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Supercoiled DNA, crumpled interphase chromosomes, and topologically constrained ring polymers
often adopt tree-like double-folded, randomly branching configurations. Here we study an elastic
lattice model for tightly double-folded ring polymers, which allows for the spontaneous creation and
deletion of side branches coupled to a diffusive mass transport, which is local both in space and on
the connectivity graph of the tree. We use Monte Carlo simulations to study systems falling into
three different universality classes: ideal double-folded rings without excluded volume interactions,
self-avoiding double-folded rings, and double-folded rings in the melt state. The observed static
properties are in good agreement with exact results, simulations, and predictions of Flory theory for
randomly branching polymers. For example, in the melt state rings adopt compact configurations
and exhibit territorial behavior. In particular, we show that the emergent dynamics is in excellent
agreement with a recent scaling theory and illustrate the qualitative differences with the familiar
reptation dynamics of linear chains.

I. INTRODUCTION

The behavior of melts of non-concatenated ring poly-
mers has caught the interest of physicists over many
years [1–12] and appears to provide a natural explanation
for the territorial chromosomal arrangement in eukary-
otic cells during interphase [13–15]. With their micro-
scopic topological state permanently quenched, the equi-
librium statistics and dynamics of non-concatenated ring
polymers is fundamentally different from the behavior of
their linear counterparts. A powerful approximation is
available through the analogy with ring polymers in an
array of fixed obstacles [1, 3, 7, 8]. In this view, crumpling
can be understood by the successive application of three
different strategies for entropy maximization: double-
folding, branching, and swelling. Firstly, and most im-
portantly, the rings adopt double-folded configurations
to minimize the thread-able surface as this reduces the
importance of the topological constraints they impose on
each other. Secondly, double-folded rings can increase
their entropy by branching. Thirdly, there is a certain
amount of swelling due to partially screened excluded
volume interactions leading to asymptotically compact
conformations characterized by the scaling exponent of
the radius of gyration, ν = 1/d for d ≤ 4 dimensions.
Double-folding, branching and swelling due to excluded
volume interactions also occur in plectonemic configura-
tions of supercoiled circular DNA [16–20]. Similarly, viral
RNA may effectively behave like branched polymers [21–
23]. From a more general perspective, the mapping
of (double-folded) ring polymers to randomly branched
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polymers or trees suggests analogies to phenomena like
gelation [24], percolation [25], and the critical behavior of
magnetic systems [26–29]. This may explain, why we are
here, as often in polymer physics [24, 30–32], predomi-
nately concerned with exponents, which characterize the
essence of the behavior of all members of a universality
class and which are independent of microscopic details
differentiating particular experimental polymers as well
as lattice and off-lattice models from each other.

Recent numerical work on the static properties of self-
avoiding trees and lattice tree melts [33–35] has shown
that the behavior of randomly branching chains un-
der different solvent conditions is in excellent qualita-
tive agreement with a suitably generalized Flory the-
ory [13, 36]. A multi-scale approach to the construction
of ring melts based on this analogy faithfully captures
many aspects of the conformational statistics of prop-
erly equilibrated systems [11, 12]. However, Monte Carlo
algorithms optimized for rapidly equilibrating the static
structure of randomly branching chains [37, 38] [Fig. 1(c)]
generate an artificial dynamics.

To generate a physically more realistic dynamics,
Monte Carlo simulations [39–41] need to obey the same
conservation laws [42] as the modeled target systems. In
the present case, this requires a scheme, where the mass
transport is local both in space and on the connectivity
graph of the tree.

Below, we present Monte Carlo simulations of a suit-
able elastic lattice polymer model, which accounts for
double-folding [4, 43], the local accumulation of contour
length on the primitive tree [4, 40, 44–46] as well as ex-
cluded volume interactions [44–46].

The manuscript is structured as follows: In Sec. II we
introduce relevant observables and the related exponents.
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FIG. 1. (a) Branched tree on a trigonal lattice, and (b) a
corresponding (tightly wrapped) double-folded ring polymer.
Small loops represent bonds of zero length, where adjacent
monomers along the ring occupy identical lattice sites. (c)
Example of a nonlocal “amoeba” Monte Carlo move [37, 38]
altering the tree structure. The dashed brown line shows the
location of a branch prior to the MC move, and the solid
brown line shows an arbitrary location where the branch could
be reattached to the tree. (d) Examples of local MC moves
for the present model of double-folded ring polymers. Dots
represent monomers, and black lines represent an allowed con-
formation of the double-folded chain. The allowed (forbidden)
moves are indicated by the green (red) color. R: the Repton
move. H: the Hairpin move. F: Forbidden move that does not
preserve the double-folded structure.

Also, we briefly summarize the theoretical background.
The model and the simulations are described in Sec. III.
In Sec. IV we present and discuss our results. After some
first qualitative insights in Sec.IV A, we validate that the
static properties of our model are in good agreement with
theoretical and numerical work on trees (Sec. IV B). The
next step, Sec. IV C, focuses on comparison of the single
ring dynamics with the predictions of a recent scaling
theory [3, 8]. Furthermore, we compare the dynamics
of double-folded rings to the motion of linear chains in
the tube model [47? ](Sec. IV D). Finally, we briefly
conclude in Sec. V.

II. THEORETICAL BACKGROUND

A double-folded ring polymer can be mapped on a ran-
domly branched primitive tree [1, 3, 4, 7, 8, 11, 48, 49].
In analogy to protein or RNA structures, such confor-
mations can be discussed in terms of a primary, a sec-
ondary, and a tertiary structure [50]. The primary struc-
ture is simply defined through the connectivity of the
ring monomers. The secondary structure arises from the
double folding and can be specified through the map-

ping of the ring onto a graph with the connectivity of
the primitive tree. The tertiary structure describes the
embedding of the rings and trees into (three dimensional)
space. We define corresponding observables in Secs. II A
and II B. Secs. II C and II D briefly summarize scaling
arguments for the effect of excluded volume interactions
and the dynamics of randomly branched double-folded
ring polymers.

A. Secondary structure

Two standard measures of the tree connectivity are the
mean contour distance, L, between tree nodes, and the
average weight of branches, Nbr, separated from the tree
by severing a randomly chosen link. Both depend on the
weight, N , of the rings through power law relations

〈L(N)〉 ∼ Nρ, (1)

〈Nbr(N)〉 ∼ N ε, (2)

where ε = ρ is expected to hold in general [38]. The
(tight) wrapping of a tree by a ring polymer introduces
an additional metric on the embedded graph [50]. The
central quantity is the length of the shortest path on the
tree or tree contour distance, L, between two monomers,
i and j along the ring. For short ring contour distances,
n = |i − j|, one simply expects 〈L(n)〉 ∼ n. However,
beyond the typical distance between branch points, the
ring does not follow a linear path on the tree, but wraps
side branches. For n� N , Eq. (1) suggests 〈L(n)〉 ∼ nρ.
Due to the ring closure 〈L(n)〉 ≡ 〈L(N − n)〉 reaches
its maximum for n = N/2 before reducing to zero at the
total ring size, 〈L(N)〉 ≡ 0. The simplest functional form
accounting for this constraint is [50]

〈L(n)〉N ∼
(
n
(

1− n

N

))ρ
. (3)

B. Tertiary structure

The simplest measures of the tertiary structure are the
overall tree gyration radii,

〈R2
g(N)〉 ∼ N2ν , (4)

as a function of the chain length. For a more detailed
understanding, it is useful to consider the mean-square
spatial distance between nodes,

〈R2(L)〉 ∼ L2νpath , (5)

as a function of their contour distance on the tree, where
ν = ρ νpath. Combining Eqs. (5) and (3) suggests [50]

〈R2(n)〉N ∼
(
n
(

1− n

N

))2ν

(6)

for the mean-square spatial distance of monomers as a
function of their distance, n = |i− j|, along the ring.
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C. Flory theory

Exact values for the exponents are known only for a
very small number of cases. For ideal non-interacting
trees, the exponents ρideal = εideal = νidealpath = 1/2 and

νideal = 1/4 [51, 52]. For interacting trees, the only
known exact result [26] is the value ν = 1/2 for self-
avoiding trees in d = 3.

Flory theories [7, 13, 36, 53, 54] of interacting tree sys-
tems are formulated as a balance of an entropic elastic
term and an interaction energy [55]

F = Fel(N,R) + Finter(N,R) , (7)

In the present case, the elastic free energy takes the
form [13]

Fel
kBT

∼ R2

lKL
+

L2

Nl2K
, (8)

The first term of Eq. (8) is the usual elastic energy contri-
bution for stretching a polymer of linear contour length
L at its ends [13]. The second term penalizes deviations
from the ideal branching statistics, which lead to longer
paths and hence spatially more extended trees. Optimiz-
ing L for annealed trees for a given asymptotic, R ∼ Nν ,
yields [13, 36]

ρ =
1 + 2ν

3
, (9)

νpath =
3ν

1 + 2ν
, (10)

independently of the type of volume interactions causing
the swelling in the first place. Plausibly, a fully extended
system, ν = 1, is predicted not to branch, ρ = 1, and to
have a fully stretched stem, νpath = ν = 1. For the radius
of ideal randomly branched polymers, ν = 1/4, one re-
covers ρ = 1/2 and Gaussian path statistics, νpath = 1/2.

Reference [36] reviews the predictions of the Flory the-
ory for randomly branching polymers for a a wide range
of conditions characterized by different expressions for
the interaction energy in Eq. (7). For self-avoiding trees,
Finter(N,R)

kBT
∼ v2

N2

Rd
represents the two-body repulsion

between segments, which dominates in good solvent. In
this case, Flory theory predicts [13]

ν =
7

3d+ 4
1 ≤ d ≤ 8 , (11)

in qualitatively excellent and almost quantitative agree-
ment with the exact results [33]. In dense melts, all terms
of the virial expansion of the partially screened excluded
volume interactions become relevant and the trees are
expected to be compact [36]:

ν =
1

d
1 ≤ d ≤ 4 . (12)

While Flory theory describes the average behavior of
the tree observables mentioned above, we note for com-
pleteness, that the corresponding non-Gaussian distribu-
tion functions are typically of the Redner-des Cloizeaux
(RdC) form of a power law multiplied with a stretched
exponential. Most of the additional exponents character-
izing the tails of the distributions can be related to each
other and the standard tree exponents [35, 50].

D. Dynamics

In the following we summarize the arguments for the
dynamics of randomly branched double-folded ring poly-
mers from Refs. [3, 4, 8]. Consider the division of a tree
into its trunk (the longest path on the tree) and the
branches hanging off this trunk. The trunk has a length
of L ∼ aNρ, where a is the lattice constant and the num-
ber of branches is proportional to L. The slowest relax-
ation process is the transport of mass along the trunk,
while the intra-branch dynamics is irrelevant and may
be neglected [3, 4]. The elementary step of the dynamics
is the repton-like exchange of mass between neighboring
branches along the trunk [56]. Each elementary event
changes the average projected position of the monomers
along the trunk by an amount δsCM ∼ a/N . The number
of such events by an elementary unit of time, τ0, is pro-
portional to the number of branches. As a consequence,
〈δs2

CM (τ0)〉 ∼ (a/N)2Nρ, corresponding to a diffusion
constant for the curvilinear motion along the trunk of
D||(N) ∼ 〈δs2

CM (τ0)〉/τ0 ∼ (a2/τ0)Nρ−2. To completely
relax the internal tree structure, the tree CM has to dif-
fuse over the entire trunk length. As a consequence,

τmax(N) ∼ (aNρ)
2

(a2/τ0)Nρ−2
∼ τ0Nρ+2 , (13)

or, using Eq. (9), τmax(N) ∼ τ0N
(7+2ν)/3. As this

corresponds to a mean-square spatial displacement of
〈δR2

CM (τmax)〉 ∼ 〈R2
g(N)〉 ∼ a2N2ν , the long-time CM

and monomer diffusion are given by

g1,3

(
t� τmax(N)

)
∼ DCM (N) t (14)

with,

DCM (N) ∼ a2

τ0
N2ν−ρ−2 (15)

or DCM (N) ∼ a2

τ0
N (4ν−7)/3.

Furthermore, one can invert Eq. (13) to obtain the
mass,

n(t) ∼
(
t

τ0

) 1
ρ+2

, (16)

of rings (or ring sections) which are equilibrated after a
given time, τ0 < t < τmax. During a corresponding time
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interval, monomers move over a spatial distance of the
order of a2n(t)2ν ,

g1 (τ0 < t < τmax) ∼ a2

(
t

τ0

) 2ν
ρ+2

, (17)

which is independent of the total ring length. Similarly,
one can estimate the CM motion by noting that each
of the n(t)/N equilibrated ring sections independently
moves over a distance of the order of a2n(t)2ν . As a
consequence,

g3 (τ0 < t < τmax) ∼ g1(t)
n(t)

N
∼ 1

N
a2

(
t

τ0

) 2ν+1
ρ+2

.

(18)

III. MODEL AND METHOD

Monte Carlo simulations [39–41] can be expected to
generate physically realistic results if they obey the same
conservation laws [42] as the modeled target systems.
As an illustration in the present context, consider first
an algorithm on the tree level, which removes or adds
segments with a probability governed by a chemical po-
tential. While this allows control of the average tree
weight, such an algorithm is clearly inappropriate to
simulate (double-folded) ring polymers of fixed weight.
This difficulty is partially overcome by the amoeba algo-
rithm of Seitz and Klein [37], which attempts to move
one-functional tree “leaves” to random locations on the
tree [Fig. 1(c)]. Since this operation conserves the tree
weight, the algorithm can be meaningfully employed to
study static aspects of the ring polymer and the chromo-
some folding problem [11, 14, 34, 49]. The same holds
true for a variant of the same idea by Janse van Rens-
burg and Madras [38], which achieves a much higher ef-
ficiency in dilute systems by cutting and relocating en-
tire branches. Similarly, one could envision a (proba-
bly highly efficient) variant of the connectivity altering
double-bridging scheme [57] for tree melts, where neigh-
boring trees swap entire branches of equal weight without
moving them in space. Such moves can be expected to
have a much higher acceptance probability in dense sys-
tems, since they preserve the uniform monomer density.
However, none of these algorithms can be used to sim-
ulate the configurational dynamics of double-folded ring
polymers. Instead we require a scheme, where the mass
transport is local in space and on the connectivity graph
of the tree.

In the following, we first review the elastic lattice poly-
mer Model [40, 43–46], which is a simple and efficient
Monte Carlo algorithm for studying the dynamics of en-
tangled linear chains (Sec. III A). In Sec. III B we de-
scribe the generalization to randomly branching double-
folded ring polymers [4]. Secs. III C and III D provide
more details on the systems studied and on how we ini-
tialized and equilibrated our runs.

A. Elastic Lattice Polymer Models

The dynamics of topologically constrained linear poly-
mers can be efficiently studied in Monte Carlo (MC)
simulations of the coarse-grained elastic lattice polymer
model [40, 43–46].

In this model the continuum dynamics of a polymer
melt is replaced by a lattice version. The mapping is
achieved by dividing the space into cells where the cen-
ters of these cells form a regular lattice. By moving all
the monomers residing in a cell to the center, the poly-
mer conformation and its dynamics are discretized. The
maximum number of monomers per site is a free param-
eter of the model that depends on the coarse graining,
e.g., it can be calculated by considering the volume of
the monomers and the cell volume. The projection of
real space onto a lattice will also limit the dynamics to
nearest neighbor hops of the monomers. As a result of the
coarse graining, the only allowed bond lengths between
neighboring monomers can be 0 or 1, 0 for monomers
that are in the same cell, and 1 for monomers residing
in neighboring cells. This also means that any MC move
should only be accepted if it preserves this constraint.

In order to guarantee the constraints of excluded vol-
ume and non-crossing of strands, without the loss of gen-
erality, a minor restraint is introduced to the occupancy
of the cells [4]. Multiple occupancy on a lattice site is
allowed only for monomers that are directly connected
to each other by monomers on the same site, i.e., they
form a polymer strand of variable length (a subchain
of chemically bonded monomers), where the length of
such a strand is limited by the cell size. This also guar-
antees that monomers belonging to different polymers
can never occupy the same site. With this constraint
the implementation of excluded volume interaction and
non-crossability becomes operationally trivial while fully
maintaining a repton [56]-like dynamics along the primi-
tive chain [47].

When the elastic lattice polymer model is used to sim-
ulate ring polymers [46, 49], the algorithm conserves the
microscopic topological state of the starting configura-
tion. In particular, melts of long, non-concatenated rings
exhibit compact and characteristically crumpled confor-
mations.

B. Generalization to randomly branching
double-folded ring polymers

When the algorithm is generalized to double-folded
polymers [4], lattice bonds represent tree segments which
can only be occupied by two oppositely oriented bonds
between ring monomers [Fig. 1(b)]. Tree nodes are lo-
cated on lattice sites. Their functionality depends on
the number of emerging tree segments, f = 1 (a leaf or
branch tip), f = 2 (linear chain section), and f ≥ 3
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(branch point) . As in the elastic lattice polymer model
and in contrast to standard tree models [33, 37, 38]
(which can be wrapped a posteriori with ring poly-
mers [50]), the degrees of freedom are the positions of
the ring monomers. The local redistribution of stored
length is responsible for the dynamics. In contrast to
the elastic lattice polymer model, the connectivity graph
for the connected lattice sites is a dynamically branch-
ing object. In particular, new side branches are cre-
ated, when a monomer from inside an accumulation of
stored length moves to a neighboring lattice side. Con-
versely, side branches vanish, when the last monomer
reintegrates into the main branch and retracts the two
remaining extended ring bonds representing the tree seg-
ment [Fig. 1(d)]. Specifically, we impose the following
rules:

Lattice: Ring monomers are placed on the sites of a pe-
riodic fcc lattice. We choose the fcc lattice because
it is isotropic and it has the maximum number of
nearest neighbors.

Connectivity: Bonded monomers can occupy either the
same site (a repton or loop of stored length) or
nearest neighbor sites (an extended bond).

Order: Ring monomers remain ordered even if several
connected monomers occupy the same site [56].

Double-folding: Each extended bond of the polymer is
paired with exactly one extended bond pointing in
the opposite direction [Fig. 1(b)].

Ring monomers and tree nodes: The number of
ring monomers belonging to the same tree node is
equal to f + α, where f is the functionality of the
lattice tree node and α is the number of loops of
stored length on that node.

Excluded volume interaction: Different tree nodes
are not allowed to occupy the same lattice site.

Dynamics: We employ a simple Metropolis scheme [58]
which consists of trying to move a randomly se-
lected monomer to a randomly chosen site out of
the twelve possible nearest neighbors. The move is
only accepted if the new conformation respects the
conformational rules above.

A two-dimensional (hexagonal) representation of a
double-folded polymer chain conformation produced us-
ing the model is shown in Fig. 1(d). The green (red)
color indicates the allowed (forbidden) moves according
to the conformational constraints. All allowed hopping
moves for tightly folded rings can be classified in terms
of two different move types:

The Repton move: A unit of stored length hops one
unit along the tree without changing its structure
[indicated with the green letter (R) in Fig. 1(d)].

The Hairpin move: If there is at least one connected
loop of stored length (in a site) on each side of
a monomer, both loops can unfold and result in
an extended bond (creation). Naturally, the in-
verse move removes an extended bond pair and thus
shortens or removes a side branch from the tree
structure (annihilation). In fact, branched struc-
tures are introduced by the formation of hairpins
[green letter (H) in Fig. 1(d)].

An example of a rejected move is also shown in
Fig. 1(d). The red move (F) will lead to a forbidden con-
formation because it does not preserve the double-folded
structure. For an impression of the dynamics of the ap-
pearance and disappearance of branches due to Hairpin
moves we refer the reader to the opening sequences of the
supplementary video S4 [59].

C. Studied Systems

The simulations were carried out for chain lengths
varying between 64 to 1000 for three systems: ideal
double-folded rings, self-avoiding double-folded rings,
and rings in the melt state. The self-avoiding case and the
rings in the melt state have excluded volume interactions.
For the ideal case, there is no restriction on the number
of tree nodes on any site of the lattice (no excluded vol-
ume interaction). In the melt state a high lattice den-
sity, ρ = 0.95, was used. Since polymer chains diffuse
very slowly in compact systems, we have performed long
simulation runs to have a large number of independent
samples. For the self-avoiding double-folded ring simu-
lations the size of the box was set large enough to avoid
self-interaction of the chain as a result of the periodic
boundary condition. A summary of the simulation pa-
rameters and data is given in Table I.

D. Initialization and Equilibration

Initial configurations are produced through a growth
process. First, double-folded rings are seeded as trimers
which are located on a common lattice site. Then the
process comprises two operations: (i) The diffusion of
the monomers, in agreement with the previously stated
dynamic rules. If branching is allowed during the growth
process, highly branched compact chain configurations
appear on the lattice. However, if branching is not al-
lowed during growth, the Hairpin move is restricted to
the chain ends. As a result, a double-folded ring con-
figuration will be built which resembles a self-avoiding
random walk in space. (ii) The occasional addition of
new monomers. A new monomer is introduced to a chain
by selecting a random monomer on the chain and insert-
ing the new one between the selected monomer and the
next neighbor along the chain, on the same site. In other



6

TABLE I. System parameters for the double-folded ideal rings (Ideal), double-folded self-avoiding rings (S.A.T), and double-
folded rings in the melt state (Melt). N : Number of monomers per chain; np: Total number of chains per simulated system;

Lbox: Size of the simulation box. Note: An fcc lattice of size L contains L3

2
sites; Site occupation number: The average number

of monomers in an occupied lattice site; ρ: Lattice density which is the ratio of the number of occupied sites to the total
number of sites; Nsample: Number of independent MC samples; Ttot: simulation run time in Monte Carlo sweep [MCs]; CPU
time: The CPU wall clock time for Nsample samples on a single core; Nind: The number of independent configurations (see
Sec. IV C); τmax: Configuration relaxation time measured after reaching equilibrium calculated using, τmax = Ttot

2Nind
. Radius

of gyration〈R2
g〉, MSID 〈R2(N/2)〉, and average value of contour distance 〈LN 〉 are defined in the text. All times are measured

in Monte Carlo time sweep [MCs], all distances are in units of lattice constants, and all measurements are performed after
reaching equilibrium.

N np Lbox Site occupa- ρ Nsample Ttot CPU time Nind τmax 〈R2
g〉 〈R2(N/2)〉 〈L(N)〉

tion [×102] [×104] [days] [×104] [×104]

Ideal

64 1 8 2.7(7) 9.1(1)e-2 16 103 ∼ 0.4 ∼ 102 ∼ 0.8 2.13± 0.01 5.74± 0.13 4.38± 0.03

216 1 12 3.4(7) 7.2(6)e-2 16 104 ∼ 5 ∼ 38 ∼ 21 4.27± 0.03 11.13± 0.26 8.51± 0.06

512 1 16 3.9(8) 6.3(4)e-2 16 104 ∼ 16.5 ∼ 3.6 ∼ 2.2× 102 7.13± 0.06 18.56± 0.44 13.59± 0.1

1000 1 20 4.3(2) 5.8(6)e-2 6.4 105 ∼ 74 ∼ 2.4 ∼ 1.3× 103 10.52± 0.14 27.37± 1.02 19.18± 0.23

S.A.T

64 1 20 2.3(6) 6.7(8)e-3 16 103 ∼ 0.2 ∼ 81 ∼ 0.9 3.53± 0.02 10.25± 0.21 4.84± 0.04

216 1 32 2.3(5) 5.6(1)e-3 16 104 ∼ 4.5 ∼ 27 ∼ 29 11.76± 0.08 34.61± 0.72 10.96± 0.09

512 1 80 2.3(4) 8.5(5)e-4 16 104 ∼ 17.5 ∼ 2.6 ∼ 3× 102 28.65± 0.20 85.01± 1.78 19.77± 0.17

1000 1 100 2.3(5) 8.5(2)e-4 6.4 105 ∼ 30.7 ∼ 1.8 ∼ 1.7× 103 55.95± 0.62 166.42± 5.55 30.64± 0.35

Melt

64 12 8 3.1(5) 9.5(3)e-1 16 103 ∼ 4.5 ∼ 2× 103 ∼ 0.4 2.08± 0.01 5.82± 0.03 3.63± 0.04

216 12 12 3.1(8) 9.4(4)e-1 8 104 ∼ 76 ∼ 3.4× 102 ∼ 14.1 5.72± 0.01 15.99± 0.13 8.03± 0.06

512 12 16 3.1(8) 9.4(4)e-1 6.4 104 ∼ 165 ∼ 22 ∼ 1.6× 102 11.33± 0.03 31.33± 0.30 13.69± 0.18

1000 12 20 3.1(8) 9.4(3)e-1 2.56 105 ∼ 749 ∼ 15 ∼ 9.7× 102 18.89± 0.14 52.04± 1.15 20.46± 0.42

words, we add a loop of stored length. The insertion of
a loop is attempted with low probability, 0.01, to assure
a good balance between growth and equilibration. The
addition of new monomers is halted once all chains have
the desired length. This process results in unknotted and
non-concatenated rings.

The radius of gyration is the structural property that
has been investigated to monitor the state of equilibra-
tion of the polymer systems. The mean-square gyration
radius

〈
R2
g

〉
is the average squared distance of any point

in the ring polymer chain from its center of mass. The
systems have reached equilibrium when this quantity no
longer changes. All reported quantities are taken from
the simulation regime where the polymers are fully equi-
librated.

Figure 2 shows the radius of gyration vs MC time
(one MC sweep is equivalent to one MC trial for every
monomer in the system) for different rings. In order to
validate the equilibrium values of radius of gyration, we

ran the simulations from two totally different initial con-
ditions. The left column in Fig. 2 shows equilibration of
compact initial configurations, which swell as the simula-
tion progresses with time. The right column shows equili-
bration of more open, initially unbranched double-folded
rings, where average ring size decreases as branches ap-
pear. The horizontal lines represent the average values
after the chains have reached equilibrium (values are re-
ported in Table I). In particular, Fig. 2 confirms that
the simulation results do not depend on the initial con-
formations of the ring polymer chains.

IV. RESULTS AND DISCUSSIONS

After some first qualitative insights in Sec.IV A, we
present a quantitative analysis of the conformational
statistics and dynamics of our randomly branching,
double-folded ring polymers and compare our observa-
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FIG. 2. Equilibration monitored using the mean-square ra-
dius of gyration as a function of time. Comparison between
initially branched, compact double-folded chains (left col-
umn), and initially double-folded chains with no branches
(right column) for three different systems: (a) ideal double-
folded rings, (b) self-avoiding double-folded rings, and (c)
double-folded rings in the melt state. The horizontal lines
represent the average values after the chains have reached
equilibrium. For better visualization, the time direction is
reversed in the right column. In all three systems, at large
times both initial states (from left and right) reach the same
equilibrium values (reported in Table I).

tions to available exact results and predictions of the scal-
ing theories presented in Secs. IV B and IV C. We close
by comparing the dynamics of double-folded rings to the
motion of linear chains in the tube model [47](Sec. IV D).

A. Qualitative insights

Figure 3 illustrates configurations of our lattice model
for double-folded ring polymers as they emerge from our
simulations after the systems have reached equilibrium.
Ring monomers are shown as small spheres which are
displaced from their actual position by a small random
offset. This representation reveals (i) multiple occupancy
of lattice sites and (ii) double-folding.

Specifically, we show a sample configuration of (a) an
ideal double-folded ring, (b) a self-avoiding double-folded
ring, and (c) a double-folded ring in the melt state with
216 monomers as well as (d) a view of a corresponding
melt configuration (unfolded from the simulation box) for
12 double-folded rings. The gray tubes show the longest
paths along the trees. Three-dimensional (3D) views of

(a) (c)

(d )

(b)

FIG. 3. Equilibrated simulation snapshots of (randomly se-
lected) configurations of the double-folded rings with N =
216. Successive segments are represented with a HSV cyclic
color map. (a) a single double-folded ideal ring; (b) a sin-
gle double-folded self-avoiding ring; (c) a single double-folded
ring in the melt state. The gray tubes show the longest paths
of the trees. All the trees have the the same bond scale.
The size of the ring in the melt is larger than the ideal tree
and smaller than the self-avoiding tree. (d) Sample configu-
ration of the melt with 12 double-folded rings. Each ring is
represented with a different color. The snapshots were pro-
duced using Blender 2.8 [60]. 3D views of these configurations
are available in supplementary materials, videos S1, S2, and
S3 [59].

these configurations are available in supplementary mate-
rials, videos S1, S2, and S3 [59]. For the ideal case there
is no restriction on the number of monomers on each
site. Rings in the melt state and, in particular, isolated
self-avoiding rings appear swollen relative to the ideal
case. At least qualitatively, this is the expected [36] con-
sequence of excluded volume interactions and the partial
screening in melts. In the self-avoiding case, the struc-
ture is quite anisotropic and the longest path is aligned
along the longest axis. In the melt case, the structure is
more compact and spherically symmetric, and the mass
is almost equally distributed between the branches.

A sequence of snapshots of the time evolution of a
(randomly selected) self-avoiding double-folded ring with
N = 216 monomers at logarithmic time intervals (indi-
cated on the top left) is available in Supplementary mate-
rials, video S4 [59]. The gray tube shows the longest path
along the tree at T = 0, where T is set to zero after reach-
ing equilibrium. As a result of the local mass transport
(both in space and along the tree), three distinct dynam-
ical regimes can be observed. (i) At short time scales
(T . 102[MCs]), at the beginning of the video, the relax-
ation is dominated by the small intra-branch dynamics
and the spontaneous formation and deletion of short side
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FIG. 4. Conformational statistics of ideal double-folded rings
for four different chain lengths (described in the legend). Data
are shown for ring contour distances up to N/2. Column
(a) are the average values of the tree contour distances be-
tween all possible pairs of monomers, 〈L(n)〉 ∼ nρ. Column
(b) plots the squared internal distances as a function of n,
〈R(n)2〉 ∼ n2ν . The exact exponents for the ideal case are
ρ = 1/2 and ν = 1/4. In panels (a2) and (b2) data are plot-
ted as a function of neff , which effectively reduces finite size
effects. The straight dashed lines correspond to the expec-
tation scaling exponents. (a2) and (b2) insets show the local
slopes of the data in panels (a2) and (b2), respectively. These
effective exponents appear to converge to the theoretical ex-
ponents (dashed horizontal lines). Error bars are the same
size or smaller than the symbols.

branches in the tree structure. (ii) At intermediate time
scales, longer side-branches appear and disappear but the
core trunk remains stable. (iii) Near the end of the video
(T & 106[MCs]), the entire tree diffuses in space.

Finally, the supplementary video S5 [59] follows the
motion of the same ring over even longer times to il-
lustrate that its internal structure completely relaxes on
time scales over which the ring diffuses over a distance
corresponding to its own size.

B. Conformational statistics

To analyze the secondary and tertiary structure of our
double-folded ring polymers as discussed in Secs. II A and
II B, we have calculated the tree contour distance L(i, j)
and square spatial distance R2(i, j) between all pairs of
ring monomers i and j.

The tree contour distance L(i, j) is defined as the
length of the shortest path on the tree connecting i
and j. L(i, j) only depends on the tree connectivity
and is completely independent of the spatial embedding
of the double-folded ring polymer (details in the Ap-
pendix). Conversely, the calculation of the spatial dis-
tance, R2(i, j), is straightforward given the monomer
positions and completely independent of the secondary
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FIG. 5. Conformational statistics of self-avoiding double-
folded rings. Column (a) plots the average value of the tree
contour distances between all possible pairs of monomers.
Flory theory predicts 〈L(n)〉 ∼ n2/3. Column (b) plots the
squared internal distance as a function of n. The exact scal-
ing exponent is 〈R(n)2〉 ∼ n1. Notation and symbols are as
in Fig. 4.
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FIG. 6. Conformational statistics of double-folded annealed
trees in the melt state. Column (a) plots the average value
of the tree contour distances between all possible pairs of
monomers. Flory theory predicts, 〈L(n)〉 ∼ n5/9. Column (b)
plots the squared internal distance as a function of n. Flory
theory predicts, 〈R(n)2〉 ∼ n2/3. Notations and symbols are
as in Fig. 4.

structure.

Nevertheless, L(i, j) and R2(i, j) are closely related,
since the configurational statistics of the shortest path
between two monomers on the tree is expected to follow
a typical power-law relation, 〈R2(L)〉 ∼ L2νpath , for lin-
ear chains [Eq. (5)]. For ideal chains, νpath = 1/2 so that
〈R2(Lij)〉 ∼ Lij . Excluded volume interactions cause a
characteristic swelling with νpath > 1/2. To allow for a
direct comparison, the various panels in Figs. 4-7 with
our results for the secondary and tertiary structure al-
ways show corresponding data for these two quantities
side by side.



9

102 103

5

10

20

<
L

(N
)
>

Id
ea

l
ri

n
gs

N 1/2

0.53± 0.01

< L(N) >

102 103

5

10

<
R

2 g
(N

)
> N 1/2

0.58± 0.01

< R2
g(N) >

102 103

10

40

<
L

(N
)
>

S
el

f-
av

oi
d

in
g

ri
n

gs

N 2/3

0.67± 0.01

< L(N) >

102 103

10

40

<
R

2 g
(N

)
> N 1

1.00± 0.01

< R2
g(N) >

102 103

N

10

30

<
L

(N
)
>

R
in

gs
in

th
e

m
el

t
st

at
e

N 5/9

0.62± 0.02

< L(N) >

102 103

N

5

10

25

<
R

2 g
(N

)
> N 2/3

0.80± 0.01

< R2
g(N) >

0.5

0.6

∆
lo
g
<
R

2 g
(N

)>

∆
lo
g
N

1.0

1.1

∆
lo
g
<
R

2 g
(N

)>

∆
lo
g
N

0.6

0.8
∆
lo
g
<
R

2 g
(N

)>

∆
lo
g
N

102

0.5

0.6

∆
lo
g
<
L

(N
)>

∆
lo
g
N

0.6

0.7

∆
lo
g
<
L

(N
)>

∆
lo
g
N

0.5

0.7

∆
lo
g
<
L

(N
)>

∆
lo
g
N

FIG. 7. Conformational statistics of double-folded rings. Left
column: average tree contour distance 〈L〉 as a function of
the chain length N . Straight lines correspond to the large-N
behavior, 〈L(N)〉 ∼ Nρ. Right column: ring mean-square gy-
ration radius

〈
R2
g

〉
as a function of the chain length. Straight

lines correspond to the large-N behavior, 〈R(N)2〉 ∼ N2ν .
Insets show the local slopes of the data. These effective expo-
nents appear to converge to the theoretical exponents (dashed
horizontal lines). Error bars are the same size or smaller than
the symbols.

Results for averaging L(n) and R2(n) for the three sys-
tems under investigation over monomer pairs with iden-
tical ring contour distance, n = |i − j|, are shown in
panels (a1) and (b1) of Figs. 4-6. As expected, the re-
sults are ring size independent at small scales and reach
a plateau on approaching the maximal ring contour dis-
tance of n = N/2.

Panels (a2) and (b2) in Figs. 4-6 show the same data
plotted as a function of an effective ring contour dis-
tance, neff = n(1 − n/N), introduced in sec. II B. This
representation reduces the finite ring size effects suffi-
ciently for a meaningful comparison with the expected
power law relations 〈L(n)〉 ∼ nρ and 〈R2(n)〉 ∼ n2ν .
The dashed lines have slopes corresponding to the exact
value or the predictions of Flory theory for these expo-
nents in the asymptotic limit of infinite ring size. In
addition, we have extracted effective exponents by calcu-
lating the derivatives using the logarithm of neighboring

data points, (∆log〈L(neff )〉
∆logneff

) and (∆log〈R2(neff )〉
∆logneff

). Our re-

sults are shown in the inset of panels (a2) and (b2) of
Figs. 4-6. The horizontal lines show again the expected
exponents in the asymptotic limit of infinite ring size.

As a complement, we have analyzed the average tree
contour distance 〈L(N)〉 and the mean-square gyra-
tion radius,

〈
R2
g(N)

〉
, as a function of the chain length

(Fig. 7), where the averages of the tree contour and spa-
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FIG. 8. MSDs for ideal double-folded rings. Panel (a) shows
g1, g2, and g3 for the ring with 216 monomers. The horizontal
line corresponds to 2×〈R2

g〉. Panels (b), (c), and (d) plot g2(t),
g1(t), andN×g3(t) vs time in the unit of MCs, respectively. In
panel (b) the horizontal lines correspond to 2×〈R2

g〉. In panels
(c) and (d) the dashed lines have slopes corresponding to the

prediction of the theory, g1(t) ∼ t
2ν

(ρ+2) and g3(t) ∼ t
2ν+1
(ρ+2) .

(c, d) Insets show the local slopes of the data. The effective
exponents appear to converge to the theoretical exponents
(dashed horizontal lines). Panels (e) and (f) show rescaled
g1(t) and g3(t) with the mean-square gyration radii vs the
rescaled time with the diffusion relaxation time.

tial distances is calculated over all monomer pairs irre-
spective of their distance along the ring. A summary of
these values for the studied systems is provided in Table
I. Again, we have calculated the local exponents based
on the slopes of the data points. The results are shown
in the inset of panels of Fig 7.

Like in comparable simulations of lattice trees [33, 34],
none of our systems has truly reached the asymptotic
regime. Nevertheless, the observed values and trends
(which represent crossovers between numerous regimes
for linear or branched structures without or with full or
partially screened excluded volume interactions [36]) are
in good agreement with the theoretical expectations.

C. Dynamics

Having obtained a brief characterization of confor-
mational and structural properties of the double-folded
rings, we can now turn our attention to their dynamics.

Polymer dynamics is usually analyzed by monitor-
ing the mean-square displacements (MSD) of individual
monomers and of the chain centers of mass (CM) with
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FIG. 9. MSDs for self-avoiding double-folded rings. Notation
and symbols are as in Fig. 8.
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FIG. 10. MSDs for double-folded rings in the melt state.
Notation and symbols are as in Fig. 8.

time (as mentioned in Sec. II D). Figures 8-10 show our
results for

• The total monomer mean-square displacement,

g1(t) = 〈|ri(t)− ri(0)|2〉

• The monomer mean-square displacement relative
to the chain’s center of mass,

g2(t) = 〈|ri(t)− ri(0)− rCM (t) + rCM (0)|2〉

• The mean-square displacement of the chain center
of mass,

g3(t) = 〈|rCM (t)− rCM (0)|2〉,

for single ideal and self-avoiding double-folded ring poly-
mers as well as for double-folded ring polymers in the
melt state.

Panels (a) in Figs. 8-10 shows a comparison of g1(t),
g2(t), and g3(t) for one chain length (N = 216). In all
three systems we see that g1(t) is dominated by g2(t)
at early MC times and by g3(t) at large times. Up to
τ0 ≈ 10 MC sweeps (MCs) the monomer and CM motion
follow a trivial diffusive dynamics. The characteristic
dynamics of double-folded rings discussed in Sec. II D sets
in beyond τ0 and extends up to a maximal time τmax,
where the internal monomer motion reaches a plateau,
g2(t) = 2〈R2

g〉, while g3(t) crosses over to free diffusion.

Panels (b) and (c) in Figs. 8-10 show data for the
monomer motion g2(t) and g1(t) for different chain
lengths, N . In all cases, the monomer MSD in the early
and the tree regime are independent of N before crossing
over to a ring size dependent free diffusion regime. In
particular, the data in the tree regime follow an effective

power law close to the prediction t
2ν

(ρ+2) [Eq. (17)], indi-
cated by dashed lines. The crossovers between the three
regimes are nicely revealed by the effective exponents,

(∆log(g1(t))
∆(t) ), shown in the insets of panels (c). While

there are finite ring size effects, they essentially concern
the width of the tree regime. The agreement with the
expected exponents in the tree regime is excellent.

Panels (d) in Figs. 8-10 show the rescaled dynamics of
the center of mass g3(t), multiplied by the ring size N , to
compensate for the expected ring size dependence in the
early and in the tree regime, Eq. (18). In both regimes
data for different rings sizes collapse indeed on a universal
scaling curve. In the tree regime, the data follow an ef-

fective power law close to the prediction t
2ν+1
(ρ+2) [Eq. (18)],

indicated by dashed lines. Again the various regimes can
be clearly identified when considering the effective ex-

ponents, (∆log(g3(t))
∆(t) ), shown in the insets of panels (c).

Interestingly, the effective exponent for the dynamics of
self-avoiding double-folded rings initially drops close to
the value expected in the ideal case before increasing to
a value in good agreement with the theoretical predic-
tion.

Panels (e) and (f) in Figs. 8-10 explore the crossover
of the monomer and the CM MSD from the tree to the
free diffusion regime. For this purpose, we rescale g1(t)
and g3(t) with the mean-square gyration radii,

〈
R2
g(N)

〉
,

of the corresponding rings. To rescale the time axis, we
empirically defined a “diffusion relaxation time” as the
time when the mean square displacement of the center of
mass has moved a distance equal to the radius of gyra-
tion, g3(τmax) = 〈R2

g〉. The operation leads to a perfect
data collapse for all but the earliest times before the rings
enter the tree regime.



11

102 103

104

105

106

107

108

τ m
a
x

[M
C
s]

Id
ea

l
d

ou
b

le
fo

ld
ed

ri
n

gs N 2.5

g3(τmax) =< R2
g >

2.72± 0.01

τmax = Ttot
2Nind

2.67± 0.02

102 103

104

105

106

107

108

τ m
a
x

[M
C
s]

S
el

f-
av

oi
d

in
g

d
ou

b
le

fo
ld

ed
ri

n
gs

N 2.66

2.78± 0.01

2.72± 0.02

102 103

N

104

105

106

107

108

τ m
a
x

[M
C
s]

D
ou

b
le

fo
ld

ed
ri

n
gs

in
th

e
m

el
t

st
at

e

N 2.55

2.79± 0.02

2.78± 0.02

2.5

2.8

∆
lo
g
τ

∆
lo
g
N

2.5

2.8

∆
lo
g
τ

∆
lo
g
N

2.5

2.8

∆
lo
g
τ

∆
lo
g
N

FIG. 11. Relaxation time in units of MCs vs N (chain
length). Diffusion relaxation time (triangles) is calculated
where g3(τmax) and 〈R2

g〉 are equal. Configurational relax-

ation time (circles) is calculated using, τmax = Ttot
2Nind

, where

Nind is number of independent samples. The black solid lines
indicate the theoretically predicted slopes, τmax ∼ N2+ρ,
while the dashed lines are the best fit. Insets show the local
slopes of the data. These effective exponents appear to con-
verge to the theoretical exponents (dashed horizontal lines).

The scaling theory predicts that the maximal relax-
ation time should vary as τmax ∼ N2+ρ with the ring size,
Eq. (13). Besides the “diffusion relaxation time” defined
above, we have also tested this relation for the correlation
time of the mean-square gyration radius,

〈
R2
g(N)

〉
, which

characterizes the tertiary structure of our double-folded
rings. We have inferred this configurational relaxation
time via the equation τmax = Ttot

2Nind
[61] from the num-

ber, Nind, of independent samples we have obtained for
the observable as estimated from a block averaging pro-
cedure [62]. Our results for the three investigated classes

of double-folded ring polymers are plotted in Fig. 11. In
all three cases, the configurational relaxation times are
smaller than the diffusion relaxation times, but both es-
timates of τmax scale in the same way. The correspond-
ing effective exponents shown in the inset are somewhat
larger than expected. While our values are compatible
with an approach to the asymptotically expected expo-
nent, a quantitative analysis probably requires data for
larger systems.

D. Dynamics of double-folded rings vs. linear
chains

As summarized in Sec. IV C, the scaling theory [3, 4, 8]
of the dynamics of randomly branching double-folded
ring polymers focuses on the mass transport along the
longest linear path on the tree. Given the similarities to
the tube model for linear chains [e.g. Eq. (13) for the
maximal relaxation time, τmax(N) ∼ Nρ+2, applies in
both cases], one could be tempted to think of the ring mo-
tion as a generalized form of reptation along their longest
paths.

To test this analogy, we have visualized the equilib-
rium dynamics of the longest path of a randomly selected
self-avoiding double-folded ring (Supplementary Materi-
als, video S6 [59]) and of a randomly selected double-
folded ring in the melt state (Supplementary Materials,
video S7 [59]). Note that in these movies time progresses
exponentially to cover the large gap between the time
scales relevant to motion on the monomer and on the
ring scale respectively. Furthermore, we show fading im-
ages of previous conformations to simplify comparisons
with the current conformation.

At early times, the behavior is very similar to contour
length fluctuations for linear chains in the tube model:
the bulk of the longest path remains unchanged, while
the path ends fluctuate. But after a while much more
drastic changes appear, where the longest path appears
to jump in space. For a linear chain such a jump of the
primitive chain would necessarily require a corresponding
transport of mass. For our rings the movie insets show
that the jumps in the position of the longest path are not
accompanied by major changes in the ring configurations.
Instead, the jumps are due to the continuous redistribu-
tion of mass between the side branches, which at some
point cause a substantially different path to outgrow the
original longest path.

There are qualitative differences between the two types
of ring systems. In the self-avoiding case, during relax-
ation, short side branches relax first. This manifests it-
self at the ends of the backbone whose center portion
remains unchanged. At later times, longer side branches
relax and randomly one or two side branches start to
grow. Beyond the relaxation time the backbone changes
as a whole as a result of modified branching. In the melt
case, the structure is more compact and spherically sym-
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metric. The mass is almost equally distributed between
the branches. Hence, a small change in the side branches
may immediately lead to a completely new path for the
longest backbone. This can be observed by comparing
videos S6 and S7 [59]. A quantitative study [35] pursued
the statistics of the branch weight distributions in the
melt state, but a study of the dynamics of the distribu-
tion of side branches is still required.

Since it is not possible to follow the temporal evolution
of a particular path on an internally rearranging tree, it
is easier to focus on pairs of monomers (i∗, j∗), which
at some time, t = 0, are located on opposite ends of
the longest path on the primitive tree. Typically these
monomers are also relatively remote along the ring con-
tour, their contour distances following a broad distribu-
tion of around |i∗ − j∗| = N/2.

In the movie insets we used bigger spheres to mark two
such pairs of monomers which flank the longest path at
the beginning and the end of the visualized sequences.

Figure 12 presents a quantitative analysis of the tree
contour distance L(i∗, j∗, t) between these monomers
rescaled by the average tree contour distance 〈L(N)〉
reported in Table I. The panels on the left-hand side
show the distribution of the tree contour distances at
t = 0, i.e. for L(i∗, j∗, t = 0) ≡ Lmax(t = 0). Re-
sults for different ring sizes superpose, indicating that
both, the average and width of the distribution scale
with 〈L(N)〉 ∼ Nρ. In contrast, for linear chains

contour length fluctuations,
√
〈δL2

pp〉 ∼
√
N , become

asymptotically negligible compared to the average length,
〈Lpp〉 ∼ N , of the primitive paths [31]. The central pan-
els in Fig. 12 show the decay of 〈L(i∗, j∗, t)〉 from a value
of (2.44 ± 0.03 to 1.15 ± 0.01)×〈L(N)〉 for self-avoiding
rings, and (2.77± 0.01 to 1.33± 0.01)×〈L(N)〉 for rings
in the melt over a time scale of the order of the “diffu-
sion relaxation time”, τmax. Again the suitably rescaled
data for different ring sizes exhibit a reasonable collapse.
The true extent of the (tree) “contour length fluctua-
tions” is better represented by the distribution functions
of L(i∗, j∗, t = 10τmax) shown in the panels on the right-
hand side of Fig. 12. While the monomers (i∗, j∗) lo-
cated at opposite ends of the longest path on the tree at
t = 0 have a finite chance to form secondary structure
contacts [50] with L(i∗, j∗, t) ≡ 0 at later times, a corre-
sponding deep retraction of one end of a linear chain to
the opposite end of the tube is exponentially rare [31].

We conclude that randomly branching double-folded
ring polymers move quite differently from reptating linear
chains. In particular, the dynamics of rings of all sizes is
dominated by the analog of contour length fluctuations
occurring simultaneously between all pairs of monomers
of the rings.
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FIG. 12. Tree contour distances between monomers (i∗, j∗)
flanking the longest path on the tree at an arbitrarily cho-
sen time t = 0 after equilibration. Left-hand side column:
Rescaled probability distributions of the longest path length,
Lmax = L(i∗, j∗, t = 0). Middle column: Rescaled time evolu-
tion of 〈L(i∗, j∗, t)〉. Right-hand side column: Rescaled prob-
ability distributions of the tree contour distance, L(i∗, j∗, t =
10τmax), between (i∗, j∗) after all memory of the initial state
at t = 0 is lost. Top row: Self-avoiding double-folded rings.
Bottom row: Double-folded rings in the melt state.

V. SUMMARY AND CONCLUSION

Supercoiled DNA, crumpled interphase chromosomes,
and topologically constrained ring polymers often adopt
treelike, double-folded, randomly branching configura-
tions. To explore the statistical and dynamical properties
of such objects, we have performed Monte Carlo simula-
tions of a suitable elastic lattice polymer model which ac-
counts for double-folding [4, 43], the local accumulation
of contour length on the primitive tree [4, 40, 44–46] as
well as excluded volume interactions [44–46]. In particu-
lar, we have studied single ideal double-folded rings, sin-
gle self-avoiding double-folded rings, and double-folded
rings in the melt state.

In our simulations, side branches of the primitive
tree characterizing the double-folded rings are sponta-
neously created and deleted as a consequence of the local
monomer motion. Since the diffusive mass transport is
local both in space and on the connectivity graph of the
tree, we expect our systems to fall into the same univer-
sality class as the experimental target systems.

The observed static properties are in good agreement
with exact results and predictions of Flory theory for
randomly branching polymers. For example, in the melt
state rings adopt compact configurations and exhibit ter-
ritorial behavior. In particular, the model reproduces
results from previous simulations of double-folded ring
polymers [50], which were wrapped a posteriori around
randomly branching polymers generated in correspond-
ing simulations on the tree level [33–35] in an attempt to
devise a numerically efficient multi-scale approach to the
simulation of non-concatenated ring polymer melts and
interphase nuclei [11, 12].

The present approach offers the advantage that the
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FIG. 13. (a) An example of a tree with side branches. (b)
Ring connectivity of the example tree (a) mapped on a circle
together with bridge bonds (dashed lines) that are formed
during the “burning” process. (c) Illustration of the distance
between monomers 9 and 4 following the bridge bonds along
the way (green: clockwise, and pink: counterclockwise).

dynamics of the ring degrees of freedom can be followed
together with the evolution of the tree structure. This is
a key feature for the simulation of co-polymer [63] models
of crumpled [14, 15] or supercoiled [17, 19, 20] interphase
chromosomes. Here we have used this information to
show that the diffusion of the monomers and the rings’
center of mass are in excellent agreement with the predic-
tions of a recent scaling theory [8]. Furthermore, we have
explored a possible analogy between the motion of ran-
domly branching double-folded ring polymers and reptat-
ing linear chains. While there exist formal similarities on
the scaling level, we conclude that the dynamics of rings
is rather dominated by the analog of contour length fluc-
tuations, which constantly modify the distances between
all monomers on the tree over a wide range.
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Appendix A: Calculating tree contour distances for
tightly double-folded rings

1. Bridge bonds and tree contour distances

An example of a tree is illustrated in Fig. 13(a).
The tree connectivity can be mapped on a circle as in
Fig. 13(b), where consecutive monomers are represented
with numbers. The tree contour distance between two
monomers of a double-folded ring can be calculated by
following the ring contour while ignoring all the double-
folded side branches along the way. Bridge bonds (repre-
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FIG. 14. (a) An example of the ideal double-folded ring. (b)
Corresponding bridges. If all monomers on a site have bridges
defined between them, it leads to an extra wrong bridge (red
dashed line).

sented with dashed lines) between monomers on each tree
site can be defined to mark the location of possible side
branches. The tree contour distance between any pair of
monomers can be calculated by counting the number of
steps taken on the circle and using the bridge bonds as
shortcuts (shortcuts do not add to the number of steps).
Obviously, the choice of direction (clockwise or counter-
clockwise) should result in the same contour length. For
example, the tree contour distance between monomers 9
and 4 in Fig.13(c) is 2.

2. Bridge bonds from spatial co-localization

In systems with excluded volume interactions, the
identification of the bridge bonds is straightforward as
they simply connect monomers which are colocalized in
space (Fig.13). However, as illustrated in Fig. 14 this
method fails in the ideal case, where incorrectly identi-
fied extra bridges [red dashed line in Fig. 14(b)] lead to
lattice animal-like connectivity graphs containing falsely
identified loops.

3. Bridge bonds from an analysis of the local
connectivity

We used a “pinching” variant of the “burning” algo-
rithm [25, 33, 64] that takes advantage of the local con-
nectivity information. As the algorithm operates by it-
eratively removing (pinching off) branch tips, it avoids
the false identification of loops. The protocol to find the
bridges layer by layer is as follows:

(A) Make a list of all the tree branch tips. A branch tip
is defined as a monomer with attached bonds pointing in
opposite directions, ignoring neighbor loops (with zero-
length bonds). For example, in Fig. 13(a) monomers 1,
9, and 6 (5 is a loop) are branch tips.

(B) Randomly select a branch tip and remove it from
the ring. For example, if the branch tip 9 is randomly
selected, monomer 9 is removed and a bridge is defined
between monomers 8 and 10.



14

5

6 71 2

3

4

(a)

5

6 71 2

3

4

(c1)

1
2

3

4
5

6

7

8(b)

1
2

3

4
5

6

7

8(d1)

1
2

3

4
5

6

7

8(d2)

8

5

62

3
(c2)

8

FIG. 15. An example of branch tip detection in an ideal
double-folded ring. (a) and (c1): Examples of side branches
in the ideal case. Ambiguous branch tips and their corre-
sponding bonds are shown in blue. The tree structure is the
same but different interpretations of branch tips are possible.
(b): Bridge bonds corresponding to interpretation (a). Re-
moval of the first layer of tips in (c1) results in the formation
of bridge bonds (d1) and the tree structure (c2). The removal
of the second layer results in the completion of the bridge
bond detection displayed in (d2).

(C) Repeat steps (A) and (B) until the branch tip
list is exhausted.

D) Steps (A) -(C) result in the removal of one “layer”
of side branches. Repeat these steps (remove layer by
layer) until all the branch tips are removed and all the
bridge bonds are found.

We verified that the pinching algorithm reproduces the
results from the spatial co-localization for double-folded
rings with excluded volume interactions.

4. Ambiguities in the tree structure for ideal
double-folded rings

The tree connectivity is not uniquely defined for the
ideal double-folded rings. There is an intrinsic ambiguity
in how side branches and the underlying tree structure
is defined. An example is given in Fig. 15(a) and (c1),
where branch tips under consideration and their attached
bonds are colored blue. They both have the same tree
structure but the number of branch tips is open for in-
terpretation:

(1) Figure 15(a): Branch tips are 1, 3 (pointing up),
5 (pointing up), and 7. During the burning of the first
layer, all the branch tips are removed, which results in
the bridging bonds shown in Fig. 15(b).

(2) Figure 15(c1): Branch tips are 1, 7, and 4 (point-
ing down from tree node {3, 5}). Fig.15(d1) shows the
bridges corresponding to the burning of the first layer.
In the next layer of burning, Fig. 15 (c2), the bridge be-
tween monomers 2 and 6 is formed, Fig. 15(d2).

(1) and (2) are random outcomes of step (B) that re-
sult in different bridging bonds and therefore different
tree contour lengths, as shown in Figs .15(b) and (d2).
In practice, we repeat the described procedure multiple
times and consider the shortest tree contour distances
among different interpretations.
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