
Computer simulations of melts of ring polymers with non-conserved topology: A
dynamic Monte Carlo lattice model

Mattia Alberto Ubertini∗ and Angelo Rosa†

Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
(Dated: July 28, 2021)

We present computer simulations of a dynamic Monte Carlo algorithm for polymer chains on the
FCC lattice which takes explicitly into account the possibility to overcome topological constraints by
controlling the rate at which nearby polymer strands may cross through each other. By applying the
method to systems of interacting ring polymers at melt conditions, we characterize their structure
and dynamics by measuring, in particular, the amounts of knots and links which are formed during
the relaxation process. In comparison to standard melts of unknotted and unconcatenated rings,
our simulations demonstrate that the mechanism of strand crossing is responsible for fluidizing the
melt provided the time scale of the process is faster than the internal relaxation of the chain, in
agreement with recent experiments employing solutions of DNA rings in the presence of the type II
topoisomerase enzyme. In the opposite case of slow rates the melt is shown to become slower, and
this prediction may be easily validated experimentally.

I. INTRODUCTION

In dense polymer liquids and melts, the local Brown-
ian motion of each polymer chain is subject to long-lived
topological constraints (a.k.a. entanglements) imposed
by the presence of the other chains. Well documented
manifestations of entangled polymer chain behavior in-
clude chains reptative motion in monodisperse melts of
linear polymers [1–3] and chains spatial segregation in
monodisperse melts of unknotted and unconcatenated
ring polymers [4–7].

Polymer chains under typical dense conditions become
mutually entangled because they are effectively uncross-
able to each other [1, 8]. In recent years, direct “manip-
ulation” of entanglements in single chain molecules has
opened new routes to fine-tune the mechanical proper-
ties of polymeric materials. This is for instance the case
of the so called smart materials like polycatenanes and
polyrotaxanes [9, 10], which are made of interlocked com-
ponents whose internal degrees of freedom and mobility
shape the unique conformational space of the molecule.

Interlocking and other topology manipulations are not
exclusive to synthetic molecules, in fact they take also
a prominent role in the organization of the long DNA
molecules which constitute the genomes of many organ-
isms. For instance, in eukaryotic nuclei in normal cell
conditions (interphase) the cm-long filament of DNA of
each chromosome is densely packed into a correspond-
ing µm-sized “territory” [11, 12]. In this situation, tight
confinement may result in an “excess” of entanglements
which may be detrimental [13] at the later stage of
cell division: a specific class of enzymes, the topoiso-
merases [14] and in particular the type II topoisomerase
(hereafter, topoII), removes the entanglement [15] be-
tween two nearby DNA strands by cutting one strand,
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moving the other through the cut and ligating the bro-
ken strand back.

Recently, the Spakowitz’s group at Stanford [16]
showed that the “strand crossing” action performed by
topoII is capable of “fluidizing” concentrated solutions of
unknotted and unconcatenated DNA rings. Moreover, by
blocking the activity of the enzyme, the once free rings
become permanently linked with each other: under these
conditions, the DNA solution becomes equivalent to a
so called “Olympic” gel. Such materials, theorized first
by P.-G. de Gennes [17, 18] and notable for their theo-
retical [19–22] as well as biological implications (e.g., the
kinetoplast DNA of certain protozoa [23, 24] can be mod-
eled [25] as an “Olympic” gel), are maintained together
by topological bonds and not by chemical cross-links as
in the case of traditional gels [8]. Studies like the one
from the Spakowitz’s group demonstrate that it is indeed
possible to bend polymer topology to produce materials
capable of switching from liquid-like to more solid-like
behavior.

In this paper, we present the results of extensive nu-
merical simulations describing the formation of linked
networks of ring polymers in melt conditions. The work
generalizes the efficient Monte Carlo scheme for lattice
polymers described in Refs. [26, 27] by expanding the
set of stochastic moves in order to take explicitly into ac-
count the random occurrence of strand crossings between
nearby polymer fibers.

By studying the behaviors of melts of rings at differ-
ent chain monomer numbers N and by comparing the
systems in presence and absence of strand crossings, we
confirm that the strand crossing mechanism is capable of
relaxing the effects of the topological constraints between
different rings and enhance the mobility of the fluid. On
the other hand, this comes at the price of increasing the
topological “complexity” of the chains in terms of links
and knots. We find that single chains swell with respect
to the unknotted and unconcatenated ensemble, their av-
erage size increasing ∝ N1/2 as in ideal Gaussian rings:
yet, we demonstrate that the stationary chain size is not
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FIG. 1. 2d representation of the lattice polymer model
with topology-preserving moves. Each monomer (black dot)
occupy a lattice site (grey dot) and two nearest neighbor
monomers are joined by a black line representing the polymer
bond between them. For two nearest neighbor monomers oc-
cupying the same lattice site the bond between them (a black
arc in the figure) makes a unit of stored length. The green
lines and dots are examples of MC allowed moves: (i) a unit
of stored length unfolding to a normal bond; (ii) a bond fold-
ing into a unit of stored length; (iii) a Rouse-like move. The
red lines and dots are examples of MC forbidden moves: (iv)
three consecutive monomers along the chain occupying the
same lattice site; (v) two non-nearest neighbor monomers vi-
olating the excluded volume constraint.

equivalent to Gaussian and analyze in detail its structural
and dynamical properties.

The paper is organized as follows. In Section II, we
describe the polymer model, the numerical details of the
algorithm and its the computational cost and summa-
rize the relevant length scales of the polymer melts. In
Sec. III, we present the main results of the work. Then,
in Sec. IV, we discuss an effect related to the efficiency
of the strand crossing mechanism that may be tested in
experiments employing DNA rings. The material pre-
sented here is complemented by additional figures in the
Supplemental Material (SM) file.

II. THE POLYMER MODEL: SIMULATION
PROTOCOL, LENGTH SCALES, METHODS

A. The kinetic Monte Carlo algorithm

We employ a kinetic Monte Carlo (MC) algorithm on
the three-dimensional FCC lattice with lattice spacing
= a corresponding to our unit of length, and we model
solutions of ring polymers with excluded volume interac-
tions.

The core of the algorithm is based on the elastic lattice
polymer model inspired by the Rubinstein’s [28] repton
model and developed in [26, 27]. In this scheme (illus-
trated for simplicity in 2d in Figure 1) two consecutive
monomers along the chain either sit on nearest neighbour
lattice sites or they can be on the same lattice site: no
more than two consecutive monomers may occupy the

same lattice site, while non-consecutive monomers are
never allowed to occupy the same lattice site due to ex-
cluded volume. The bond length b between nearest neigh-
bor monomers takes then two possible values, = a or = 0:
in the latter case the bond is said to host a unit of stored
length. For a polymer with N bonds, the total contour
length L ≡ N〈b〉 < Na where 〈b〉 is the average bond
length. This numerical trick makes the polymer elastic.

The dynamic evolution of the chains is implemented
by combining two kinds of MC moves: (i) topology-
preserving (Sec. II A 1) and (ii) topology-changing by
stochastic strand crossing (Sec. II A 2).

1. Topology-preserving moves

The first two moves are the same as in the original
model [26, 27] and, by construction, they preserve the
overall topological state of the system. They consist in
randomly picking a monomer of one of the chains in the
system and attempting its displacement towards one of
the nearest lattice sites (see Fig. 1 for a schematic illustra-
tion of these moves). The move is accepted if chain con-
nectivity is preserved and with the additional constraints
that (1) either the destination lattice site is empty or (2)
the lattice site is occupied by only one of the nearest
neighbor monomers along the chain. In analogy with
classical [1, 8] polymer dynamics, case (1) is an exam-
ple of Rouse-like move while case (2) is a reptation-like
move (essentially the move produces mass drift along the
contour length of the chain, as occurring in reptation dy-
namics). It is easy to see that at low polymer densities
most of lattice sites are empty and Rouse moves prevail
over reptation, while in the opposite case of high polymer
densities reptation becomes the dominant mode through
which polymer chains relax. Therefore the algorithm re-
produces known [1, 8] features of polymer dynamics and,
thanks to the stored length “trick” which integrates local
fluctuations of the chain density, remains efficient even
when it is applied to the equilibration of very large sys-
tems [27].

2. Topology-changing (strand crossing) moves

Here we are interested in studying melt of ring poly-
mers where topology changes are induced over time. In
particular we consider the basic mechanism of strand
crossing (hereafter, SC) involving a pair of nearby poly-
mer filaments, similar to the action triggered by the en-
zyme topoII in DNA rings solutions [16].

As explained in Sec. II A 1, the original [26, 27] lattice
model does not include such feature: we show here that
it is however possible to remove this “constraint” and
we describe the simplest possible MC move capable of
inducing a single crossing between two nearby polymer
strands. These polymer strands may either belong to
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No strand crossing

With strand crossing

FIG. 2. Illustration of Monte Carlo moves for strand cross-
ing. On each pair of ring polymers we identify those strands
(thick red and blue lines in the figure) of contour length = 2a
whose central monomers (in green and yellow) are one lattice
site far apart. The two strands can be “transformed”, such
that the original central monomer of one strand turns into
into the central monomer of the other strand (l.h.s. panels
vs. r.h.s. panels) and viceversa, without violating the chain
connectivity constraint. In some cases (e.g., as in the top row)
this operation does not lead to strand crossing, in others (e.g.,
as in the bottom row) it does. We list all cases (12 in total)
leading to strand crossing and implement them in our MC
algorithm. The configurations in the bottom row constitute
an example of a linking (left → right) or an unlinking (right
→ left) event.

the same chain (intra-chain SC) or they can stay on two
distinct chains (inter-chain SC).

The new move (which is also one of the main contribu-
tions of this paper) is illustrated with the help of the two
examples in Fig. 2. Take two distinct polymer strands of
effective contour length = 2a like, e.g., the two thick seg-
ments of the red and blue curves. The two segments are
chosen with the constraints that the corresponding cen-
tral monomers (in yellow and green) (i) are positioned at
lattice site distance = a and (ii) one can switch position
with the other and being reconnected to the other chain
with no violation of polymer connectivity and preserv-
ing the contour length. By exhaustive search, we have
then compiled the list of all possible (36 in total) swap-
ping moves compatible with these constraints. By closer
examination, we verify that 24 of them do not produce
SC (essentially the two chain strands remain on parallel
planes even after swapping, see the polymer configura-
tions in the top row in Fig. 2), while the remaining 12
moves effectively lead to a single SC (as in the polymer
configurations in the bottom row in Fig. 2). The suc-

cessful SC has been verified by looking at the variation,
|∆G| = +1, of the Gauss linking number G (see definition,
Eq. (10)) relative to the piecewise closed curves formed
by the triplets of monomers involved in the MC swapping
move.

The implementation of this move in the kinetic MC al-
gorithm is as the following. We pick randomly two poly-
mer strands of effective contour length = 2a, then check
whether they belong to the set compatible with a SC
and, if so, we swap the corresponding central monomers.
When the two involved strands belong to the same ring
the move is introducing knots in the chain (Sec. III A 2),
while on two separate rings it will induce the formation
of links (Sec. III B).

B. Simulation details

We have considered bulk solutions of M closed
(ring) polymer chains, each chain made of N
monomers or bonds. With values N × M =
[40× 5120, 80× 2560, 160× 1280, 320× 640, 640× 320]
each system contains a fixed number of monomers
= 204800. Bulk conditions are implemented through
the enforcement of periodic boundary conditions in a
simulation box of total volume V = L3, where the linear
sizes of the box, L, has been fixed based on the monomer
number density ρa3 ≡ NM

V a3 = 1.23 corresponding to
melt conditions [27, 29].

We have studied and compared structure and dynamics
for different set-up’s:

• Ring polymer melts with non-conserved chain
topology. Here, the topological state of the system
changes in time according to the SC mechanism.
Therefore, the MC scheme includes the whole set of
dynamic moves described in Secs. II A 1 and II A 2.

• Ring polymer melts with conserved chain topol-
ogy. Here, only moves from Sec. II A 1 are included.
Since now topology can not relax the choice of the
initial state is crucial. The following two options
have been considered: (i) Equilibrated melts of un-
knotted and unconcatenated or (for brevity and as in
Ref. [29]) untangled rings. (ii) Equilibrated melts
of permanently catenated rings, corresponding to
the equilibrated polymer conformations obtained
at the end of the simulations with non-conserved
chain topology. The name anticipates some prop-
erties of the rings (catenation and linking) that will
be discussed in depth in Sec. III B.

• For additional comparison, we have also considered
ideal (i.e., no excluded volume and no topological
interactions) rings.

At each MC time step, monomers are picked at ran-
dom and time is measured in MC units of τMC ≡ N ·M .
For polymer solutions with non-constrained topology
(Sec. II A 2) one needs to specify also the rate at which
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SC’s occur. In principle, this rate is a free parameter of
our model that we must tune. For the typical experi-
mental conditions described in the work by Spakowitz et
al. [16], it was estimated that the action rate of topoII
on DNA rings is close to its intrinsic rate of O(1s−1)
and ≈ 104 times slower than the mean diffusion time
of a single DNA persistence length. Considering that
our polymers are pretty flexible (see Sec. II E), we take
here one SC move (modeled according to Sec. II A 2) each
104 MC time steps with only topology-preserving moves.
Notice that this choice implies that the enzyme topoII
is assumed to be immediately available for the reaction,
i.e. the process of SC is intrinsically reaction-limited.
Nonetheless, we will also discuss (see Sec. IV) smaller
values of λSC corresponding to “less efficient” topoII.

C. Comparison to other simulation methods

In this section, we discuss briefly two computational
methods which appeared in the past dealing with the
formation of linked gels in melts of entangled rings.

In Refs. [19–22], Lang and coworkers adapted the
bond fluctuation model [30, 31] to construct “Olympic”
gels from untangled melts of rings. To achieve this
task though, they had to introduce a set of “diag-
onal” moves which temporarily remove entanglements
consenting polymer bonds to overlap (the so called “x-
traps” [32]). More or less in the same period, Michieletto
and coworkers [25] used classical Brownian dynamics sim-
ulations of a bead-spring polymer model to construct
model “Olympic” gel conformations for the DNA kine-
toplast. In this case, entanglements were removed by
switching off the non-bonded monomer-monomer inter-
actions of the system, letting the system to equilibrate
and reintroducing the interactions back again. Both pro-
tocols, then, do not look suitable to study the dynamics
of the linking process because they temporarily switch
off entanglements and excluded volume interactions.

On the contrary, the linking protocol introduced here
avoids the unphysical bond-bond overlaps and preserves
the excluded volume interactions. For these reasons, the
protocol can be used to model not only the structure
(Sec. III A) but also the dynamics (Sec. III B) of gel for-
mation employing DNA rings in the presence of topoII.

D. Computing observables for polymer structure

The ensemble average value, 〈O〉, for the generic single-
chain observable O is given by the mathematical expres-
sion:

〈O〉 ≡ 1

M

M∑
m=1

1

τd

∫ Trun

Trun−τd
Om(t) dt , (1)

where Om(t) is the value of the observable calculated for
the m-th ring at time t and Trun is the total runtime

N M Trun [τMC] τd [τMC]

Ideal rings
40 100 ' 6.0 · 106 ' 7.0 · 103

80 100 ' 6.0 · 106 ' 7.0 · 103

160 100 ' 6.0 · 106 ' 1.0 · 104

320 100 ' 9.0 · 106 ' 4.0 · 104

640 200 ' 1.5 · 107 ' 2.0 · 105

Melts of untangled rings
40 5120 ' 2.0 · 106 ' 1.0 · 104

80 2560 ' 2.0 · 106 ' 3.0 · 104

160 1280 ' 2.0 · 106 ' 2.0 · 105

320 640 ' 4.0 · 106 ' 7.0 · 105

640 320 ' 1.5 · 107 ' 3.0 · 106

Melts of rings with strand crossings
40 5120 ' 2.0 · 106 ' 1.0 · 104

80 2560 ' 2.0 · 106 ' 3.0 · 104

160 1280 ' 2.0 · 106 ' 1.0 · 105

320 640 ' 5.0 · 106 ' 6.0 · 105

640 320 ' 1.4 · 107 ' 2.0 · 106

Melts of permanently catenated rings
40 5120 ' 2.0 · 106 ' 1.0 · 104

80 2560 ' 2.0 · 106 ' 5.0 · 104

160 1280 ' 7.0 · 106 ' 5.0 · 105

320 640 ' 9.8 · 107 –
640 320 ' 1.9 · 108 –

TABLE I. Computational cost of MC runs. In interacting
systems (melts) M is the total number of chains, whereas for
ideal systems with no excluded volume interactions it repre-
sents the number of single independent runs. (i) Trun: length
of the single MC run. (ii) τd: ring self-diffusion time. Values
for permanently catenated rings with N = 320 and N = 640
are not defined because the corresponding time mean-square
displacements of the centre of mass (g3(τ), Eq. (15)) at-
tain the characteristic plateaus for stacked dynamics (see
Fig. 7(c)). τMC = N ·M is the Monte Carlo time unit (see
Sec. II B for details).

of the MC trajectory (values for Trun, illustrating the
computational cost of our simulations, are reported in
Table I). The time average in Eq. (1) is calculated by
discarding the initial portion of each trajectory which is
of the order of the self-diffusion time (τd(N), see values in
Table I) of the polymers. τd(N) corresponds to the time
scale for the polymer to diffuse of a distance the size of its
own mean gyration radius, g3(τd(N)) ≡ 〈R2

g(N)〉, where
g3(τ) is the time mean-square displacement of the chain
centre of mass (see definition, Eq. (15)).

E. Polymer model: length scales

For completeness, here we give a few additional details
about the relevant length scales (summarized in Table II)
used to characterize the local bending and the entangle-
ment properties of polymer melts. We remind the reader
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〈b〉/a `K/a ρK`
3
K Le/`K Ne

0.74 1.48 1.9937 100.633 201.266

TABLE II. Values of physical parameters for melts of ring
polymers on the FCC lattice with unit distance = a and
monomer number density ρa3 = 1.23: (i) 〈b〉, mean bond
length; (ii) `K , Kuhn length (Eq. (2)); (iii) ρK`

3
K , number

of Kuhn segments per Kuhn volume [33]; (iv) Le, entangle-
ment length (Eq. (4)); (v) Ne ≡ Le/〈b〉, number of bonds per
entanglement length.

that, as in Refs. [27, 29], we chose the monomer num-
ber density ρ = 1.23a−3 where a is the FCC lattice unit
distance (Sec. II A).

Average bond length, 〈b〉 – Due to excluded volume
effects and chain packing the average bond length 〈b〉 =
0.74a < a.

Kuhn length, `K – The Kuhn length is used to quantify
the flexibility of polymer chains [1, 8]. Given the mean-
square end-to-end distance, 〈R2(`)〉, between monomers
at contour length separation ` on linear chains, `K is
defined as [1, 8]:

`K ≡ lim
`→∞

〈R2(`)〉
`

, (2)

provided that such limit exists [34]. In order to deter-
mine the polymer Kuhn length of our polymer chains,
we have simulated systems of M = 640 linear chains
with N = 320 monomers per chain and with chain
dynamics as described in Sec. II A 1. After equilibra-

tion, we have computed the ratio (Eq. (2)) 〈R
2(`)〉
` where

` = n〈b〉 is the contour length separation between any
two monomers separated by n bonds along the chain.
We have found that this quantity reaches a plateau in
the region ` = [200〈b〉, 300〈b〉] which has been then fitted
to a constant value.

Entanglement length, Le – Dense untangled rings are
known [4, 7, 35] to compact above a characteristic length
scale, the entanglement length Le of the chains. Accord-
ing to the classical packing argument by Lin [36] and
by Kavassalis and Noolandi [37], the number of entan-
glement strands inside the volume spanned by a single
entanglement volume,

ρK
Le/`K

〈R2(Le)〉3/2 ' 20 , (3)

is a universal constant. In Eq. (3), ρK is the number den-
sity of Kuhn segments and 〈R2(Le)〉 = `KLe is the mean-
square end-to-end distance of a linear polymer chain of
contour length = Le (Eq. (2)). Eq. (3) is then equivalent
to:

Le
`K
'
(

20

ρK`3K

)2

, (4)

i.e., the ratio Le/`K is a function of the number of
Kuhn segments inside the (Kuhn) volume = `3K . By

N 〈R2
g〉/a2 Pknot

Ideal rings
40 3.178± 0.002 –
80 6.284± 0.006 –
160 12.52± 0.02 –
320 24.9± 0.1 –
640 50.0± 0.3 –

Melts of untangled rings
40 3.3334± 0.0004 –
80 6.361± 0.003 –
160 11.88± 0.02 –
320 21.9± 0.1 –
640 38.1± 0.5 –

Melts of rings with strand crossings
40 3.5093± 0.0005 0
80 7.088± 0.004 1 · 10−3

160 14.30± 0.02 6 · 10−3

320 28.6± 0.1 3 · 10−2

640 57.6± 0.4 9 · 10−2

Melts of permanently catenated rings
40 3.521± 0.004 –
80 7.10± 0.01 –
160 14.36± 0.07 –
320 29.3± 0.3 –
640 59± 1 –

TABLE III. Single-chain properties in melts of N -monomer
rings. (i) 〈R2

g〉: ring mean-square gyration radius, expressed
in lattice units. (ii) Pknot: mean knotting probability per
chain (only for melts of rings with strand crossings).

using Eq. (4) it is a simple exercise to extract Le/`K
and the corresponding number of monomers per entan-
glement length, Ne. In particular, we notice that the
largest rings with N = 640 ≈ 3Ne are above the entan-
glement threshold and are expected [4, 7, 35] to crumple
due to topological constraints.

III. RESULTS

A. Single-chain structure

1. Ring size

We have studied first how the average ring size, or the
polymer mean-square gyration radius

〈R2
g(N)〉 ≡ 1

N

N∑
i=1

〈(~ri − ~rcm)2〉 ∼ N2ν , (5)

scales as a function of N . In Eq. (5), ~ri are the monomer
coordinates, ~rcm is the chain centre of mass and ν is the
Flory scaling exponent [8]. The results for the different
ensembles are summarized in Table III and plotted in
Fig. 3(a).
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40 80 160 320 640
N

101

102
<

R
2 g
(N

)>
N2 * 0.5

N2 * 0.4

N2 * 1/3

(a)

ideal rings
untangled rings
rings with SC
permanently catenated rings

0.6 0.8 1.0 1.2 1.4 1.6
X = R2

g/ < R2
g >

10 2

10 1

100

<
R

2 g
>

P(
X)

(b) N = 640

Minato and Hatano
ideal rings
untangled rings
rings with SC
permanently catenated rings

FIG. 3. (a) Mean-square gyration radius of ring polymers,
〈R2

g(N)〉, as a function of the number of bonds, N (for detailed
values at each N , see Table III). Symbols of different colors
are for different polymer ensembles and lines correspond to
asymptotic behaviors (see the legend for details). (b) Dis-
tribution functions of gyration radius, P (Rg/

√
〈R2

g〉), in the
different ring ensembles and for the largest chains (N = 640).
The dashed line corresponds to the exact analytical result for
ideal rings [38].

In agreement with Refs. [5, 7, 29], topological con-
straints in untangled melts are ineffective below N . Ne
where Ne ≈ 200 is the total number of monomers per
entanglement length (see Sec. II E). Above Ne, the mu-
tual topological constraints between nearby rings let the
chains to deviate from the ideal behavior 〈R2

g(N)〉 ∼
N2·1/2 and to become more compact: in particular here
we report the scaling 〈R2

g(N)〉 ∼ N2·0.4, which de-
scribes [4] the slow crossover to the asymptotic compact
regime 〈R2

g(N)〉 ∼ N2·1/3 [6, 7].

In the presence of active SC’s the rings swell again,
〈R2

g〉 ∼ N2·1/2, and their behavior does match the one
obtained once SC’s are frozen again and rings turn per-
manently catenated (overlying red and violet symbols in
Fig. 3(a)): we argue that this is a consequence of the fact
that the SC time scale λ−1SC is much larger than the typical

diffusion time of a single monomer, therefore the polymer
has the time to rearrange itself between two consecutive
SC’s and to attain a state which does not undergo further
changes once SC’s are turned off.

Interestingly, although the scaling behavior appears
compatible with the one of ideal chains with ν = 1/2,
rings structure remains non-ideal even in the presence
of SC’s. To show that, we have computed the complete
distribution function, P (Rg), of the gyration radius and
compared their shapes in the different ensembles (see
Fig. 3(b) for the particular case N = 640 and Fig. S1 in
SM for rings of different N ’s). As expected from their gy-
ration radii, rings with active SC’s and permanently cate-
nated rings have the same P (Rg) (green and red lines in
Fig. 3(b) and Fig. S1(c, d) in SM). For small Rg’s though,
these curves deviate substantially from the one describ-
ing ideal rings (blue line in Fig. 3(b) and Fig. S1(a) in
SM). The latter, notably, fits to the analytical function
(dashed lines in Fig. 3(b) and Fig. S1(a) in SM) by Mi-
nato and Hatano [38].

2. Knot statistics in ring polymers with SC’s

Topological constraints in untangled melts make the
chains more compact with respect to the ideal case, a
situation which is radically altered in the presence of ac-
tive SC’s (Fig. 3(a)). SC’s act in the same way regard-
less the two strands are on the same or on different rings
(see Sec. II A 2): for this reason they change both, single-
chain topology by forming knots and inter-chain topology
by forming links (studied in Sec. III B).

There exists conspicuous literature on the effects of
physical knots (and links) in polymer filaments and soft
matter, see the review work [39]. Knots in closed curves
can be classified based on the number of unresolvable
crossings they present when one tries to smoothly deform
the curve so to force it to lie on a plane [39, 40]. So, there
exist one single knot with three crossings (31, the trefoil
knot), one with four (41, the figure-eight knot), two with
five crossings (51 and 52). At increasing knot complexity,
the same number of crossings correspond to several knot
types.

In general, knots classification is operated by means of
suitable topological invariants. One of the simplest and
most popular of the knot invariants, which we also adopt
in the present work, is given by the so called Alexander
polynomial [39, 40] of the knot, which provides a mathe-
matically tractable representation of the smallest number
of chain crossings occurring in the closed curve. Here, we
have used the open package KymoKnot [41] to detect and
classify the knots which form in our polymer chains by
SC’s.

Fig. 4 shows the probability, P (N ; kt), that N -
monomer rings have given knot type kt = 01 (the un-
knot), kt = 31 (the trefoil, i.e. the simplest non trivial
knot) and so on for knots of increasing complexity. Knots
of complex shapes are in general rare (the trefoil domi-
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N = 320
N = 640
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FIG. 4. Probability distribution function, P (N ; kt), for knot
type (kt) detected in N -monomer rings (see legend) undergo-
ing continuous SC’s. Rings with N = 40 do not knot during
the simulation. Inset: Knotting probability Pknot, Eq. (6), as
a function of N (symbols) and best fit to power-law behavior
(line, Eq. (7) with Eqs. (8) and (9)).

nates), yet their frequency increases [39, 40] steadily with
N and for N = 640 we are even able to detect a few, and
quite complex, knotted structures with 11 crossings.

Overall, the cumulative knotting probability

Pknot(N) ≡
∑

kt=31,41,...

P (N ; kt) = 1−P (N ; kt = 01) (6)

is well described (symbols vs. line in the inset of Fig. 4)
by the power law behavior:

Pknot(N) =

(
N

Nknot

)αknot

, (7)

with [42]

Nknot = 2203± 433 , (8)

αknot = 1.9± 0.2 . (9)

The value for αknot (Eq. (9)) is compatible with the fact
that knots form “cooperatively”, due to random SC’s
between pairs of polymer strands. Furthermore, by ex-
trapolation to large N , Eq. (7) implies that rings with
N & Nknot are always knotted on average.

Interestingly, Eq. (7) appears in contrast with the
study [43] showing that for catenated N -monomer rings
in solution one finds Pknot(N) ' 1 − exp(−N/N0) ∼
N/N0, where N0 is some characteristic polymer length.
Noticeably, this matches the known conjecture [40] that
the unknotting probability for ideal, closed lattice poly-
gons decays exponentially with the chain contour length.

We speculate briefly on the discrepancy between this
and our result Eq. (7) with exponent αknot ' 2 (Eq. (9)).
In order to enforce the strand crossing mechanism, in
Ref. [43] rings are simulated via the bond fluctuation
model [30, 31] with the addition of a set of diagonal moves
which switch temporarily off all the entanglements (see

0 1 2 3 4 5 6
| |

10 5

10 4

10 3

10 2

10 1

100

P(
|

|)

N = 40
N = 80
N = 160
N = 320
N = 640

0 250 500
N

0.2

0.3

0.4

0

FIG. 5. Probability distribution function, P (|G|), of the ab-
solute value, |G|, of the Gauss linking number between pairs of
N -monomer rings. Inset: Mean absolute Gauss linking num-
ber 〈|G|〉 vs. N (symbols) and best fit to power-law behavior
(line, Eq. (11) with Eqs. (12) and (13)). Color code is as in
Fig. 4.

comments in Sec. II C). In this sense, the SC mechanism
implemented in [43] is somehow reproducing the features
of an ideal polymer and for this reason the reported knot-
ting probability decays exponentially as conjectured [40]
in ideal rings. Instead our rings are not ideal (Fig. 3(b)),
two nearby strands are never allowed to overlap and the
physical entanglements resulting from the uncrossabil-
ity [1, 8] between nearby polymer strands are resolved
through a more rigorous mechanism (Fig. 2).

B. Structure and dynamics of ring polymers with
SC’s

1. Physical links

The physical links between any given pair of rings R1

and R2 have been quantified in terms of the correspond-
ing Gauss linking number [39, 40]:

G ≡ 1

4π

∮
R1

∮
R2

(~r2 − ~r1) · (d~r2 ∧ d~r1)

|~r2 − ~r1|3
, (10)

where ~r1 (respectively, ~r2) is the spatial coordinate for a
point on the (oriented) contour line formed by ring R1

(resp., ring R2) and d~r1 (resp., d~r2) is the corresponding
infinitesimal increment. As in the case of the Alexander
polynomials (used in Sec. III A 2), G is also a topological
invariant: physically, it represents the number of times
(with “+” or “−” sign, depending on the reciprocal ori-
entations of the curves) that each curve winds around the
other. For our rings modeled as discretized closed paths
on the 3d FCC lattice, Eq. (10) has been evaluated nu-
merically by employing the efficient algorithm by Klenin
and Langowski [44].
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N G0 〈LD〉 plink

40 0.164± 0.004 0.376± 0.001 (7.32± 0.02) · 10−5

80 0.22± 0.01 1.143± 0.003 (4.46± 0.01) · 10−4

160 0.29± 0.01 2.754± 0.004 (2.153± 0.003) · 10−3

320 0.36± 0.01 5.77± 0.01 (9.00± 0.02) · 10−3

640 0.46± 0.01 10.92± 0.08 (3.29± 0.02) · 10−2

TABLE IV. Network properties in melts of N -monomer rings with strand crossings. (i) G0: decay length for the probability

distribution function of the Gauss linking number, P (N ;G) ∼ e−|G|/G0(N) (see Fig. 5 and Fig. S2 in SM). (ii) 〈LD〉: mean
linking degree. (iii) plink: mean fraction of pairs of linking rings.

To validate the method we verify first that the distri-
bution functions for G, P (N ;G), are symmetric around
G = 0 (Fig. S2 in SM). Then, for |G| ≥ 1 [45] P (N ;G)
follows the exponential decay ∼ e−|G|/G0(N) (see Fig. 5).
The “decay length” G0(N) as a function of N (for the
specific values, see Table IV) is well described (symbols
vs. line in the inset of Fig. 5) by the power law behavior:

G0(N) =

(
N

Nlink

)αlink

, (11)

with [42]

Nlink = 5277± 239 , (12)

αlink = 0.363± 0.005 . (13)

The reported value for αlink, close to the scaling expo-
nent ν of the gyration radius of the ring (Fig. 3(a)), is
consistent with the intuitive picture that two rings link
to each other if the spatial distance between the corre-
sponding centers of mass is of the order or smaller than
Rg(N) ∼ Nν (Eq. (5)).

By using the results on the Gauss linking number, we
consider (i) the mean linking degree, 〈LD(N)〉, defined as
the mean number of chains linking to a single ring and
(ii) the mean ring fraction, 〈Mcc(N)〉/M , belonging to
the largest connected component of chains in the melt.
The results are shown in Fig. 6(a). 〈LD(N)〉 increases
linearly [19] with N and the largest (≈ 10) attained value
is consistent with the characteristic number of 10 − 20
chains [7, 35] protruding the volume occupied by a single
ring in melt. We see that for 〈LD(N)〉 ≈ 2, i.e. when
one ring is connected on average to two other rings, a
single giant network is obtained (see also Fig. S3 in SM
for instantaneous snapshots of the networks for different
N).

It is interesting to notice that, in agreement with pre-
vious studies [22, 25], the network of connections has the
structure of a random graph, hence the frequency of ob-
serving a ring linking to, respectively, LD = 0, 1, ...,M−1
other rings is accurately described (symbols vs. lines in
Fig. 6(b)) by the binomial function:

P (M,plink; LD) =

(
M − 1

LD

)
pLDlink (1− plink)M−1−LD .

(14)

100 200 300 400 500 600
N

0.0

0.2

0.4

0.6

0.8

1.0

<
M

cc
>

/M
0

2

4

6

8

10

<
LD

>

(a)

N = 40
N = 80
N = 160
N = 320
N = 640

0 5 10 15 20 25
LD

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P(
LD

)

(b) Binomial distributions
N = 40
N = 80
N = 160
N = 320
N = 640

FIG. 6. (a) Mean ring fraction in the largest connected
component, 〈Mcc(N)〉/M (black line, left y-axis), and mean
linking degree, 〈LD(N)〉 (grey line, right y-axis) as a func-
tion of N . (b) The frequency of observing a ring linking to,
respectively, LD = 0, 1, ...,M − 1 other rings (symbols) in
comparison to the binomial function (Eq. (14)) for random
graphs. Color code is as in Fig. 4.

Eq. (14) is equivalent to the probability that a single
node in a random graph made of M nodes is connected to
LD other nodes, with plink(N) = 〈LD(N)〉/(M − 1) (see
values in Table IV) representing the linking probability
or the fraction of distinct node-to-node links out of the
M(M − 1)/2 total possible combinations.
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FIG. 7. Time mean-square displacement, Ng3(τ), of the center of mass of N -monomer rings in melt. (a) Melts of untangled
rings. (b) Melts of rings in the presence of SC’s. (c) Melts of permanently catenated rings. Curves of different colors are for
different N (see legends). The insets are for Ng3(τ)/τ as a function of τ . Color code is as in Fig. 4.

2. Single chain and network dynamics

We analyze first polymer dynamics in the different en-
sembles. To this purpose, we consider the mean-square
displacement of the spatial position, ~rcm(t), of the centre
of mass of the chain [3]:

g3(τ) ≡ 〈(~rcm(t+ τ)− ~rcm(t))
2〉 , (15)

as a function of time τ .
Unconstrained motion implies that g3(τ) ∝ τ/N in

the long-time regime. Fig. 7(a) shows that this is not the
case for untangled rings, in agreement with the original
simulations by Schram and Barkema [27]. Conversely,
introducing SC’s into the system (Fig. 7(b)) removes the
constraints and accelerates the dynamics to the extent
that g3(τ) is now proportional to 1/N (Fig. 7(b)). Then,
by the right amount of SC’s, it is possible to “resolve”
the entanglements induced by the presence of uncrossable
strands and in this way to fluidize the polymer system.

In agreement with that, by again turning off the SC
activity and then “quenching” the topology, polymer dy-

namics slows down dramatically (Fig. 7(c)) up to the
complete arrest (evident in the saturation of g3(τ) at
large times). Slow-down for N = 40 and N = 80 is
due to the the fact that rings have linked into multi-
chain structures (Fig. S3(a, b) in SM) which tend to move
slower. Starting from N = 160 (Fig. S3(c, d, e) in SM)
rings are locked together into a single, giant structure
and, therefore, unable to perform large scale diffusion,
hence the reported saturation. This effect confirms ex-
perimental reports [16] of a rubber-like plateau in the
storage modulus of topoII-inactivated solutions of cate-
nated DNA rings. Accordingly, the relative motion dis-
played by rings with N = 160 (green line, Fig. 7(c)) is
the consequence of the fact that a non negligible amount
of unconcatenated rings is still undergoing random diffu-
sion (see Fig. S3(c) and Fig. S4(c) in SM). Notice that
these dynamic effects appear on time scales larger than
the imposed (Sec. II A) time scale λ−1SC = 104τMC for

SC’s: on time scales τ . λ−1SC, the three ensembles show
the same subdiffusive behavior ∼ τ0.85 characteristic [27]
of untangled rings.
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FIG. 8. Time auto-correlation function χ(τ) for two rings
remaining linked on time scale = τ in the presence of SC’s
(Eq. (16)). The vertical dotted line corresponds to the time
scale λ−1

SC = 104τMC for SC. The “?’s” mark the positions
of the polymer self-diffusion times τd(N) (see Table I). Color
code is as in Fig. 4.

To complement the analysis on ring dynamics (Fig. 7)
in the presence of active SC’s, we characterize now the in-
terplay between ring motion and the fluidization process
induced by the SC mechanism from the point of view of
the formed polymer network. To this purpose, we intro-
duce the characteristic function C link

ij (t) = 1/0 between
the pair of rings i and j being linked/unlinked at time
t, and calculate the corresponding time auto-correlation
function:

χ(τ) ≡
〈C link

ij (t+ τ)C link
ij (t)〉

〈C link
ij (t)2〉

, (16)

where the average is taken over all possible pairs i and
j. The results for rings made of N monomers are shown
in Fig. 8. Qualitatively, we identify three regimes: (i)
Below the SC time scale λ−1SC = 104τMC, χ(τ) displays
power law decay. (ii) This is followed by a second regime
which, by increasing N , becomes slower than the first one
and attains a quasi-plateau. Intuitively, this is due to the
fact that on such time scales both linking and unlinking
events may happen, while at times τ < λ−1SC we expect
on average only a single unlinking event. (iii) Finally,
on time scales larger than the ring self-diffusion time
τd(N) (corresponding to the time scale for the polymer
to spread over a distance the size of its own mean gyra-
tion radius, g3(τd(N)) ≡ 〈R2

g(N)〉, see Table I), the two
rings occupy, on average, distinct regions in space and
χ(τ) decays as an exponential. The “persistent” regime
(ii) valid for long chains is particularly noteworthy, be-
cause it suggests that with SC’s at work rings coalesce
into a “dynamic” gel-like structure.
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SC / d
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2
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D
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/D
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ta
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le
d

N = 40
N = 80
N = 160
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FIG. 9. Asymptotic diffusion coefficient of rings with ac-
tive SC’s normalized to the corresponding values in untangled
melts as a function of the inverse of the SC rate, λ−1

SC / τd(N),
normalized to the ring self-diffusion time in untangled melts
(see Table I). Color code is as in Fig. 4.

IV. DISCUSSION

Our melts of rings with active SC’s form transient
networks (Fig. 8) which, in spite of the non negligible
amount of introduced linking (Fig. 5), move faster than
in the untangled case (Fig. 7, panel (a) vs. panel (b)).
Physically this happens because SC’s operate at a rea-
sonably fast rate (λ−1SC = 104 τMC, see Sec. II A), guar-
anteeing rapid linking/unlinking events which maintain
rings only “loosely” entangled with each other.

By the same argument one may imagine that, by op-
portunely slowing down the SC rate, it ought to be
possible to produce systems of (temporarily) interlocked
rings whose dynamics is actually slower than in untan-
gled melts. Intuitively this situation can be realized by
choosing λ−1SC to be of the same order or larger than the
self-diffusion time τd of rings in untangled melts since,
supposedly, during this time scale a single polymer has
interacted with the chains to which it is effectively able
to link.

To validate this idea (which may be also tested experi-
mentally, for instance by resorting to DNA rings [16]),
we performed new simulations for the same melts of
rings but with the two different rates λ−1SC = 105 τMC

and λ−1SC = 106 τMC, i.e. ten and one hundred times
slower than the previous one. We have then estimated
the asymptotic diffusion coefficients of the rings by best
fits of the terminal behaviors of the corresponding mean-
square displacements, g3(τ)/τ (see Fig. S5 in SM), nor-
malized to time τ . The results (normalized to the corre-
sponding values for untangled melts) vs. the inverse of
the SC rate, λ−1SC / τd(N), normalized to the polymer self-
diffusion times in untangled melts are shown in Fig. 9.
The plots confirm our expectations: slow SC rates result
in melts with slower relaxation dynamics compared to the
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untangled case. Notice that while the precise value of the
SC rate affects the dynamics of the melt, static quantities
like the gyration radius of the ring or the Gauss linking
number (see, respectively, Figs. S6 and S7 in SM) do not
change for the different set-up’s.

It is also worth noticing that, even in those cases where
SC accelerates dynamics with respect to the untangled
case, the asymptotic behavior is preceded (see Fig. S5 in
SM) by a time regime where the action of SC’s make the
rings temporarily slower. It is not difficult to understand
the reason. Take, for instance, the blue and orange curves
for the “N = 640”-rings in Fig. S5 in SM on the time
scales τ/τMC . 105. On the same time scales, the time
auto-correlation function χ(τ) for the link between two
rings (see the violet line in the bottom panel of Fig. S8
in SM) displays a very slow decay, meaning that the slow
down compared to the untangled case is arguably due to
the slow dynamics of the linked rings.

V. CONCLUSIONS

Motivated by recent experiments [16] employing the
enzyme topoII to induce the fluidization of entangled
polymer solutions of DNA rings, we have introduced a
dynamic Monte Carlo computational scheme for poly-
mer chains on the FCC lattice which takes explicitly into
account the action of the enzyme by controlling the rate
at which two nearby polymer strands are able to cross
through each other. By applying then the model to ring
polymers made of N monomers and in melt conditions,
we discuss how the strand crossing mechanism influences
both the static and the dynamic properties of the chains.

At stationary conditions ring polymers swell with re-

spect to the untangled (i.e., unknotted and unconcate-
nated) case and stay non-ideal (Fig. 3). On the other
hand, they tend to become increasingly knotted (Fig. 4)
and to form a macroscopic network of linked chains
(Fig. 5 and Fig. 6). Interestingly, the probability that
rings remain unknotted (Fig. 4, inset) appears to decay
with N faster than the exponential function predicted for
ideal rings with unconstrained topology, and this finding
was explained based on the consideration that knots form
through the random crossings between pairs of polymer
strands.

On the dynamics side, we show (Fig. 7) that the ability
to produce strand crossings make polymers faster and
that large rings tend to “glue” together into a permanent
gel as soon as crossings are not let anymore. Yet an
acceleration of the dynamics is not true in general, but
only when the rate for strand crossings is fast enough.
In the opposite case the dynamics of the melt may be
even slower than the untangled case (Fig. 9), a prediction
which might be put at test by using, again, DNA rings
in the presence of topoII.

We conclude on a technical remark. Notice that the
model presented here is for flexible chains (Sec. II E)
while polymers in general, and DNA in particular [46],
are more like semi-flexible i.e. locally stiff [8]. The in-
clusion of a bending penalty term in our model is not
presenting particular technical difficulties and its conse-
quences on the topological properties of ring polymers
will be examined in future studies.

Acknowledgements – The authors would like to
acknowledge the networking support by the “Euro-
pean Topology Interdisciplinary Action” (EUTOPIA)
CA17139.

[1] M. Doi and S. F. Edwards, The Theory of Polymer Dy-
namics (Clarendon, Oxford, 1986).

[2] P. G. de Gennes, J. Chem. Phys. 55, 572 (1971).
[3] K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057

(1990).
[4] M. E. Cates and J. M. Deutsch, J. Phys. France 47, 2121

(1986).
[5] J. D. Halverson, W. B. Lee, G. S. Grest, A. Y. Grosberg,

and K. Kremer, J. Chem. Phys. 134, 204904 (2011).
[6] A. Y. Grosberg, Soft Matter 10, 560 (2014).
[7] A. Rosa and R. Everaers, Phys. Rev. Lett. 112, 118302

(2014).
[8] M. Rubinstein and R. H. Colby, Polymer Physics (Oxford

University Press, New York, 2003).
[9] Q. Wu, P. M. Rauscher, X. Lang, R. J. Wojtecki, J. J.

de Pablo, M. J. A. Hore, and S. J. Rowan, Science 358,
1434 (2017).

[10] L. F. Hart, J. E. Hertzog, P. M. Rauscher, B. W. Rawe,
M. M. Tranquilli, and S. J. Rowan, Nat. Rev. Mater. 6,
508 (2021).

[11] T. Cremer and C. Cremer, Nat. Rev. Genet. 2, 292
(2001).

[12] A. Rosa and R. Everaers, Plos Comput. Biol. 4, e1000153
(2008).

[13] S. Brahmachari and J. F. Marko, Proc. Natl. Acad. Sci.
USA 116, 24956 (2019).

[14] J. J. Champoux, Annu. Rev. Biochem. 70, 369 (2001).
[15] J. L. Sikorav and G. Jannink, Biophys. J. 66, 827 (1994).
[16] B. A. Krajina, A. Zhu, S. C. Heilshorn, and A. J.

Spakowitz, Phys. Rev. Lett. 121, 148001 (2018).
[17] P.-G. De Gennes, Scaling Concepts in Polymer Physics

(Cornell University Press, 1979).
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FIG. S1. Probability distribution functions, P (Rg/
√
〈R2

g〉), of the gyration radius of N -monomer rings (see legends for
details). Results for: (a) Ideal rings. The dashed line corresponds to the exact expression by Minato and Hatano [38]. (b)
Melts of untangled rings. (c) Melts of rings with strand crossings. (d) Melts of permanently catenated rings.
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FIG. S2. Probability distribution function, P (G), of the Gauss linking number G between pairs of N -monomer rings. The
function is perfectly symmetric around G = 0, which validates the approach used to detect G and based on the algorithm [44].
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N = 40, Giant component formed by 8 rings N = 80, Giant component formed by 92 rings

N = 160, Giant component formed by 1171 rings N = 320, Giant component formed by 636 rings

N = 640, Giant component formed by 320 rings

FIG. S3. Schematic illustrations of network structures of the system of rings with dynamical topology [47]. In each plot, any
blue dot represents a ring of the system, rings which are linked are connected through the drawn light red curves. The thicker
red curve represents the biggest cluster in the network. Any picture represents a single snapshot taken from the trajectories of
the system of rings with dynamical topology.
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FIG. S4. Details for the time mean-square displacement of the chain centre of masses, g3(τ), in melts of permanently catenated
rings. Gray lines are for displacements of single rings, the blue line is the average over the entire ensemble of rings.



6

103 104 105 106 107

[ MC]

4 × 10 4

5 × 10 4

g 3
/

N =  40

untangled rings
1

SC = 106
MC

1
SC = 105

MC
1

SC = 104
MC

103 104 105 106 107

[ MC]

2 × 10 4

3 × 10 4

g 3
/

N =  80

untangled rings
1

SC = 106
MC

1
SC = 105

MC
1

SC = 104
MC

103 104 105 106 107

[ MC]

10 4

6 × 10 5

g 3
/

N =  160

untangled rings
1

SC = 106
MC

1
SC = 105

MC
1

SC = 104
MC

103 104 105 106 107

[ MC]

3 × 10 5

4 × 10 5

6 × 10 5

g 3
/

N =  320

untangled rings
1

SC = 106
MC

1
SC = 105

MC
1

SC = 104
MC

103 104 105 106 107

[ MC]

10 5

2 × 10 5

3 × 10 5

4 × 10 5

g 3
/

N =  640

untangled rings
1

SC = 106
MC

1
SC = 105

MC
1

SC = 104
MC

FIG. S5. Time mean-square displacement of the centre of mass of N -monomer rings, g3(τ)/τ , normalized to the time τ .
Results for different SC rates λSC (see legends) are compared to melts of untangled rings.
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FIG. S6. Mean-square gyration radius, 〈R2
g(N)〉, of ring polymers as a function of the number of bonds, N , and for different

SC rates λSC (see legend).
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FIG. S7. Probability distribution functions of the absolute Gauss linking number, |G|, for different ring sizes, N , and for
different SC rates λSC (see legends).
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FIG. S8. Time correlation function χ(τ) for two rings remaining linked on time span = τ in the presence of SC’s (Eq. (16) in
the main text). Results for: (top) λ−1

SC = 104 τMC, (middle) λ−1
SC = 105 τMC, (bottom) λ−1

SC = 106 τMC.
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