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Motivated by chromosomes enclosed in nucleus and the recently discovered active topological
glass, we study a spherically confined melt of long nonconcatenated active polymer rings. Without
activity, the rings exhibit the same average large-scale conformational properties as chromatin fiber.
Upon activating consecutive monomer segments on the rings, the system arrives at a glassy steady
state due to activity-enhanced topological constraints. The latter generate coherent motions of the
system, however the resulting large-scale structures are inconsistent with the fractal globule model.
We observe microphase separation between active and passive segments without systematic trends in
the positioning of active domains within the confining sphere. We find that tank-treading of active
segments along the ring contour enhances active-passive phase separation in the state of active
topological glass when both diffusional and conformational relaxation of the rings are significantly
suppressed. Finally, although the present model of partly-active rings is not compatible with the
large-scale chromatin organization, our results suggest that the activity-enhanced entanglements
that result in facilitated intra- and inter-chromosomal contacts might be relevant for chromatin
structure at smaller scales.

The active topological glass (ATG) is a state of mat-
ter composed of polymers with fixed, circular, unknotted
topology, that vitrifies upon turning a block of monomers
within the polymers active and fluidizes reversibly [1].
Unlike classical glasses, where the transition is driven
by temperature or density, the ATG results from physi-
cal, tight, threading entanglements, generated and main-
tained by the activity of polymer segments. The activity
acting on the ring segments, modeled here as stronger-
than-thermal fluctuations, triggers a directed snake-like
motion that overcomes entropically unfavorable states
and results in significantly enhanced inter-ring thread-
ing [2]. A topological glass is hypothesized to exist also
in equilibrium solutions of sufficiently long ring polymers,
where rings naturally thread (pierce through each other’s
opening). However, the conjectured critical ring length
is currently beyond the experimental or computational
reach [3–5]. Although the ATG exhibits accessible crit-
ical ring lengths, a formidable challenge in simulating
these systems stems from large system sizes that are nec-
essary to avoid self-threading of significantly elongated
partly-active rings due to periodic boundary conditions
[1]. To overcome this difficulty, a much smaller system
confined to an impenetrable cavity can be simulated.

However, in analogy to classical glasses, where the con-
finement affects the vitrification mechanism and shifts
the glass transition temperature in comparison to the
bulk value [6, 7], it is necessary to ask the question
whether the ATG, the existence of which relies on highly
extended configurations that promote inter-molecular en-
tanglement, can exist in such a strong confinement at all.

Besides the ATG, the confined melt of uncrossable
polymer rings with active segments has an interesting
biological connection. The equilibrium melt of rings

exhibits conformational properties consistent with the
large-scale, population-averaged properties of chromatin
fiber in the interphase nuclei of higher eukaryotes [8–10].
In detail, the territorial segregation of distinct chains,
the critical exponents ν = 1/3 and γ ' 1.1 governing
the scaling of the gyration radius R(s) ∼ sν and the
probability of end-contacts P (s) ∼ s−γ of a segment of
length s respectively, coincide for the two systems and
characterize the so-called fractal (crumpled) globule con-
formations [11]. However, similarly to partly active rings,
chromatin is out of equilibrium on smaller scales as well.
Various processes, such as transcription or loop extrusion
inject energy into the system by the action of respective
molecular machines on the chromatin fiber. Fluorescence
experiments [12] and the related analytical theory [13]
suggest that some active events at small scales render
fluctuations with thermal spectrum at an effective tem-
perature about twice higher than the ambient one. While
not aiming at a faithful biological representation of the
chromatin, we question whether the ATG is consistent
with the fractal globule model, since both of the latter
represent some aspects of the chromatin conformations
in space and time.

Motivated by both the question on the existence of
the confined ATG and the question on the consistency
with the fractal globule model of chromatin, here we ex-
plore the static and dynamic properties of long, confined,
partly-active, nonconcatenated rings in melt. We find
that essentially the same phenomenon of the ATG for-
mation is present in confined systems with a small num-
ber of polymer chains. The ability to simulate longer
rings than in the bulk, allows us to assess in more detail
the conformational and scaling properties of the chains
in the non-equilibrium glassy state. We discover that
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intermediate-length ring segments feature conformations
consistent with a self-avoiding random walk (ν = 0.588,
γ = 1.75). While the territorial structure of the frac-
tal globule is clearly distorted, we observe active-passive
microphase-separated domains and large-scale correlated
motion arising from the glassy phase due to the activity-
induced topological constraints. In contrast to chro-
matin models in [14, 15], where the large-scale dynamical
coherence arises from explicit interaction potentials or
crosslinks, here we show that the activity-induced entan-
glement can mediate the correlated motion as well. Fi-
nally, we observe tank-treading of active segments along
the ring contour in the glassy state that acts to enhance
active-passive phase separation when both chain diffusion
and its conformational rearrangements are suppressed.

We start from a well equilibrated sample of M = 46
rings each of length N obtained in [10] (N = 200, 400, 800
and 1600 that corresponds to chain entanglement lengths
of Z = N/Ne ∈ [7 − 57]), the longest being four times
longer than the system in [1]. We impose the activity on
a consecutive segment of length N/8 by coupling it to a
(hot) thermostat with temperature Th = 3Tc, where Tc is
the temperature of passive (cold) monomers. We use the
well-established polymer model [16–18], described in de-
tail in the Supporting Information (SI). The radius R of
the confining sphere, which is modeled as a smooth struc-
tureless purely repulsive barrier (SI), is fixed by the total
monomer density ρ = 0.85σ−3 for all systems. Typically,
R is about 2.5 − 2.7 times larger than the equilibrium
radius of gyration of the confined chains (Tab. S3).

When the activity is switched on, after about 105τ , τ
being the microscopic time of the model (see Section S1 in
the SI), the chains start to expand from their equilibrium
sizes until they reach a steady state after (2 − 3)·106τ .
The time of the onset of the chain stretching does not
significantly depend on N because it is related to local
threading constraints. The steady state is characterized
by a significantly enhanced mean-square radius of gyra-
tion R2

g (see snapshot of a chain in Fig. 1d and more in
Fig. S1 in the SI, time evolution of R2

g in Fig. 1a and
Tab. S1 for shape parameter comparison). In compari-
son to the bulk [1], the confined rings are significantly
less expanded in terms of Rg and the ratio of the two
biggest eigenvalues of the gyration tensor (Fig. S2a and
compare Tab. S1 to Tab. S2 of N = 400). Neverthe-
less, the conformations are mostly doubly-folded and the
change in the shape parameters is due to “reflections”
from the walls. This can be seen in the mean-square in-
ternal distance of the longest rings being non-monotonic
function of the contour length (Fig. S2b). In comparison
to equilibrium (Tab. S3), the rings are highly stretched
and exhibit self-avoiding walk-like scaling at intermedi-
ate distances (Fig. S2c) with a consistent scaling of the
contact probability with the exponent γ close to 1.75
(Fig. S2d) [9] and a plateau at largest distances, signify-
ing the loss of correlation due to reflections of rings from

FIG. 1. Conformational properties. a, Evolution of
the ring’s R2

g after the activity onset at t = 0 for systems
with different N . b, Distribution of R2

g in the steady state.
c, Evolution of the mean number of threaded neighbors (see
Section S2 in the SI). d, Conformation of a partly-active ring
with N = 1600 at the end of the simulation run. In a and c,
the dashed lines of the respective color indicate the values in
equivalent equilibrium ring melts [10].

the walls. The stretched conformations and the different
profile of the contact probability signifies the loss of the
original crumpled globule characteristics. The stretching
due to the snake-like motion is caused by strong dynamic
asymmetry between the active and the passive segments,
apparently triggered by non-equilibrium phase separa-
tion [1, 2, 19]. The dynamics of the mutual ring thread-
ing coincides with the stretching dynamics and exhibits
markedly enhanced numbers of threaded neighbors ntn
by a single ring in the steady state in comparison to
equilibrium (Fig. 1c), as we showed by analyzing pierc-
ings of rings through other rings’ minimal surfaces (SI)
[1, 10, 20–22]. Interestingly, the number of threaded
neighbors is the same as for the active topological glass
in the bulk, despite the different ring shape (compare
Tab. S1 and S2). For the longest rings, each ring practi-
cally threads all the other rings in the system. Although
this does not hold for the shorter rings, their dynamic
behavior is comparable, as detailed below.

The steady states exhibit a rugged distribution of R2
g

(Fig. 1b), despite averaging over about 107τ , time that
is more than one order of magnitude above the equilib-
rium diffusion times for N ≤ 800. This shows that the
individual chains are not able to change their conforma-
tions significantly, being frozen essentially in the same
state, and points to a non-ergodic behavior. When aver-
aged over 10 independent runs, a smoother distribution
is recovered, as shown for N = 200 in Fig. 1b.
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The chosen model parameters trigger active-passive
(micro)phase separation in all the systems [2, 19, 23].
We track the degree of phase separation by the order pa-
rameter Φ(t) = x(t)/x(0) − 1, where x(t) is the number
fraction of inter-chain like-particles in a rc = 21/6σ neigh-
borhood of a given monomer at a given time t, averaged
over monomers (Fig. 2a). The initial increase of the or-
der parameter precedes the ring stretching and threading
dynamics, supporting the conjecture in [2] that the sep-
aration tendency is a precursor of the formation of the
glass. The phase separation is dynamic in nature, show-
ing intervals of a single mostly-hot region, but also sub-
sequent dissociation into several hot blobs (Supporting
Video 1) reminiscent of the dynamics of activity-driven
colloidal crystals [24]. When the shape properties arrive
at a steady state, there are several hot blobs (Fig. 2b)
and we still observe them occasionally exchanging hot
particles. As described below, these are the consequence
of a rare tank treading motion of some of the rings,
by which the hot segment joins the hot phase without
changing the overall shape of the ring and the system
as a whole. The radial density distribution of the hot
monomers averaged over 10 different runs for N = 200
displays confinement induced layering at the wall as in
equilibrium [10], and displays another broad maximum
around R/2 (Fig. 2c). However, the analysis of single
runs for N = 200 and for other N shows that the posi-
tioning of hot monomers is history-dependent, arrested
by the topological constraints, and allows for both, in-
ternal or peripheral locations (Fig. 2d) in contrast to
preference for central locations of active monomers in a
different polymer model in [25].

In Fig. 3 we report dynamical and relaxation properties
of rings in the system with N = 200 (averaged over 10
independent runs). We focus on the late stage dynamics
by discarding the initial period of length 3·106τ , where
major configurational rearrangements occur. The late-
stage (steady-state) dynamics of the ring’s center of mass,
g3(t), (Eq. (S4) in the SI), is much slower than in the equi-
librium case [10], with negligible relative displacements
between the rings g3,rel(t), (Eq. (S5)) as shown in Fig. 3a.
Importantly, the latter quantity is invariant under over-
all constant global rotations and shows that the relative
ring’s motion essentially stalls. The systems with longer
rings display the same behavior. In confined systems,
g3(t), saturates at a constant value; for the rings with
N = 200, we find that g3(t → ∞) ≈ 0.4R2, which is
about two times smaller than in the equivalent equilib-
rium case (Fig. 3a). This arises mostly from extremely
elongated and practically frozen rings conformations, due
to which the exploration of the available volume is sig-
nificantly suppressed (Supporting Video 2).

We characterize the ring structural relaxation by con-
sidering the terminal autocorrelation function (TACF)
〈u(t) ·u(0)〉, where u(t) is the unit vector connecting two
monomers separated by contour distance N/2, and the

FIG. 2. Phase segregation. a, Time evolution of the order
parameter Φ(t). b, Phase-segregated regions of hot monomers
(cold not shown for clarity) for the system with N = 1600.
c, Radial distribution of cold (blue), hot (yellow), and all
(green) monomers within the enclosing sphere for the system
with N = 200 (averaged over 10 independent runs). d, Radial
distributions of hot monomers.

average is taken over all such monomer configurations
within a ring and time [18, 26]. The full decorrelation
time of the TACF (≈ 6·105τ) is about three times longer
than in the counterpart equilibrium case (Fig. 3b). In the
steady state, the rings are found in a heavily threaded
arrangement with their configurations being essentially
frozen, as evidenced by the static properties. Since in the
steady state the relative ring displacements are marginal
(Fig. 3a), 〈u(t) · u(0)〉 can decorrelate either through in-
ternal conformational ring relaxation or collective system
rotations.

In what follows, we show that the main pathway that
contributes to the decorrelation of the TACF are corre-
lated, stochastic rotations of the whole system. The other
possible decorrelation mechanism is the internal ring re-
arrangements, caused by the local explorations of the hot
segments or tank treading motion. To show that these
do not dominate, we show in Fig. 3c that the normalized
autocorrelation function for the ring’s R2

g, C(t), decor-
relates at a much later time (≈ 2·106τ) and features a
three decades long logarithmic decay. This contrasts with
the equilibrium behavior, where both structural quanti-
ties R2

g and 〈u(t)·u(0)〉 decorrelate at about the same
time (yellow curves in Fig. 3b and Fig. 3c). Although
the size of the rings remains essentially the same dur-
ing the TACF relaxation, there remains a possibility of
tank treading motion that can significantly impact the
TACF decorrelation but keep the overall size given by
Rg fixed. As highlighted in Fig. 3d, the tank treading,
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FIG. 3. Dynamics and relaxation. Comparison of the
non-equilibrium system (blue) with the equilibrium (yellow).
a, Mean-square displacements of the ring’s center of mass g3
normalized by the squared sphere’s radius R2 of N = 200
(solid lines). The relative mean-square displacement g3,rel(t)
(dashed). b, Terminal autocorrelation function. c, Normal-
ized autocorrelation function for R2

g. For comparison the au-
tocorrelation of the squared “end-to-end” (i.e. between an
active and a passive monomer separated by segment length
N/2) distance R2

ee,ch is shown (green). In all cases we sub-
tract the mean value squared and normalize the autocorrela-
tion functions to unity at time zero. d, Time dependence of
R2

ee,ch(t) for one of the rings illustrates tank treading motion.

a tangential motion of the hot segment along the ring’s
contour, is indeed observed. Thus, such a mechanism
can enhance active-passive phase separation when both
diffusional and conformational relaxation of polymers is
not possible. We show that the tank treading does not
significantly impact the terminal relaxation by comput-
ing the autocorrelation function for the squared end-to-
end distance R2

ee,ch between a hot and a cold monomer
contour-wise N/2 apart (Fig. 3c). Although it decorre-
lates slightly faster than the one for R2

g, its relaxation
time is still much larger than that of the TACF. There-
fore, collective, stochastic rotations provide the dominant
contribution to the TACF decorrelation, whereas its re-
laxation time scale can be used as an estimate for ro-
tational diffusion time (the presence of such global, cor-
related rotations is visible in both Supporting Videos).
Global rotations lead to correlated particle displacements
as detailed by computing the spatio-temporal correlation
function (Section S5 in the SI). Finally, such stochastic
rotations can also arise spontaneously in confined equi-
librium systems coupled to a Langevin thermostat (see
discussion in the SI).

Let us now turn to a discussion of a possible connection

of the large correlated motions (rotational diffusion) in
ATG and coherent motion of chromatin on micron scale,
observed in [12, 27], interpreted also as rotations of the
nucleus interior [28]. In the context of chromatin, many
different mechanisms can cause large correlated motions
[14, 15, 25, 29–32]. The works [14, 15, 30] focus on the
spatio-temporal correlations in the dynamics. While the
first one uses the thermal-like model of activity, the latter
two investigate the effects of active force dipoles. These
are coupled with hydrodynamic interaction in [30], while
in [15], the active force dipoles act on highly crosslinked
chromatin connected to deformable lamina. Note that
explicit bonds are used in [15, 25, 29], which maintain
the compact chromatin state in contrast to fractal glob-
ule model, where it arises from the uncrossability of the
chains. All the works [14, 15, 30] find large-scale cor-
related motions, but of different origins. In [14], the
correlated domains coincide with the micro-phase sep-
arated domains due to preferential intra-domain interac-
tion, and the activity opposes the coherence, similarly
to [31]. Non-monotonic dependence of the correlation
length on time lag has been observed [12, 27]; it is not
clear if it is a general phenomenon (Fig. 2 in [27]) and
in contrast to [14], the coherence of the motion even at
short time lags is larger for the active systems [12, 27].
The correlated motion in [30] comes from the coupling
of the hydrodynamic flow due to contractile motors and
the nematic ordering of the chromatin fiber (not yet ob-
served), with no discernible effect of local topology (un-
knottedness) of the conformation. The contractile motor
activity in [15] generates the correlated motion as a result
of a high number of crosslinks between chromatin fiber,
and is even enhanced when more crosslinks are used with
a deformable nuclear envelope. Last but not least, apart
from the role of activity in correlated motions, other, pas-
sive mechanisms are possible [33, 34]. The latter work
also highlights glassy features of the chromatin dynam-
ics, such as dynamic heterogeneity. Here we show yet
another mechanism giving rise to a correlated motion,
namely by activity-induced topological interactions that
entangle neighboring domains that subsequently have to
move in a correlated fashion.

Despite the similarity of the coherent motion (and
other dynamic features [1, 35–37]) of the ATG and chro-
matin, based on the conformational data (ν = 0.588,
γ = 1.75), we conclude that the ATG in the present
form is inconsistent with the chromatin large-scale con-
formational data and the fractal globule model (ν = 1/3,
γ ' 1.1). The conflict of dynamical and large-scale
conformational properties is, however, a persistent issue
also in other models that aim at elucidating the physi-
cal mechanisms rather than the capturing the conforma-
tional details [30]. More work is necessary to conclude
if other types of topological glass (dynamic correlations
arising from entanglements) can be consistent with frac-
tal globule. One option opens up at smaller length scales
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(below 1Mbp, which roughly corresponds to 10 beads of
our largest system), where the chromatin fiber has non-
trivial topology (due to cohesin mediated loops) [38] and
features less compact statistics [39, 40]. Simulations with
finer resolution and diverse distribution of the active seg-
ments would be necessary to give a satisfactory answer.
A notable work in this context, [14], use active sites dis-
tributed along the polymer according to the epigenetic
information of a given chromosome that is modelled as
an uncrossable chain with initially fractal-globule large-
scale conformational properties. However, the work does
not report entanglements or conformational changes of
the active segments. Despite some active segments be-
ing long (20-80 beads), the relatively lower density, in
comparison to ours, and a differential interaction of the
active and the inactive chromatin types could suppress
or obscure the activity-driven conformational changes we
report here. This could be also the reason why the work
[14] does not observe the correlation length to depend
on the activity level at short times as reported in exper-
iments [12, 27]. Simulations with more accurate chro-
matin topology or experiment that would trace the chro-
matin type in 3D simultaneously with dynamics might
elucidate the coherence mechanism.

From the materials research perspective, our work
shows that the ATG can be efficiently explored at a sig-
nificantly reduced computational costs in confinement.
We characterized the chain static properties and discov-
ered the tank treading relaxation mechanism that, how-
ever, does seem to affect the glass stability, but only the
phase-separation properties. More detailed understand-
ing of the topological constraints maintaining the ATG
stability should be gained in future to experimentally
synthesize ATG and fully characterize this novel dynam-
ical transition.
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Supporting Information

MODEL

We use the well-established model [16], in which the
excluded volume interaction between any two monomers
is described by a repulsive and shifted Lennard-Jones po-
tential

ULJ(r) =

(
4ε

[(σ
r

)12
−
(σ
r

)6]
+ ε

)
θ(21/6σ − r) (S1)

where θ(x) is the Heaviside step function, σ is the bead’s
diameter, and ε sets the energy scale. As in Ref. [10],
the same potential was used for the interaction between
monomers and the confining sphere of radius R which was
set to achieve an overall monomer density ρ = 0.85σ−3

(see Tab. S1). The polymer bonds were modeled by a
finitely extensible nonlinear elastic (FENE) potential

UFENE(r) = −1

2
r2maxK log

[
1−

(
r

rmax

)2
]
, (S2)

where K = 30.0ε/σ2 and rmax = 1.5σ. These parameters
make the chains essentially noncrossable. We also used
the angular bending potential

Uangle = kθ(1− cos(θ − π)) (S3)

with the parameter kθ = 1.5ε to induce higher stiffness
that corresponds to a lower entanglement length Ne =
28± 1 at the studied monomer density ρ [17].

Our simulations start from well-equilbrated configura-
tions of completely passive ring polymer melts in spheri-
cal confinement produced in Ref. [10]. Each system con-
tains M = 46 ring polymer chains, each of length N
(N = 200, 400, 800 and 1600, corresponding to chain en-
tanglement number Z = N/Ne = 7, 14, 28 and 57). The
choice of M = 46 chains was inspired by the 23 pairs of
chromosomes in the human diploid cell nucleus, but the
main reason is to demonstrate the existence of a topolog-
ical glass in a small systems to ease future exploration of
the phenomenon. At time t = 0, the activity was intro-
duced by coupling a consecutive segment of length N/8
on each ring to a Langevin thermostat at temperature
Th = 3.0ε, whereas the rest of the ring is still main-
tained at Tc = 1.0ε by another Langevin heat bath. We
choose this value of Th = 3Tc, despite the experimental
indications of active fluctuations being only about twice
the thermal fluctuations. The reason is the heat flux be-
tween the active and the passive constituents establishes
effective temperatures that are in between the tempera-
tures set by the thermostat. The effective temperatures
(measured by the mean kinetic energy) would be the ones
measured in the experiments and have the correct ratio
about 2 [2]. The equation of motion of the systems were

FIG. S1. Typical conformations of partly active rings
in spherical confinement. The snapshots correspond to
N = 200 (top left), 400 (top right), 800 (bottom left), and
1600 (bottom right).

integrated using the LAMMPS simlation upackage [41]
with the time step ∆t = 0.005τ and the damping con-
stant γ = 2/3τ−1, where τ = σ(m/ε)1/2.

The Langevin thermostat in spherical confinement can
induce stochastic values of angular momentum that af-
fect the real dynamics of the system. This effect can be
neutralized by zeroing periodically the total angular mo-
mentum during the simulations as done in equilibrium
simulations in [10]. In the present case, unlike in the
equilibrium simulations, we do not perform this opera-
tion due to a non-equilibrium character of the studied
system as well as potential global flows that can arise in
active matter states. When compared to dynamic equi-
librium quantities across this work, we also used trajec-
tories produced in a similar fashion without zeroing the
angular momentum. We note, however, that the differ-
ence in dynamic relaxation times in equilibrium simula-
tions with and without zeroing the angular momentum
is rather small.

THREADING DETECTION

We detect the threadings using a minimal surface
method that has been used successfully to analyze
threading constraints for systems containing ring poly-
mers in equilibrium [10, 20, 22] and out of equilibrium
[1, 2, 21]. The essence of the method is an unambiguous
definition of the threading as the intersection of a rings
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N Nh R/σ 〈R2
g〉/σ2 〈R2

ee〉/σ2 〈R2
ee〉/〈R2

g〉 〈λ1〉/〈λ3〉 〈λ2〉/〈λ3〉 〈R2
g〉/R2 〈R2

ee〉/R2

200 25 13.72 62.4(0.7) 164.8(6.2) 2.64 12.0(0.7) 4.3(0.2) 0.33 0.87

400 50 17.29 129.3(0.6) 304.4(6.2) 2.34 6.5(0.4) 3.1(0.7) 0.41 1.01

800 100 21.78 227.7(0.5) 468.6(3.1) 2.05 4.6(0.2) 2.7(0.8) 0.47 0.98

1600 200 27.44 376.1(0.7) 810.8(4.7) 2.15 3.5(0.5) 2.2(0.1) 0.49 1.07

TABLE S1. Size and shape properties of partially active rings in a confining sphere. The mean values as well as their
standard errors (indicated in the parentheses) were estimated in the steady states. R is the radius of the sphere. 〈R2

g〉 and 〈R2
ee〉

are the mean-square radius of gyration and the mean-square spanning distance between monomers N/2 apart, respectively. λi

(i = 1, 2, 3, λ1 ≥ λ2 ≥ λ3) are the eigenvalues of the gyration tensor.

N Nh 〈R2
g〉/σ2 〈R2

e〉/σ2 〈R2
ee〉/〈R2

g〉 〈λ1〉/〈λ3〉 〈λ2〉/〈λ3〉
100 13 18.1(0.1) 54.9(0.1) 3.0 7.3(0.1) 2.34(0.01)

200 25 65.2(0.3) 203.5(3.8) 3.1 12.4(0.1) 2.81(0.01)

400 50 182.1(0.7) 566.1(2.1) 3.1 14.2(0.2) 3.03(0.02)

TABLE S2. Size and shape properties of the partially active rings in bulk. 〈R2
g〉 is the mean-square radius of gyration,

〈R2
e〉 is the mean-square distance between two monomers separated by the contour length N/2, and λi, i = 1, 2, 3 are the

eigenvalues of the gyration tensor ordered such that λ1 ≥ λ2 ≥ λ3. The value in the parentheses indicates the standard error.
For comparison with equilibrium values, please see Table S3. Adapted from Ref. [2].

N R/σ 〈R2
g〉/σ2 〈R2

e〉/σ2 〈R2
ee〉/〈R2

g〉 〈λ1〉/〈λ3〉 〈λ2〉/〈λ3〉
200 13.72 26.4(0.2) 73.4(0.6) 2.8 5.64(0.04) 2.25(0.01)

400 17.29 44.4(0.7) 120.7(2.5) 2.7 5.24(0.08) 2.14(0.02)

800 21.78 73.1(1.1) 195.4(3.8) 2.7 4.93(0.10) 2.06(0.01)

1600 27.44 120.5(2.8) 320.2(10.4) 2.7 4.89(0.12) 2.03(0.02)

TABLE S3. Size and shape properties of the equilibrium confined rings. R is the radius of the confining sphere,
〈R2

g〉 is the mean-square radius of gyration, 〈R2
e〉 is the mean-square distance between two monomers separated by the contour

length N/2, and λi, i = 1, 2, 3 are the eigenvalues of the gyration tensor ordered such that λ1 ≥ λ2 ≥ λ3. The value in the
parentheses indicates the standard error. Adapted from Ref. [10]

contour with a disk-like surface spanned on another ring.
As there are many possible surfaces with the contour of
the ring a surface of minimal surface area is chosen. For
the details on practical implementation of the algorithm
we refer the reader to [1, 21]. The reported value of num-
ber of threaded neighbors ntn is a mean number of rings
each ring threads as in [1].

ADDITIONAL CONFORMATIONAL
PROPERTIES

In Fig. S2 we report additional conformational proper-
ties of the rings. There we compare scaling of the gyra-
tion radius in the present active confined system with the
bulk and the equilibrium counterparts. Additionally we
show the profile of the contact probability and the scal-
ing of the mean square internal distance that exhibits the
self-avoiding statistics.

MEAN-SQUARE DISPLACEMENTS

We compute the mean-squared displacement g3(t) as

g3(t, t0, ttot) =

〈
1

ttot − t

∫ t0+ttot−t

t0

[R(t′ + t)−R(t′)]
2

dt′
〉

(S4)
where t0 is the initial time point chosen as the onset of
the steady state (3·106τ in case of active rings and 0 for
equilibrium), ttot is the total simulation time, R is the
position of the ring’s center of mass with respect to the
global center of mass and the angles mean averaging over
different rings.

Additionally, we compute the relative mean-square dis-
tance g3,rel(t):

g3,rel(t) =

〈
1

ttot − t

∫ t0+ttot−t

t0

[dij(t
′ + t)− dij(t′)]

2
dt′
〉
ij

(S5)
where t0 and ttot are as above, dij is the relative distance
between rings i and j and the 〈. . .〉ij is the average over
all possible ring pairs in the system.
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SPATIO-TEMPORAL CORRELATIONS

The spatio-temporal correlations are computed simi-
larly to [12, 14] as

Cs(r; ∆t) =

〈∑
i>j [∆Ri(t,∆t) ·∆Rj(t,∆t)]δ(Rij − r)∑

i>j δ(Rij − r)

〉
(S6)

where ∆Ri(t,∆t) is the displacement of the i-th
monomer in lag time ∆t as measured in time t. The
angular brackets represent averaging over time, in the
active case only over the steady state. In the active sys-
tem, the correlation decays significantly slower in com-

parison to equilibrium and there is a strong anticorrela-
tion at longer lag times at the opposing positions in the
spherical confinement (r ' 1.5R) (Fig. S3a). In part,
this is a consequence of the Langevin dynamics that in-
duces stochastic angular momentum also in equilibrium
(Fig. S3b). However, the anticorrelation is much more
pronounced in the active topological glass state, and al-
most nonexistent in equilibrium with zeroed angular mo-
mentum (Fig. S3c). We observe larger correlation length
for the active case consistent with [12, 15, 27], but in con-
trast to [14]. However, the correlation length seems to be
monotonically increasing and saturating with time that
is consistent with some cases in [27], but non-monotonic
correlation length has been observed in other cases at
longer time lags [12, 14, 15, 27].
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FIG. S2. Additional conformational properties. a, Comparison of the scaling of the radius of gyration with the ring
length for different systems. The confined active rings are from the present work, the confined equilibrium rings are from [10],
the bulk equilibrium are from [17], and the bulk active rings from [1]. The equilibrium scaling exponent ν = 1/3 is shown as
well as the crossover with “effective exponent” 2/5. The seeming compact scaling of the active confined rings is not due to their

internal structure (see b), but just because the confining radius R scales with N1/2 as the systems of different N were simulated
with the same number of chains and the same density. b, The mean-square internal-distance d(s) is computed as the mean
square end-to-end vector of a segment of length s averaged over its position within a ring and over different rings in the steady
state. In the intermediate distances (s/(N/2) ∈ [10−2; 10−1]) we recover self-avoiding walk scaling exponent 0.588 for the longer
(N ≥ 400) rings. These exhibit also monotonic profile for large contour distances. c, The mean-square internal-distance d(s)
rescaled by the s0.588. The broadening plateau for the rings of N ≥ 400 shows the asymptotic self-avoiding regime. d, The
contact probability P (s) is the probability of finding the endpoints of a segment s at distance below 21/6σ. It is an average over
the segment’s position within a ring and over different rings in the steady state. At intermediate distances and for long rings
we recover exponent γ close to 1.75 consistent with the self-avoiding random walk configuration. At longer lengths, P (s) goes
to a constant signifying the positional decorrelation due to reflections from the wall — this is typical profile of an equilibrium
globule, i.e. confined melt of linear chains. The exponent γ is smaller for shorter rings. The non-monotonic character is due to
the phase separation of the hot and cold segments and the doubly-folded structure.
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FIG. S3. Spatio-temporal displacement correlation. The correlation for N = 200 system computed by (S6) for a the
active confined rings, b equilibrium rings without zeroing the angular momentum, c equilibrium rings with zeroing the angular
momentum from Ref. [10].
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