). In rather dilute confined solutions, the main effect of the surfaces is that the random orientation

of the end-to-end vectors of the stiff chains is perturbed in a surface shell whose thickness is roughly

the contour length. In more concentrated systems, a thin layer of wall- attached stiff chains is

observed in addition, while (for equal mole fraction of both constituents) the stiffer component

can also form an almost cylindrical domain with a bipolar orientational order, surrounded in the

remainder of the sphere by the less stiff component. Topological defects in the nematic order can

be identified, similar to the case where a single type of semiflexible polymer is confined in a sphere.

The radial profiles of monomer concentrations and of various order parameters are compared to

analogous data near planar and cylindrical repulsive walls, to provide a comprehensive picture of

confinement effects on such polymer solutions.

I. INTRODUCTION

Confinement of biopolymers by cell membranes plays a great role for many phenomena occurring in living matter1,

examples include packaging of double-stranded (ds) DNA in bacteriophage capsids2,3, storage of chromatin in the

nucleus of cells, organization of actin filaments confined by cells4, etc. Related problems occur in applications where

capsules (in the size range from 100nm to 10 micrometer diameter) transport polymeric molecules to achieve specific

actions, such as drug delivery5,6 in medicine or agriculture. There the release of the drug may be triggered in various
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ways (change in the pH value of the ambient solution, irradiation, etc.), but this aspect is not further considered here.

Here we rather focus on the problem that there may be the need to consider several kinds of (bio-)polymers together

confined in such a capsule. This case has also occasionally been considered by targeted experiments, where, e.g., ds

DNA and actin confined in spherical vesicles were studied7.

A characteristic aspect of many polymers and biopolymers in particular is that chain stiffness plays an important

role: the persistence length `p that characterizes chain stiffness may vary within the range of a few nanometers (e.g.,

single stranded DNA8) to many micrometers (e.g., rod-like viruses9). While stiff macromolecules in bulk solution

under good solvent conditions show interesting cooperative phenomena such as long range ordered liquid crystalline

structures10–13, it has been found that in spherical confinement such structures are severely distorted and the order is

disrupted by topological defects14–16. Particularly interesting structures have been found for the problem of very long

single ds-DNA chains packed in spheres modelling bacteriophage capsids2,3,17–22. In the spirit of ”molecular mechanics

models”, DNA is described as an elastic wire which can be packed into the sphere in the form f concentric spools or

coaxial spools17,18, but also folded or twisted toroids have been found for other capsid shapes17,18. Theory19–22, such

as work using the selfconsistent field theory20, has clarified the various ”phases” of single wormlike chains confined in

spheres of radius R in terms of the parameters `p/R, where `p is the persistence length, and the density of persistent

segments in the sphere. Also orderings exhibiting Hopf fibrations have been found20, in addition to the coaxial spool

state and the isotropic phase at low enough density.

When one considers different types of semiflexible polymers where the persistence length is much larger than the

linear dimension of a monomeric repeat unit, confined in a capsule, enthalpic forces will typically cause very strong

segregation: aggregates of the minority component appear on the background of the solution containing the majority

component23. However, this case shall not be considered further here: often it may be preferable to have a situation

where both components exhibit partial or full miscibility in a common solvent7,24–27. Yet, even in a common solvent

which is a very good solvent for both species, entropically driven unmixing may occur, caused by a disparity of the

effective thickness d of the rod-like polymers1,25, or by mismatch of their contour lengths L, or stiffness24. Note that

d is in the range of 0.5nm to 1.5nm for most synthetic semiflexible polymers11,13,28, while for ds DNA in aqueous

solution one has 2nm < d < 20nm (depending on salt concentration29), and d = 8nm for actin7. Also for blends

formed from rather flexible chains it has been found that a slight stiffness disparity causes a tendency in favor of

surface segregation of the stiffer component30. Finally, we also draw attention to the entropically driven separation

between just two identical chains confined in a narrow cylindrical tube31,32.

Here we shall focus on the effect of spherical confinement on a mixture of semiflexible polymers with stiffness

disparity only; the bulk behavior of such systems has been studied earlier by some of us with Molecular Dynamics

(MD) simulations and density functional theory (DFT) for a coarse-grained model26,27. We shall study the interplay

of surface enrichment of one component (driven only by entropy, no enthalpically driven adsorption being considered)

with the distortion of nematic order, and compare to the behavior of corresponding confined solutions containing a

single kind of semiflexible polymer.
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Section II briefly characterizes the studied model and summarizes the essentials of the DFT and MD methodologies.

Section III presents numerical results for dilute and semidilute solutions which in the bulk still occur in the isotropic

phase, and compares the results with corresponding results for confinement in cylindrical tubes or between planar

repulsive walls. Section IV then discusses denser systems, where in the bulk the presence of nematic order would

matter, studying the deformation of this order by spherical geometry and the interplay with the entropy of mixing

for the two species. For one-component systems14,15 the role of topological defects on the nematic order has already

been elucidated; here we extend this work to consider the interplay of these defect structures with surface enrichment

of the stiffer component. Finally Section V summarizes our conclusions.

II. MODEL AND METHODS

Following previous work14,15, we describe the stiff polymers as a sequence of N spherical beads of diameter σ and

a bending potential Ubend(θijk) depending on the bond angle θijk,

Ubend(θijk) = εbend(1− cos(θijk)). (1)

Here i, j, k label the coordinates ~ri, ~rj and ~rk of three subsequent beads along the chain, i.e., the bond vectors

are ~aj = ~rj − ~ri and ~ak = ~rk − ~rj , θijk being the angle between two subsequent bond vectors. For DFT, the chain

molecules are treated as tangent hard sphere chains so the bond length `b is precisely equal to the bead diameter σ

(which is chosen as the length unit). For MD, it is more convenient to use the standard Kremer-Grest33 bead-spring

model (with a scale ε = kBT = 1 for the repulsive bead-bead potential). In this model `b = 0.97, and σ = 1 can

also be used as the effective chain diameter D in both models. The contour length then is L = (N − 1)`b, and the

persistence length of these models can be computed from

`p/`b = −1/ ln〈cos(θijk)〉 ≈ 2/〈θ2ijk〉. (2)

Note that in very dilute solution we also have `p/`b = κ = εbend/(kBT ) and in Eq.2 in the second step we have

assumed that κ� 1, so that only small angles θijk in Eqs.1,2 matter.

In less dilute solutions, however, where a transition to the nematic phase has occurred10–13, the persistence length

measured from Eq.2 exceeds κ and depends on the density ρ of the monomeric units (as well as on κ and N)34. The

order parameter S of the nematic phase is defined as the largest eigenvector of the traceless tensor

Qαβ = (3〈~uαi ~u
β
i 〉 − 1)/2. (3)

The averages 〈. . .〉 in Eqs.(2,3) are taken over all bonds and all chains of a particular kind A, B, when we have

two different species of semiflexible polymers in solution. While we then need to distinguish κA, κB , `
A
p , `

B
p and
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SA, SB , the model is chosen such that there is neither a distinction with respect to bond length (`Ab = `Bb ) nor

repulsive interaction between monomeric units (εA = εB , σA = σB). When we also assume identical chain lengths

(NA = NB = N), stiffness disparity is the only distinctive feature of the two species.

Even if the stiffness disparity is very large (consider, e.g., the case N = 32, κA = 24, κB = 128), conformations of

one type of a chain (as measured, e.g., by the mean square end-to-end distance 〈R2
e〉, or gyration distance 〈R2

g〉, etc.)

remain essentially unperturbed by the presence of the other type of chain in the isotropic phase1,27.

This is no longer true in nematic phases containing two types of chains with different stiffness: there occurs a

mismatch in chain packing between the two types of chains, and the order parameters SA, SB and end-to-end radii

〈R2
e〉A, 〈R2

e〉B , etc., in the mixture differ from their counterparts in the respective pure phases. For large enough

stiffness disparity even a phase separation into two coexisting nematic phases (one A-rich and the other B-rich)

occurs26. In the following we restrict attention to the region of parameters where in the bulk there still occurs

miscibility between A and B also in the nematic phase.

As described in previous work for confined single component systems of semiflexible polymers14,15,35, we carry out

standard MD simulations36 using two choices for the radius R of the rigid spheres confining the polymers, R = 35

and R = 70, the repulsive potential acting from the sphere surfaces is chosen to have the same form as the monomer-

monomer repulsion, also with the same range σ = 1 and strength ε = 1. We use Graphics Processing Units (GPU’s)

and apply the HOOMD Blue software37,38. Fig.1 presents typical snapshot pictures of equilibrated configurations that

will be analyzed in the next sections. More details on the simulation methods can be found also in Refs.14,15,26,36.

FIG. 1: Snapshot configurations of binary mixtures (κA = 24, κB = 128, NA = NB = 32, mole fraction XA = 0.5) confined in
a sphere of radius R = 70. Panels a,b refer to monomer density ρ = 0.06 and panels c,d to ρ = 0.42, respectively. The less stiff
A-chains are displayed in yellow, the stiffer B-chains in red. Panels a, c are side views, while panels b, d show cross-sections
through the sphere center. For the low density one has an isotropic mixture with reduced local density close to the sphere
surface; for ρ = 0.42 one has a mixed nematic phase, strongly distorted by the splay deformations imposed by the confinement.
From the side view (panel c) one can see that there occurs significant surface enrichment of the stiffer component, and one
of the topological defects occurring for a bipolar configuration can also be recognized, with less stiff chains enriched near the
defect.

For the DFT calculations, confinement was effected by spheres with hard walls, and in principle, one would need to

minimize a free energy functional depending on the molecular density ρmol(~r, ω), where ω stands for all the variables

describing the molecular orientation. Following the treatment of Fynewever and Yethiraj39,40, the orientational
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degrees of freedom of individual bond vectors are only indirectly considered by means of the effective excluded volume

interaction V α,βexc (ω, ω′) between a chain of type α and a chain of type β (with α, β = A,B). The dependence on ω

and ω′ is thus reduced to a dependence on a single variable, the relative angle between the orientation vectors of the

two chains. These interactions were computed in the context of the studies on the behavior of bulk mixtures26,39 and

are used here again, we assume that these interactions do not change when the two semiflexible polymers are close to

the confining surface, although then the typical chain conformations may differ.

While in the bulk it was assumed that ρmol(~r, ω) can be factorized into ρmolf(ω), where ρmol is just the average

molecular density so any spatial dependence was neglected, for spherical confinement we need to allow for a dependence

on the radial distance r from the center of the sphere,

ρmol,α(~r, ω) = ρmol,α(r, ω) = ρiso,α(r)fα(r, ω) (4)

We assume here that fα(r, ω) is normalized to unity, and that far from the wall the state of the solution is the

isotropic phase, irrespective of A or B. Note that the fα(r, ω) needs to be interpreted as the orientational distribution

function of a chain (averaged over all bond vector orientations of this chain) whose center of mass coordinate is at a

distance r from the sphere center. Apart from the need to distinguish the species A and B, the treatment is the same

as for the confinement of a single type of semiflexible polymers, used successfully earlier35,42. A particular bonus of

DFT is the fact that it yields explicitly the free energy of the considered model system, which then can be split into

a bulk term and a surface correction35,

Ftot =
4πR3

3
fbulk + 4πR2 γ(R) (5)

following35, who noted that it is necessary to allow for a dependence of the surface tension γ(R) on the sphere radius

R. Of course, both the bulk free energy and γ(R) will depend on the mole fraction XB as well.

For the DFT calculations we did focus on the case NA = NB = 32 but for simplicity considered not extremely stiff

chains, namely, we focused only on κA = 8 and κB = 32. We choose two densities, ρ = 0.06 and 0.2, in the isotropic

region. In this case, several radii R = 25, 35, 50 and 75 were studied as well as the planar wall case (R→∞).

III. NUMERICAL RESULTS FOR THE CASE WHERE THE BULK IS STILL AN ISOTROPIC

SOLUTION

A. DFT RESULTS

Already for solutions of a single kind of semiflexible polymers it has been found35 that the surface tension γ(R) for

dilute solutions confined by repulsive walls is small and positive (typically 0.01 < γ(R)/kBT < 0.10) but it exhibits a

nontrivial dependence on both chain length N and stiffness κ for the considered monomer densities. When we extend
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FIG. 2: a) Surface tension γ(R,XA) plotted vs. XA for average density ρ = 0.06 (upper part) and ρ = 0.20 (lower part). Both
the case of a planar wall (R =∞) and five choices of R are included, as indicated. Dashed lines denote the cases γ(R∗) = const.
b) Variation of γ with inverse sphere radius R−1 for several values of XA. Dotted lines are guides to the eye only.

these studies to binary mixtures, Fig.2, we again find that the approach of γ(R,XB) to the result for a planar wall

(γ(R = ∞, XB) is a non-monotonic function of R. But for any fixed value of R the dependence of γ(R,XB) on XB

is almost perfectly linear. A strictly linear behavior can be expected if we have ideal mixing conditions with respect

to both A and B in the bulk and near the surface41.

γ(R,XA) = γA(R)XA + γB(R)(1−XA). (6)

For R = 25 the A-chains have a larger surface tension than the B-chains while for larger R the situation is reversed

so the slope of γ with XA has a different sign, Fig.2a. As a consequence, between R = 25 and R = 35 a radius

must occur, where γ(XA) is essentially horizontal: this shows up as a common intersection point of the dotted lines in

Fig.2b. But this particular radius does depend on the chosen density somewhat and hence it is not the same for the two

densities shown in Fig.2b. While for the bulk solutions26 at the densities shown here ideal mixing indeed is expected,

this is not obvious at the surface. A particularly interesting case occurs for radii R∗ when γA(R∗) = γB(R∗), since

then the above linear relation implies that γ(R∗, XA) is completely independent of XA. While for an ideal mixture

of point particles one would then expect that radial profiles of the volume fraction φA(r) = ρA(r)/(ρA(r) + ρB(r))

are perfectly flat and structureless, this is not the case here. For polymers there occur nontrivial correlations of the

monomeric densities ρA(r), ρB(r) even in the dilute limit due to the structural correlation along the contours of the

chains: for N = 32 and κ = 8, the root mean square end-to-end distance is about 19.25, according to the Kratky-

Porod wormlike chain model, while for κ = 32 it is about 26.7. Now one can expect that the densities ρA(r), ρB(r)
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near a wall are strongly affected up to the distance of one half of these values since the orientations of the end-to-end

vectors are constrained not to cross the wall. Since these end-to-end distances differ for the two types of chains, a

nontrivial behavior arises, and also for R = R∗ no special behavior of these densities is seen, Fig.3c. We find here a

nonmonotonic behavior of the local mole fractions φA(r), φB(r), which cross each other twice, since very close to the

wall the density of B-monomers is enhanced but over a broad adjacent region the density of A-monomers is enhanced

while in the center B dominates again. The distances between the resulting crossing points where φA(r) = φB(r)

for the average composition XA = 0.5, depend in a subtle way on the difference between γA(R) and γB(R). Radial

profiles, Fig.3, indicate that for ρ = 0.20 a pronounced surface enrichment of the less stiff component (A) takes place.

Since the total volume fraction XA as well as the average density in the sphere are strictly fixed, there must then
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FIG. 3: a) Plot of the local monomer fractions φA(x), φB(x) as a function of distance x from a planar wall, for a density
ρ = 0.06 (upper panel) and ρ = 0.20 (lower panel). In each panel three choices of volume fraction XA = 0.1, 0.5, 0.9 are
included, and the two curves for each case are simply related via φA(x) + φB(x) = 1. b) Plot of the local molar fractions
φA(r), φB(r) versus the radial distance R − r for a sphere with R = 25, for a density ρ = 0.06 (upper panel) and ρ = 0.20
(lower panel). In each panel three choices of volume fraction XA = 0.1, 0.5 and 0.9 are included. c) The same as in b) but for
the special radii R∗ = 28.5 and R∗ = 30.10 for which γ(XB) = const.

occur a depletion of the local mole fraction φA(r) in the center of the sphere. For the case of planar surfaces, this

depletion also occurs for distances exceeding 5σ from the wall, since actually the calculation does not deal with a

semi-infinite system, but rather with a thin film confined between two planar walls a distance L = 40σ apart, as

chosen for the one-component systems42. However, the variation of the local total density ρ(r) with the distance r

from the confining surface indicates, Fig.4, that the surface tension reflects mostly the free energy cost due to the

local inhomogeneity of the total density near the surface; the local composition obviously plays only a minor role.

It is seen that the stiffer chains for R = 25 and ρ = 0.2 approach their maximal density, which occurs far from the

surface, by a slow monotonic increase while the less stiff ones show a density maximum at a distance of about 0.6σ

from the wall, followed by a minimum at about twice this distance. We interpret this behavior as a precursor of the



8

well-known layering structure that prevails near hard walls for larger monomer densities. For R = 50 (not shown

here) this maximum is also present, though slightly less pronounced, while for the planar wall no longer a maximum

is found but only a shoulder.
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FIG. 4: a) Plot of the local density ρ(x) as a function of distance x from a hard wall, for ρ = 0.6 (upper panel) and 0.20 (lower
panel). 5 choices of XA are included, as indicated. b) Plot of the local density ρ(r) versus R− r for a sphere with R = 25, for
a density ρ = 0.06 (upper panel) and 0.20 (lower panel). 5 choices of XA are included, as indicated.

We remind the reader that in the present DFT study a single chain length NA = NB = N = 32 is used, chosen

such that for all considered sphere radii in the dilute case the chains can fit into the sphere without significant

deformation of the conformations they typically have in the bulk systems in equilibrium. The dramatic changes of

the conformational behavior of confined semiflexible polymers that occur when N exceeds the sphere diameter are

very interesting but will be not studied here as far as for single confined chains extensive work on this problem can

be found in the literature21,44,45.

One can also ask how individual monomers of the chains are distributed, such as monomers at the chain ends (the

index i labeling the monomeric units along the chain contour takes the values i = 1 and i = N) or in the middle of

the chain (i = N/2 or i = 1 + N/2, recall that N is chosen always even here ). Fig.5a shows that end-monomers of

the less stiff chains are strongly enriched near the surface, for the stiffer chains, end-monomers are depleted near the

surface for ρ = 0.06 but slightly enhanced for ρ = 0.20. Mid-monomers, on the other hand, show a more complex

behavior which is less straightforward to interpret: there is a delicate interplay of chain configurational entropy with

the repulsion due to the confining sphere and entropy of mixing in the binary system. The distance of the maximum

of the mid-monomer density from the surface corresponds roughly to 50% of the end-to-end distance of the chains.

One can estimate the latter for our choices of stiffness and chain length rather reliably even with the simple Kratky-

Porod wormlike chain model43. For chains at such a distance from the surface, the latter does not constrain their

conformation any longer, therefore, there is an entropic driving force to ”push” chains which would be closer to the

surface just outside of this range where the chains can directly ”feel” the constraining effect of the surface on their

conformation.
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FIG. 5: a) Plot of the local density ρend(r)/ρb, where ρb is the density in the center of the sphere of radius R = 25, plotted vs.
R− r, for the same case as in Fig.3b. b)Same as a), but for the mid-monomers.

B. Results from MD simulations

Typical results for the density profiles of A-monomers, B-monomers and the profile of one half of the total density

are shown in Fig.6 for the average density ρ = 0.12 in the system, focusing on the case NA = NB = 32 and XB = 0.5

again, but choosing rather stiff chains, κA = 24 and κB = 128. We compare here the case of a planar wall (panel

a), a sphere of radius R = 35 (b), a sphere of radius R = 70 (c), and a cylinder of radius R = 70 (d). To make the

comparison of the wall effects easier, we have chosen the origin of the abscissa always right at the wall, and choose

the same scale for the abscissa (showing the region up to a distance of 35σ from the wall in all cases, to obtain a clear

view of the behavior near the surfaces.

It is clearly seen that the local total density is essentially zero very close to the surfaces, and increases for the planar

wall to the bulk monomer density within a distance of a few monomer diameters. The full bulk value for the planar

wall is reached at a distance of about 10σ (note that ρbulk = 0.126 rather than the average value ρ = 0.120 here, since

again the total number of the monomeric units in the slit pore is strictly fixed, and so the monomer depletion near

the walls must be compensated by a slight enhancement of the density in the bulk).

In contrast, the densities of A- and B-monomers behave differently: for the stiffer B-chains, a first plateau is

reached already at a distance of 1 to 2 units, and their density stays slightly below the value 0.063 = ρbulk/2 reached

at a distance of about xbulk,B = 29 units from the wall. In the range of distances less than xcross, defined from the

condition ρA(x = xcross) = ρB(x = xcross), with xcross = 10 in this case, it even happens that ρA(x) > ρbulk/2. ρbulk

for the A-monomers is also reached for a distance of about xbulk,A = 29. For lyotropic solutions of a single kind of

semiflexible polymers42, the approach of the density to its bulk value for densities ρbulk < 0.2 is always monotonic,

increasing with x and reaching ρbulk at xbulk = 15, very similar to the behavior of the profile of the total density here.

The numbers xbulk, xbulk,A and xbulk,B can be interpreted tentatively in terms of the end-to-end distance of about
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FIG. 6: a) Profiles ρA(x), ρB(x) of the densities of A-monomers and B-monomers as a function of the distance x from a planar
repulsive wall for the case NA = NB = 32, κA = 24, κB = 128, at a total density ρ = 0.12 in a slit of width D = 128 and mole
faction XB = 0.5. For comparison the profile of half the total density, ρ(x)/2 = (ρA(x) + ρB(x))/2 is also included. b) Same
as a) but for a repulsive sphere with radius R = 35. inset shows density profiles of the center of mass positions rCM

A , rCM
B . c)

Same as b), but for a repulsive sphere with R = 70. d) Same as a)-c), but for a cylindrical pore with a repulsive surface and
cylinder radius R = 70.

28.9 of the stiffer chains, which are almost rodlike. For such stiff chains, the conformation is already affected by the

wall if the center of mass is at a distance xCM,B less than half the chain end-to-end distance from the wall, since

then the orientational degrees of freedom of the end-to-end vector are already constrained. So B-chains are depleted

somewhat from the region x < xCM,B and the density of A-chains is slightly enhanced there. Very close to the wall,

however, both A-chains and B-chains need to be oriented parallel to the wall, then the more flexible chains with such

a parallel orientation of the end-to-end vector are more constrained by the walls than the stiffer ones as they would

lose more orientational entropy for their bond vectors. Hence one can understand that ρB(x) > ρA(x) for x < xcross.

Clearly, such arguments can only be taken as a somewhat speculative interpretation of our findings, but obviously

the packing of polymers in a mixture of chains with widely differing stiffness near a repulsive surface is controlled by

a subtle competition of different entropic effects.

This ”preference” of the repulsive surface for the stiffer chains is also seen in the case of the cylinder, and (to a

lesser extent) for the sphere with R = 70 but not for the sphere with R = 35. As expected, if the radius of curvature

of a confining surface is too small, a rod-like chain does not fit well to the surface; on the other hand, if R is very

large, the behavior is hardly distinct from a planar surface.

These arguments are corroborated by the density distributions of the center of mass positions ρCM,A(r), ρCM,B(r)
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shown in the insets of the various panels of Fig.6: in all cases peaks are found at distances of about half the end-to-end

distance of the respective chains from the surface. The depression of the center of mass density for the B-chains close

to the surface is most pronounced for the sphere with radius R = 35, again understandable by the argument that for

a rodlike polymer with end-to-end distance 28.9 the largest misfit is experienced at the curved surface.
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FIG. 7: Profiles ρA(r) and ρB(r) for the case R = 35, κA = 24, κB = 128, NA = NB = 64 and total densities (a) ρ = 0.06 and
(b) 0.207. insets show the density profiles of the center of mass positions rCM

A and rCM
B . Panel c) shows a typical snapshot

picture relating to case b), with A-chains displayed in yellow, and B-chains displayed in red.

It is important to recall that the behavior pointed out in Fig.6 and the accompanying discussion applies only in the

parameter region for which the radius R of the sphere is larger than the end-to-end distance of the (almost rod-like)

B-chains. For instance, if we instead consider the case NA = NB = 64 and still use R = 35, B-chains can still fit

into the sphere without strong deformation of their typical conformations only if their center of mass position is close

to the center of the sphere. In the corresponding density distributions, Fig.7, the consequences of this fact are borne

out clearly. For very small average densities, such as ρ = 0.06 (Fig.7a) , the distribution of the center of mass of

the stiff B-chains has a clear peak for radii r < 10, while for the less stiff A-chains the center of mass distribution

is almost homogeneous up to r = 25. The preference of the stiff B-chains to stay near the sphere center shows up

also in the monomer densities, ρB(r) > ρA(r) for r < 22 at this average density (Fig.7a). At higher average densities,

e.g., ρ = 0.207 (Fig.7b), the behavior is at first sight still similar, with the exception that now also a layer of surface-

attached B-chains has formed in addition. This is also evident from the snapshot picture (Fig.7c), which reveals in

addition that the B-chains that have their centers of mass near the sphere center are not randomly oriented but rather

form a nematic ”bundle” of chains more or less aligned parallel to each other. The still randomly oriented less stiff

A-chains fill the remaining volume of the sphere almost homogeneously. The part of the ”population” of B-chains

in the surface layer take conformations almost similar to arcs of a circle. These conformations are reminiscent of

the spiral-type structures found for single very long and very stiff chains (with L � R and `p � R) studied in the

literature21,44,45. However, such structures are out of focus in the present investigation.

These considerations based on density distributions are well corroborated when we examine orientational order

parameters of the bond vectors ηA(r), ηB(r) and end-to-end vectors ηEEA (r), ηEEB (r) defined as (we omit here indices
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A, B for simplicity)

η(r) = (3〈cos2(θ(r)〉 − 1)/2, ηEE(r) = (3(〈cos2(θEE(r))〉 − 1)/2 (7)

where θ(r) (or θEE(r), respectively) is the angle that a bond vector ~ui(r) (or end-to-end-vector ~Re(r), respectively)

makes with the direction of the vector normal to the (spherical or planar) surface, and r is the distance of the center

of the considered bond (i.e., the average of the positions of the monomers forming the bond vector), or the center of

mass position of the considered chain, from the center of the sphere.

For the sphere, the quantity R − r then is the distance from the surface, and this quantity can then be compared

to the distance x from a planar wall, of course. But for the cylinder geometry, the situation is more complicated: the

z-axis along the cylinder axis is a special direction, and the normal direction to the cylinder surface is another special

direction. So the orientational order of both bond vectors and end-to-end vectors can be expected to be biaxial. In a

separate study46, the properties of single types of semiflexible polymers as well as their mixtures confined in cylinders

have been already discussed whereby Eq.7 was also used albeit with a different meaning of the angles θ(r) and θEE(r),

namely the angle between the bond and end-to-end vectors and the z-axis was considered. Consequently, then both

quantities η(r) and ηEE(r) take positive values in the case when r → R while with the above definition Eq.7 for planar

and spherical surfaces the order parameters tend to −1/2 when orientations parallel to the surface prevail. To avoid

confusion, we have not included a discussion of orientational order parameters for cylinder geometry in the present

paper.

Fig.8 then presents these orientational order parameters for the same choices of parameters as taken in Fig.6.

Consistent with expectation, orientational order parameters ηEEA , ηEEB are zero (within statistical accuracy) whenever

the distance from the surface exceeds one half of the corresponding end-to-end distance, the order parameters ηA, ηB

become zero only when the distance exceeds the full end-to-end distance. Orientational correlations between the

different bonds of a considered chain are thereby strong but no correlations exist between bonds of a chain near the

surface and of bonds farther away, at these low densities.
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FIG. 8: a) Profiles of the orientational order parameters ηA(x), ηB(x) and ηEE
A (x), ηEE

B (x) (the latter shown in the inset) plotted
as functions of the distance x from the planar repulsive wall, for the caseNA = NB = 32, ρ = 0.12, XB = 0.5, κA = 24, κB = 128.
b) Profiles of the orientational order parameters ηA(r), ηB(r) and ηEE

A (r), ηEE
B (r) (insets) plotted as a function of the radial

distance R− r from the surface of a repulsive sphere, for the same parameters as in panel a) . c) Same as b), but for R = 70.
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Closely related conclusions emerge when one studies the chain linear dimensions 〈R2
e〉 and 〈R2

g〉 for both types of

chains. Components parallel and perpendicular to the radius vector (for spherical confinement) or to the surface

normal (for planar confinement) differ from each other when the distance of the center of mass of the chain from

the surface is less than
√
〈R2

e〉/2, but are identical within statistical errors for larger distances, and agree with the

corresponding bulk values. As it must be, parallel components of the end-to-end vector tend to zero for small distances

(Fig.9a), but the sum 〈R2
e〉||+ 〈R2

e〉⊥ = 〈R2
e〉 stays approximately constant, independent of distance. So the chains at

the considered low density are neither squeezed nor stretched by the surface effects, merely the chain orientations are

affected. We have not included the case of R = 70 here as it is within errors indistinguishable from that of the planar

surface. We emphasize that the behavior seen in Fig. 9a,b is not specific to the shown average density ρ = 0.12, but

representative for a broad range of densities in the isotropic phase (we have checked this for ρ = 0.06, 0.09, 0.16 as

well). However, close to the isotropic-nematic phase boundary (the two-phase coexistence region for XB = 1 starts at

about ρ = 0.21 and for XB = 0.5 at ρ = 0.23) behavior no longer is similarly simple, the sharp boundary between the

region affected by the surface and the bulk-like behavior is strongly rounded (Figs. 9c,d). This means that the local

orientational order that occurs near the surface where the stiffer species is enriched both for spherical, cylindrical

and planar confinement, causes nontrivial correlations over larger distances. The behavior now depends on the type

of confinement distinctly: for planar geometry, an enrichment layer of B-chains close to the surface has formed at

ρ = 0.207, Fig.9a, where the nematic order is close to saturation (Fig.10a,b). For the spherical geometry, we have a

similar enrichment shell near the surface (Fig.10c) as for the planar case for the same density. However, the spherical
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FIG. 9: a) Profiles of the parallel and perpendicular components of the mean square end-to-end distance of A-chains and
B-chains near a planar surface plotted vs. x, for the same cases as in Fig.8. b) same as a), but for a sphere of radius R = 35.
c) Same as a), but for a total density of ρ = 0.207. d) Same as b), but for a total density of ρ = 0.207.

geometry is in conflict with the nematic long range order, and snapshot pictures reveal that nematically ordered
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clusters of B-chains form in the surface region, which do not have an uniform orientation of the local director, and

are separated by interfacial regions rich in the less rigid A-chains (Fig.10d).
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FIG. 10: a) Same as Fig.6a, but for a total density ρ = 0.207. b) Profiles of the nematic order parameters SA(x), SB(x) plotted
vs. x, for the same system as in panel a). Note that the nonzero plateau values of order 0.1 to 0.2 in the center of the slit pore
are artefacts due to finite size. c) Same as Fig.6c, but for a total density of ρ = 0.207. d) Snapshot of the system shown in
panel c).

IV. MD RESULTS FOR CONFINED DENSE MIXTURES WHERE NEMATIC ORDER MATTERS IN

THE BULK

The properties of the confined systems in the various geometries differ fundamentally from each other at still larger

densities where in the bulk two-phase coexistence is encountered. The two-phase coexistence region for XB = 0.5

and our stiffnesses is rather wide, it extends46 from ρi = 0.23 to ρn = 0.35. For planar geometry, we would find

domains with exactly those densities coexisting in the slit, if the slit thickness were macroscopically large, for all

average densities in between these limits. However, for the present slit thickness of D = 124 a large part of this

two-phase region is eliminated by the capillary nematization effect47–54, studied previously for systems containing

a single type of semiflexible polymer. For the present case, the nematic-isotropic interfaces of the nematically well

ordered layers attached to both walls of the slit move towards one another with increasing density and annihilate each

other: one then is left with a slit with almost uniform nematic order (Fig.11a,b). Thus it is clear that the region of
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densities where two-phase coexistence with B-rich nematic domains adjacent to the walls and an A-rich (more or less

isotropic) domain in between is clearly shifted, relative to the densities of the corresponding bulk two-phase region for

XB = 0.5. The nematic order of both components near the walls is enhanced (Fig.11b), although the density of A-

chains near the walls is strongly depressed, Fig.11a, in favor of a strong surface enrichment of B-chains. This effect is

strong enough to even cause an ”overshoot” of the profile of (ρA(x) + ρB(x))/2 near the wall. The peak near the wall

can clearly be interpreted as a precursor of the layering phenomenon that is found at still larger densities. At large

distances from the wall, both ρA(x) and ρB(x) are independent of the distance from the walls, and ρA(x) > ρB(x),

since the average densities of both species in the slit must be equal for XB = 0.5.

For the cylinder geometry, Fig.11c, the profile of ρB(r) at comparable total densities shows two layering peaks

already, and also the variation of ρA(r), although strongly depressed near the surface, is nonmonotonic there. Again

far from the wall we have ρA(r) > ρB(r), due to the constraint that the average densities of both species in the cylinder

must be equal to ρ/2. These properties require the occurrence of crossing points at rcross (or xcross, respectively)

defined by ρA(xcross) = ρB(xcross), or ρA(rcross) = ρB(rcross), respectively. Note that these characteristic lengths

are not in a straightforward way related to chain linear dimensions, since they are specific to our choice XB = 0.5;

by choosing XB somewhat different from this value rather different crossing points could occur.
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FIG. 11: Profiles ρA(x), ρB(x) of the densities of A- and B-monomers shown as a function of the distance x from a planar
repulsive wall, for the case ρ = 0.303 and XB = 0.5. b) Profiles of the nematic order parameters SA(x), SB(x), for the same
case as in panel a). c) Profiles ρA(r), ρB(r) of the densities of A-monomers and B-monomers shown as a function of the
distance R − r from the wall of a cylinder with radius R = 70, for the case ρ = 0.303 and XB = 0.5. d) Profiles ρA(r), ρB(r)
for a repulsive sphere at ρ = 0.303 and R = 70 plotted vs. R − r. inset shows corresponding data base on the center of mass
positions of the chains.
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For the spheres with radius R = 70, remarkably, a second crossing point occurs far away from the surface, and the

B-chains are enriched both near the surface and near the sphere center (Fig.11d). Chain linear dimensions (Fig.11e)

indicate that the anisotropies in the orientation of the end-to-end vectors start near the sphere center and increase

completely gradually as r tends to R. Of course, in this case a distorted nematic order, to which both types of chains

contribute, exists everywhere in the sphere, the behavior is qualitatively similar to the case where a single type of

semiflexible polymer is confined within a repulsive sphere14,15.

When one studies the confinement at still larger densities, such as ρ = 0.37 and 0.42, where in the bulk a homo-

geneous nematic mixture occurs to which both types of chains then contribute, irrespective of their mole fractions

XA, XB
26, the behavior of systems in planar and cylindrical confinement46 is rather simple to understand: in both

cases the nematic order parameters SA, SB are enhanced near the surface and decrease towards their bulk values that

are reached at a distance of order 10 from the planar or cylindrical surface46. The local density of B-monomers is

strongly enhanced near the surface (and the density of A-monomers is depleted), and clear evidence for layering is

seen46. In neither of these cases does the confining surface cause ”frustration” of the nematic order, unlike the case of

spherical confinement (Fig.1c,d). Figs.12a,b show that nonuniform and nontrivial density profiles ρA(r), ρB(r) result

for both R = 35 and R = 70 while the total density ρ(r) = ρA(r)+ρB(r) shows a much weaker radial variation (apart

from the layering effect that occurs only over a range of a few monomer diameters near r = R). Interestingly, also the

center of mass profiles ρCMB (r) show pronounced peaks near the walls which indicate that part of the B-chains are in

a wall-attached conformation, and the A-chains are enriched (in comparison with the B-chains) in a second spherical

shell just underneath the wall-attached B-rich region.
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FIG. 12: Radial density profiles ρA(r), ρB(r), and (ρA(r) + ρB(r))/2 plotted versus R − r and the case NA = NB = 32, κA =
24, κB = 128, ρ = 0.42 and XB = 0.5. Two choices of R are shown, R = 35 (a) and R = 70. (b) insets show the corresponding
profiles of the center of mass positions of the chains.

Particularly interesting structures due to spherical confinement of mixtures occur for still larger densities, such

as ρ = 0.63 and ρ = 0.70, though we report these results only with the caveat that we cannot be sure whether

these structures are true equilibrium states, or only long-lived metastable states. While the snapshot picture of the

configuration for R = 35 reveals a structure (Fig.13a,b) where a large fraction of the stiffer B-chains form almost a

cylinder inscribed to the sphere, reminiscent almost of two smectic cylindrical layers on top of each other, which leads
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to a strong peak in their center of mass distribution at a distance of r = 17 from the sphere center, Fig.13c, for R = 70

the situation is completely different: density distributions resemble those found for ρ = 0.42 whereas at the surface

interesting structures involving topological defects are identified, where now the less rigid A-chains are enriched near

the core of these defects (Fig.13d).
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FIG. 13: Snapshot picture of chain configurations in a sphere of radius R = 35 at the density ρ = 0.63, for the case NA =
NB = 32, κA = 24, κB = 128, XB = 0.5, showing a side view from outside (a) and a cross-section (b). Chain ends of B-chains
are marked in blue. c) Radial density profiles of the monomer densities and the total density for the case shown in panel a) d)
Same as a), but for R = 70; note that 2 topological defects of ”charge” 1/2 can be recognized.

In this case (R = 70) only a more modest enrichment of B-chains in the center of the sphere could be detected,

and the B-rich shell adjacent to the wall shows very strong layering. In all cases the local total density ρA(r) + ρB(r)

is found to stay approximately constant throughout the sphere, apart from the pronounced layering very close to

the surface. For R = 35, however, the local density distribution shows a clear layered core-shell structure, with

B-chains dominating both for r < 20 and right underneath the surface (33 < r < 34), while the A-chains dominate

in between. Of course, the structure with the two quasi-smectic cylinders (Fig.13b) implies that A-chains near the

center are removed almost completely while due to the cylindrical B-rich domains the enrichment of A-chains in the

outer regions must be less perfect, due to the volume fraction ”needed” by these cylinders.

These changes of structure formation also show up in the variation of the crossing points of radial A-B-density

profiles in spherical confinement which we compare in Fig.14 with crossing points in the planar and cylindrical case

(inset). In the latter case, only a single crossing point occurs: the stiffer chains are always enriched near the surfaces,

the less stiff chains - away from it. In the case of spherical surfaces, and R not very large, A-chains are enriched near



18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Total density ρ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(R
-r

cr
o
ss

(ρ
))

/R

r
I

sphere
/R(70)

r
II

sphere
/R(70)

r
I

sphere
/R(35)

r
II

sphere
/R(35)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ρ

0

0.05

0.1

0.15

0.2

0.25

(R
-r

cr
o

ss
)/

R

r
cyl

/R(70)

r
walls

/D

B-rich

A-rich

A-rich
B-rich
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is normalized by half the slit thickness, L0 = D/2), inset.

the surface for small densities, B-chains are enriched in the bulk. However, for large enough densities, there is always

an enrichment of B very close to the wall, and then there are two crossing points, reflecting the fact that B-chains

are predominant both near the center and very close to the wall.

So far the focus of our discussion has been to characterize the distributions of the densities ρA(r), ρB(r) of the

two species within the sphere, for a broad range of the average total density (from ρ = 0.06 to 0.63, Figs.3-12,13c).

However, for densities ρ = 0.2 and larger the snapshot pictures of the chain conformations (e.g. Fig.7c, 13a-c) imply

that a characterization of bond orientational order in these systems is worthwhile as well. Already in our earlier work

on spherically confined single-component semiflexibe polymers we have seen that it is instructive to distinguish the

behavior in a surface shell (R− δ < r < R, with δ = 0.15R) from the interior14,15. Here we follow this procedure but

one has to distinguish also between the two components A and B.

The tensor Q in Eq.(3) has 3 eigenvalues λ1 < λ2 < λ3: in an ideal uniaxial nematic structure, the largest eigenalue,

λ3 = S, yields the standard nematic order parameter (as shown already in Figs.10b, 11b); λ1 = λ2 = −S/2, and so

the biaxiality B = λ2−λ1 is then zero. For confined single-component systems it has been found that for some choices

of stiffness a distinct biaxiality is present, and also the order parameter in the outer shell differs from its counterpart

in the interior.

We have studied a possible biaxial order in the present system, recording the standard definition of biaxiality

B = λ2 − λ1, both averaged over all bonds and separately for the A-chains and B-chains, exploring separately the

interior and the outer region of the sphere, see Fig.15. However, contrary to what one might expect, the biaxiality

of our chains induced by the curvature of the sphere surface is rather insignificant, it is never larger than just a few

percent, cf. Fig.15b, and no interesting systematic trends can be recognized. Apparently, the additional degrees of

freedom in our system (in comparison with the packaging of a single very long and very stiff chain in a sphere) allows a

more homogeneous arrangement of the bond vectors in the polymer blend. Yet, Fig.15 demonstrates that for ρ ≥ 0.2

the nematic ordering in the interior of the confined space for both A- and B-chains exceeds significantly that in the

outer shell and deviates markedly from the average one throughout the sphere. One can also see that the B-chains
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FIG. 15: (a) Variation of the nematic order parameters SA, SB with monomer density ρ, labeled as Sin
A , Sin

B , in the interior
(shaded) region of the sphere 0 ≤ r ≤ 0.6R), and as Sout

A , Sout
B in the outer one (0.6R ≤ r ≤ R). (b) Eigenvalues λ1, λ2, λ3 of

the Q-tensor vs density ρ for the A-chains in the interior (full symbols) and in the outer shell (empty symbols). The biaxiality
parameter B = λ2 − λ1 marked by full/dashed line in/outside the region 0 ≤ r ≤ 0.6R.

in the interior of the sphere are much better ordered than the A-chains for all densities exceeding 0.2. However, the

A-chains are better ordered throughout the outer sphere than in the interior. In particular, for densities exceeding

0.5 the order of the A-chains in the interior of the sphere essentially disappears.

V. CONCLUSIONS

In this paper we have presented a study of the effect of sperical confinement on lyotropic solutions containing

two types of semiflexible polymers which differ strongly in their chain stiffness, applying density functional theory

(DFT) or Molecular Dynamics (MD) simulations. As emphasized in the introduction, such problems are relevant

for applications in drug delivery where suitable polymers are encapsulated in vesicles, or in a biopolymer context

(the classical example would be ds DNA and actin confined in cells). However, our modeling is restricted to highly

simplified generic models, such as tangent hard sphere chains (studied by DFT) and simple bead-spring models

(studied by MD), for which the phase diagram and physical properties of the polymers in bulk solution have been

studied earlier in detail. For simplicity, equal chain lengths (mostly NA = NB = 32 beads) have been used, and

persistence lengths (or stiffnesses κA, κB of the bond angle potential) κA = 8, κB = 32 (for the DFT work) and

κA = 24, κB = 128 (for the MD work); note that our length unit is the bead diameter throughout. In the MD part,

also the chain length dependence was briefly considered.

Increasing the monomer density ρ in the bulk solution for such systems, one finds an isotropic solution for small ρ,

then an isotropic-nematic coexistence region, and finally for large enough ρ a nematic phase, where both constituents

exhibit nematic order, irrespective of the mole fractions of the binary mixture XA, XB (with XA +XB = 1).

Spherical confinement in spheres with repulsive walls was studied for typical radii of R = 35 and R = 70 bead

diameters, and whenever appropriate we have compared our results to corresponding data for cylinders (also with

R = 70) and confinement in slit pores (with slit width D = 128). The reason for making such comparisons is that

one expects strong effects when the radii are comparable to the contour length L of the stiff chains; in spheres with
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R� L clearly a strong distortion of the chain conformation would be inevitable, and for R� L the behavior would

only marginally differ from planar confinement of these polymers.

We have demonstrated that in all the studied cases there is a subtle interplay between the repulsive wall potential

and entropic effects due to the mixing of the two constituents and the packing of the chains near the wall. In rather

dilute systems, the average density near the wall is reduced. The stiffer species fits better to the confining surface,

except for the smallest radius studied,R = 35, in the MD case. For denser systems, also for spheres there is always an

enrichment of the stiffer chains very close to the surface, even though the stiffer chains are enriched near the sphere

center as well. The average density stays always almost constant, apart from a depletion effect near the walls when

the total monomer density in the system is small, and from wall induced layering when the density is large.

An interesting aspect that might deserve further investigation in the future is the local orientational order and

composition in the neighborhood of the topological defects identified in the nematic order at the sphere surface for

the dense systems. The precise characterization of vector fields near topological defects is a difficult problem of current

interest55, in particular also for active nematics56 under confinement.

We note that a related entropy-induced separation has also been observed recently in simulations of confined

mixtures of ring polymers57. In this work a rather small sphere, radius 20, containing both many short rings and

a few, 10, long rings with length 50 was used. It was found that very stiff rings were also entropically attracted to

the surface, compatible with what one would expect from our results. No nematic order was found in this system, as

expected.

In experiments on solutions of DNA and actin filaments in micrometer scale vesicles7 it was found that DNA was

enriched near the surface, actin being dissolved in the central region of the sphere, while for small enough actin

concentration also DNA was no longer attracted to the surface. Also DNA and alginate, which has only a persistence

length of 5.7nm58, exhibit an interesting phase behavior in such micrometer scale confinement58. We hope that the

present work will stimulate further experiments on suitable systems to study this interesting behavior.
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